
Large-Scale Behavioral Targeting

Ye Chen
∗

eBay Inc.
2145 Hamilton Ave

San Jose, CA 95125
yechen1@ebay.com

Dmitry Pavlov
†

Yandex Labs
330 Primrose Road, Suite 306

Burlingame, CA, 94010
dmitry-pavlov@yandex-

team.ru

John F. Canny
Computer Science Division

University of California
Berkeley, CA 94720

jfc@cs.berkeley.edu

ABSTRACT
Behavioral targeting (BT) leverages historical user behavior
to select the ads most relevant to users to display. The
state-of-the-art of BT derives a linear Poisson regression
model from fine-grained user behavioral data and predicts
click-through rate (CTR) from user history. We designed
and implemented a highly scalable and efficient solution to
BT using Hadoop MapReduce framework. With our paral-
lel algorithm and the resulting system, we can build above
450 BT-category models from the entire Yahoo’s user base
within one day, the scale that one can not even imagine
with prior systems. Moreover, our approach has yielded
20% CTR lift over the existing production system by lever-
aging the well-grounded probabilistic model fitted from a
much larger training dataset.

Specifically, our major contributions include: (1) A MapRe-
duce statistical learning algorithm and implementation that
achieve optimal data parallelism, task parallelism, and load
balance in spite of the typically skewed distribution of do-
main data. (2) An in-place feature vector generation algo-
rithm with linear time complexity O(n) regardless of the
granularity of sliding target window. (3) An in-memory
caching scheme that significantly reduces the number of disk
IOs to make large-scale learning practical. (4) Highly effi-
cient data structures and sparse representations of models
and data to enable fast model updates. We believe that our
work makes significant contributions to solving large-scale
machine learning problems of industrial relevance in gen-
eral. Finally, we report comprehensive experimental results,
using industrial proprietary codebase and datasets.

Categories and Subject Descriptors
I.5.2 [Design Methodology]: Distributed Data Mining,

∗Work conducted at Yahoo! Labs, 701 First Ave, Sunnyvale,
CA 94089.
†Work conducted at Yahoo! Labs, 701 First Ave, Sunnyvale,
CA 94089.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

High-Performance and Terascale Computing, Parallel Data
Mining, Statistical Methods, User Modeling.

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Behavioral targeting, large-scale, grid computing

1. INTRODUCTION
Behavioral targeting (BT) leverages historical user be-

havior to select the most relevant ads to display. A well-
grounded statistical model of BT predicts click-through rate
(CTR) of an ad from user behavior, such as ad clicks and
views, page views, search queries and clicks. Behavioral data
is intrinsically in large scale (e.g., Yahoo! logged 9 terabytes
of display ad data with about 500 billion entries1 on Au-
gust, 2008), albeit sparse; particularly ad click is a very rare
event (e.g., the population CTR of automotive display ads is
about 0.05%). Consequently, to fit a BT predictor with low
generalization error requires vast amounts of data (e.g., our
experiments showed that the generalization error monotoni-
cally decreased as the data size increased to cover all users).
In practice, it is also desired to refresh models often and thus
to constrain the running time of training, given the dynamic
nature of user behavior and the volatility of ads and pages.

In this paper we present a scalable and efficient solution to
behavioral targeting using Hadoop [1] MapReduce [9] frame-
work. First, we introduce the background of BT for online
display advertising. Second, we describe linear Poisson re-
gression, a probabilistic model for count data such as online
user behavioral data. We then focus on the design of such
grid-based algorithms that can scale to the entire Yahoo!
user base, with a special effort to share our experiences in
addressing practical challenges during implementation and
experiments. Finally, we show the experimental results on
some industrial datasets, compared with the existing system
in production. The contribution of this work includes the
successful experiences at Yahoo! in parallelizing statistical
machine learning algorithms to deal effectively with web-
scale data using MapReduce framework, the theoretical and
empirical insights into modeling very large user base.

1An entry of display ad data contains ad click, ad view and
page view events conducted by a user (cookie) within a sec-
ond.

209

2. BACKGROUND
Behavioral targeting is yet another application of modern

statistical machine learning methods to online advertising.
But unlike other computational advertising techniques, BT
does not primarily rely on contextual information such as
query (“sponsored search”) and web page (“content match”).
Instead, BT learns from past user behavior, especially the
implicit feedback (i.e., ad clicks) to match the best ads to
users. This makes BT enjoy a broader applicability such as
graphical display ads, or at least a valuable user dimension
complementary to other contextual advertising techniques.

In today’s practice, behaviorally targeted advertising in-
ventory comes in the form of some kind of demand-driven
taxonomy. Two hierarchical examples are “Finance, Invest-
ment”and“Technology, Consumer Electronics, Cellular Tele-
phones”. Within a category of interest, a BT model derives
a relevance score for each user from past activity. Should the
user appear online during a targeting time window, the ad
serving system will qualify this user (to be shown an ad in
this category) if the score is above a certain threshold. One
de facto measure of relevance is CTR, and the threshold is
predetermined in such a way that both a desired level of
relevance (measured by the cumulative CTR of a collection
of targeted users) and the volume of targeted ad impres-
sions (also called reach) can be achieved. It is obvious that
revenue is a function of CTR and reach.

3. LINEAR POISSON REGRESSION
We describe a linear Poisson regression model for behav-

ioral count data [5]. The natural statistical model of count
data is the Poisson distribution, and we adopt the linear
mean parameterization. Specifically, let y be the observed
count of a target event (i.e., ad click or view within a cat-
egory), λ be the expected count or the mean parameter of
the Poisson, w be the weight vector to be estimated, and x
be the “bag-of-words” representation of feature event counts
for a user. The probability density is:

p(y) =
λy exp(−λ)

y!
,where λ = w>x. (1)

Given a collection of user behavioral data D = {(xi, yi)}ni=1

where n is the number of training examples, we wish to find
a weight vector w that maximizes the data log likelihood:

` =
X
i

“
yi log (w>xi)−w>xi − log (yi!)

”
, (2)

where i denotes a user or a training example2. Taking the
derivative of the log likelihood with respect to wj yields:

∂`

∂wj
=
X
i

„
yi
λi
xij − xij

«
, (3)

where wj is the coefficient and xij is the regressor, respec-
tively, of a feature indexed by j. The log likelihood function
is globally concave; therefore the maximum likelihood esti-
mator (MLE) of w can be uniquely found by gradient de-
scent or, more efficiently, by the Newton-Raphson method.
Better yet, we adapt a multiplicative recurrence proposed

2Depending on the approach to generating training exam-
ples (xi, yi), one user could contribute to multiple examples.

by Lee and Seung [11] to our optimization problem by con-
straining w ≥ 0. The multiplicative update rule is:

w′j ← wj

P
i
yi
λi
xijP

i xij
,where λi = w>xi. (4)

The assumption of non-negative weights is intuitive in that
it imposes a positive effect of one-unit change in regressors
(feature event counts) on the conditional mean (expected
target event count), while yielding an efficient recurrence.

For predicting ad CTR of a user i within a target cate-
gory k, we use the unbiased estimator constructed from the
conditional Poisson means of clicks and views respectively,
with Laplacian smoothing addressing data sparseness,

ĈTRik =
λclick
ik + α

λview
ik + β

, (5)

where α and β are the smoothing constants that can be
defined globally for all categories or specifically to each cat-
egory. Note that α/β gives the default CTR of a“new user”3

without any history, a natural choice is letting α/β be the
cumulative CTR of all users in that category (also called
population CTR). Since λi = w>xi, the CTR prediction
is inherently personalized (one Poisson mean for each user)
and dynamic (xi can be updated in real time as event stream
comes in). The performance of a BT model is evaluated
mainly via click-view ROC curve and, of greater business
relevance, the CTR lift at a certain operating point of reach.

Finally, we comment on the choice of linear parameteriza-
tion of the Poisson mean λ = w>x (identity link function),
instead of the canonical exponential form λ = exp(w>x)
(log link function). Recall that we assume wj ≥ 0 ∀j, the
identity link is thus possible for Poisson since λ ≥ 0. In
model training, it can be readily shown that fitting a Pois-
son regression with the log link function involves comput-
ing exp(w>xi) ∀i in each recurrence, instead of w>xi ∀i in
the linear case. This slight efficiency gain by the latter can
become non-trivial when model needs to be refreshed very
often, while i may iterate over billions of examples. The
rationale behind, however, comes more from the practical
considerations in online prediction. Keep in mind that an
online BT system needs to make ad serving decisions in real
time (in the order of millisecond); thus it is generally imprac-
tical to score users from scratch (i.e., computing λ = w>x
from the entire history of x). In practice, expected clicks
and views for all users are computed offline a priori (e.g.,
daily) and updated incrementally online, usually with some
form of decay. The simple linear form of the predictor makes
incremental scoring possible by maintaining the additivity of
the update function. More precisely, given a new event ∆xj
of feature j taking place, the predictor can be updated as:

λ′ = λδ∆t + wj∆xj , (6)

where λ′ is the new estimator, λ is the previous one, and
δ∆t is an exponential decay with a factor of δ and ∆t time
elapsed. On the other hand, the exponential form incre-
ments the score as:

λ′ = exp
h
(log λ)δ∆t + wj∆xj

i
, (7)

3The “new user” phenomenon is not uncommon in BT, since
in practice: (1) we can only track a finite amount of history;
and (2) user is tracked by cookie, which is volatile.

210

where the logarithmic and exponential operations are extra
computing cost.

4. LARGE-SCALE IMPLEMENTATION
In this section we describe the parallel algorithms of fit-

ting the Poisson regression model using Hadoop MapReduce
framework. Our focus, however, is to elaborate on various
innovations in addressing practical challenges in large-scale
learning [7].

4.1 Data Reduction and Information Loss
Most practical learning algorithms with web-scale data are

IO-bound and particularly scan-bound. In the context of
BT, one needs to preprocess 20-30 terabytes (TB) raw data
feeds of display ads and searches (one month’s worth). A
good design should reduce data size at the earliest opportu-
nity. Data reduction is achieved by projection, aggregation
and merging. In the very first scan of raw data, only rele-
vant fields are extracted. We next aggregate event counts
of a user (identified by cookie) over a configurable period
of time and then merge counts with a same composite key4

(cookie, time) into a single entry. On the other hand, the
data preprocessing step should have minimum information
loss and redundancy. For example, the time span of aggre-
gation shall satisfy the time resolution required for model
training and evaluation (e.g., next one-minute prediction).
This step neither decays counts nor categorizes ads, hence
loosely coupled with specific modeling logics. A marginal re-
dundancy is introduced by using (cookie, time) as key, given
that examples only need to be identified at the cookie level.
In practice, we found this is a good trade-off, since using
the composite key reduces the length of an entry and hence
scales to very long history user data by alleviating any re-
strictions on the buffer size of a record. After preprocessing,
the data size is reduced to 2-3TB.

4.2 Feature Selection and Inverted Indexing
Behavioral data is heterogeneous and sparse. A data-

driven approach is to use granular events as features, such
as ad clicks, page views and search queries. With such a
fine-grained feature space, feature selection is not only the-
oretically sound (to overcome the curse of dimensionality),
but also practically critical; since for instance the dimen-
sionality of search queries can be unbounded. We adopt a
simple frequency-based feature selection method. It does so
by counting entity frequency in terms of touching cookies
and selecting most frequent entities into our feature space.
An entity refers to the name (unique identifier) of an event
(e.g., ad id or query). Entity is one level higher than feature
since the latter is uniquely identified by a (feature type, en-
tity) pair. For example, a same ad id can be used by an ad
click or view feature; similarly, a query term may denote a
search feature, an organic or sponsored result click feature.
In the context of BT, we consider three types of entities:
ad, page, and search. Thus the output of feature selection is
three dictionaries (or vocabularies), which collectively (off-
set by feature types) define an inverted index of features.

We select features simply based on frequency instead of
other more sophisticated information-theoretic measures such
4We use composite key here in a logical sense, while phys-
ically Hadoop only provides a simple key/value storage ar-
chitecture. We implemented composite key as a single con-
catenated key.

as mutual information. Not only does the simple frequency
counting enjoy computational efficiency; but also because
we found empirically frequency-based method works best
for sparse data. The joint distribution term in mutual in-
formation will be dominated by frequent features anyway.
And also, mutual information estimates can be very noisy
in sparse data.

We found several design tricks worked very well in prac-
tice. First, frequency is counted in cookie rather than event
occurrence. This effectively imposes a robot filtering mecha-
nism by enforcing one vote for each cookie. Second, to select
the most frequent entities we apply a predefined threshold
instead of fixing top-N from a sorted frequency table. The
threshold is probed a priori given a desired feature dimen-
sionality. But once an optimal threshold is determined, it
can be used consistently regardless of the size of training
data. The thresholding approach is more statistically sound
since more features (thus more model parameters) require
more data to fit; and vice versa, more data favors more
features in a more expressive model. Third, MapReduce
framework enforces sorting on key for input to reducers,
which is required for reducers to efficiently fetch relevant
partitions. In many cases such as thresholding, however,
the logic within reducer does not require input to be sorted.
Sorting some data type can be expensive (e.g., arbitrarily
long string as cookies). To avoid this unnecessary overhead,
an optimization is to swap key and value in mapper, given
that (1) key data type is sorting-expensive, while value data
type is not; and (2) swapping key and value does not com-
promise the data needs and computing cost in reducer. The
last MapReduce job of feature selection that hashes selected
entities into maps (dictionaries) is an example of this op-
timization. Indeed, our implementation does even better.
Once the frequency of an entity is summed, the threshold is
applied immediately locally and in-memory; and hence the
long tail of the frequency table is cut from the traffic to the
last hashing step.

4.3 Feature Vector Generation in O(1n)

For iterative algorithms for optimization commonly used
in statistical learning, one needs to scan the training data
multiple times. Even for a fast-convergent method such as
the multiplicative recurrence in our case, the algorithm re-
quires 15-20 passes of training data to converge the MLE
of model parameters. Consequently, great efforts should be
made to design a data structure optimized for sequential ac-
cess, along both the user and feature dimensions; while ma-
terializing any data reduction and pre-computing opportu-
nities. Behavioral count data is very sparse by nature, thus
a sparse vector representation should also be used. Specif-
ically, an example (xi,yi) consists of two vectors, one for
features xi and the other for targets yi

5. Each vector is
represented as a pair of arrays of same length NNZ (number
of nonzero entries); one of integer type for feature/target
indices and the other of float type for values (float for possi-
ble decaying), with a same array index coupling an (index,
value) pair. This data structure can be viewed as a flattened
adaptation of Yale sparse matrix representation [10]. We
further split the representations of features and targets for
fast access of both, particularly the tensor product yi ⊗ xi,
the major computational cost for model updates.

5One example may contain multiple targets for different BT-
category and click/view models.

211

With the inverted index built from feature selection, we
reference a feature name by its index in generating exam-
ples and onwards. The original feature name can be of any
data type with arbitrary length; after indexing the algorithm
now efficiently deals with integer index consistently. Several
pre-computations are carried out in this step. First, feature
counts are further aggregated into a typically larger time
window (e.g., one-month feature window and one-day target
window); and target counts are aggregated from categorized
feature counts. Second, decay counts exponentially over
time to account for the freshness of user behavior. Third,
realize causal or non-causal approaches to generating exam-
ples. The causal approach collects features before targets
temporally; while the non-causal approach generates tar-
gets and features from a same period of history. Although
the causal method seems more intuitive and must be fol-
lowed in evaluation, the non-causal way has advantages in
increasing the number of effective examples for training and
hence more suitable for short-term modeling. The data size
now, one that will be directly consumed by weight initial-
ization and updates, is 200-300 gigabytes (GB) with binary
and compressed storage format.

It is generally intractable to use algorithms of time com-
plexity higher than linear O(n) in solving large-scale ma-
chine learning problems of industrial relevance. Moreover,
unlike traditional complexity analysis, the scalar c of a lin-
ear complexity O(cn) must be seriously taken into account
when n is easily in the order of billion. BT is a problem of
such scale. Our goal in time complexity is O(1n), where n
is the number of examples keyed on (cookie, time). Recall
that ad click is a very rare event, while it is a target event
thus carrying arguably the most valuable information in pre-
dicting CTR. The size of a sliding target window should
be relatively small for the following reasons. Empirically, a
large window (e.g., one-week) effectively discards many (fea-
ture, target) co-occurrences given that a typical user session
lasts less than one hour. Theoretically, for a large window
and hence large target event counts, the assumed Poisson
approaches a Gaussian with a same mean and may suffer
from overdispersion [3]. In online prediction on the other
hand, one typically estimates target counts in a window of
several minutes (time interval between successive ad serv-
ings). Suppose that the number of sliding windows is t, a
näıve algorithm would scan the data t times and thus have a
complexity of O(tn). When t increases, O(tn) becomes un-
acceptable. For example, per-minute sliding over one week
for short-term modeling gives 10, 080 windows.

We develop an algorithm of O(1n) smoothed complex-
ity [12] for generating examples, regardless of the number of
sliding windows t. The essence of the algorithm is the fol-
lowing: (1) cache in memory all inputs of a cookie; (2) sort
events by time and hence forming an event stream; (3) pre-
compute the boundaries of feature/target sliding windows;
(4) maintain three iterators on the event stream, referencing
previous featureBegin, current featureBegin and targetBe-
gin, respectively; (5) use one pair of objects (e.g., TreeMap
in Java) to respectively hold the feature and target vectors,
but share the object pair for all examples. As the feature and
target windows slide forward, advance the iterators accord-
ingly to generate an example for the current window using
in-place increment, decrement, and decay. In the worst case,
one scan of each of the three iterators is sufficient for gen-
erating all examples for the cookie in question. In a typical

causal setup, the target window is much smaller than the
feature window; hence the smoothed complexity is O(1n).
The formalism and schematic of the algorithm are shown in
Algorithm 1 and Figure 1, respectively. Note that we let
FeatureVector collectively denote the 2-tuple of input fea-
ture and target feature vectors.

Algorithm 1: Feature vector generation

/* We denote a datum in MapReduce as 〈key, value〉,
use ‘:’ as field delimiter within key or value,
and ‘...’ for repetition of foregoing fields. */

Data structure: FeatureVector1

begin2

/* Array notation: dataType[arrayLength] */
int[targetLength] targetIndexArray;3

float[targetLengh] targetValueArray;4

int[inputLength] inputIndexArray;5

float[inputLength] inputValueArray;6

end7

Input: 〈cookie:timePeriod,
featureType:featureName:featureCount...〉

Output: 〈cookieIndex, FeatureVector〉
MapReduce: PoissonFeatureVector;8

Mapper → 〈cookie,9

timePeriod:featureType:featureName:featureCount...〉;
Reducer → 〈cookieIndex, FeatureVector〉;10

begin11

/* For a cookie */
compute boundaries of t pairs of feature/target windows;12

cache events and sort values by timePeriod;13

initialize iterators and TreeMaps;14

/* Slide window forward */
for i← 1 to t do15

advance prevFeatureBegin to decrement feature16

counts in-place;
decay feature counts incrementally;17

advance currFeatureBegin to increment feature18

counts in-place;
advance currTargetBegin to increment target counts;19

robot filtering and stratified sampling;20

bookkeeping reducer-local total counts;21

output FeatureVector;22

end23

end24

cookie (t = 1):

cookie (t = 2):

cookie (t = 3):

An example feature/target vectors (or simply a feature vector)

Legend:

prevFeatureBegin currTargetBegin

currFeatureBegin
prevFeatureBegin currTargetBegin

prevFeatureBegin currTargetBegin
currFeatureBegin

currFeatureBegin

Figure 1: Feature vector generation in O(1n)

212

4.4 Data-driven Weight Initialization
Model initialization involves assigning initial weights (co-

efficients of regressors) by scanning the training set D once.
To exploit the sparseness of the problem, one shall use some
data-driven approach instead of simply uniformly or ran-
domly assigning weights to all parameters, as many gradient-
based algorithms do. A data-driven initialization will drasti-
cally speed up weights convergence since, for example, under
the multiplicative update rule as Eq. (4) those weights with
no data support will remain zeros as initialized. We define a
unigram(j) as one occurrence of feature j, and a bigram(k, j)
as one co-occurrence of target k and feature j. The basic idea
is to allocate the weight wkj as normalized co-occurrences
of (k, j), i.e., a bigram-based initialization. Here normaliza-
tion can be performed per example through its total feature
counts, and globally through unigram and/or bigram counts.
We implement two weight initialization methods under dif-
ferent motivations. The first method uses feature-specific
normalization by total feature unigram counts over all ex-
amples, motivated by the idea of tf-idf,

wkj ←

P
i

yikxijP
j′ xij′P
i xij

. (8)

The second method uses target-specific normalizer involving
total unigram and bigram counts, motivated by the highly
skewed distribution of traffic over categories,

wkj ←
P
i (yikxij)

P
i yikP

j′
ˆP

i (yikxij′)
P
i xij′

˜ . (9)

4.5 Parallel Multiplicative Recurrence
We wish to estimate the MLE of a dense weight matrix

from a sparse data matrix D. We adopt a highly effective
multiplicative update rule arising from non-negative matrix
factorization (NMF) [11], given that D contains count data
and weights are assumed to be non-negative. More precisely,
let W be a d ×m weight matrix where d is the number of
targets and m is the number of features. A dense view of
D is a n × (d + m) matrix which can be further blocked
into a n × d target counts matrix Y and a n × m feature
counts matrix X, i.e., D = [Y X]. The MLE of W can be
regarded as the solution to an NMF problem Y > ≈ WX>

where the quality of factorization is measured by data log
likelihood [4]. Since both Y and X are given, we directly
apply the multiplicative algorithm in [11] to compute W
thus yielding our recurrence in Eq. (4).

The computational performance of the multiplicative up-
date in Eq. (4) is dominated by counting bigrams (per-
example normalized as in the numerator of the multiplicative
factor), while the global normalizing unigram counts (the de-
nominator of the multiplicative factor) are pre-computed in
feature vector generation. Iterative learning algorithms typ-
ically encounter parallelization bottleneck in synchronizing
model parameters after each iteration [6]. In solving Poisson
MLE in our case, for each iteration the final multiplicative
update of the weight vector wk of a target variable k has
to be carried out in a single node to output this weight vec-
tor. Notice that the number of targets d can be arbitrarily
small; and the traffic distribution over targets (categories)
is by nature highly skewed. Consequently, an unwise paral-
lel design would suffer from suboptimal task parallelism and
poor load balance. Our algorithm successfully addresses the
above parallelization challenges as follows.

4.5.1 Scalable Data Structures
To achieve optimal task parallelism, we represent the weight

matrix W as d dense vectors (arrays) of length m, each wk

for a target variable k. First, using weight vectors is more
scalable in terms of memory footprint than matrix represen-
tation. Assume that d = 500 and m = 200, 000, a dense W
in float requires 400 megabytes (MB) memory. Reading the
entire matrix in memory, as one previous standalone imple-
mentation does, is unscalable for clusters of commodity ma-
chines. For example, in Yahoo’s Hadoop clusters, each node
has 8GB RAM which is typically shared by 8 JVM processes
and hence 1GB per JVM. The vector representation scales
in both target and feature dimensions. A weight vector is
read in memory on demand and once at a time; and hence d
can be arbitrarily large. The memory footprint of a vector
becomes bounded, e.g., a 200MB RAM can hold a vector of
50 million float weights. A three-month worth of Yahoo’s
behavioral data without feature selection contains features
well below 10 million. Second, the weight vector data struc-
ture facilitates task parallelism since a node only needs to
retrieve those vectors relevant to the data being processed.
Third, the dense representation of wk makes the dot prod-
uct λik = w>k xi very efficient. Recall that feature vector
uses sparse array data structure. Given the relevant wk as
a dense array in memory, one loop of the xi sparse array is
sufficient for computing the dot product, with a smoothed
complexity of O(mx) where mx is the typical NNZ in xi. A
dot product of two sparse vectors of high dimensionality is
generally inefficient since random access is not in constant
time as in dense array. Even a sort-merge implementation
would only yield a complexity of O(mw) where mw is the
typical NNZ in wk and mx � mw < m. The choice of
sparse representation for feature vector is thus readily justi-
fied by its much higher sparseness than weight vector6 and
the even higher dimensionality of n.

4.5.2 Fine-grained Parallelization
For updating the weight matrix W = [wkj]d×m iteratively,

we distribute the computation of counting bigrams by the
composite key (k, j) which defines an entry wkj in W . A
näıve alternative is distributing either rows by k or columns
by j; both however suffer from typically unbalanced traffics
(some k or j dominates the running time) and the overhead
of synchronizing bigram(k, j). By distributing (k, j), the
algorithm yields an optimal parallelization independent of
the characteristics of domain data, with no application-level
parallelization needed. Distributing composite keys (k, j)
effectively pre-computes total bigram counts of all exam-
ples in a fully parallel fashion before synchronizing weight
vectors; and thus making the last synchronization step as
computationally light-weighted as possible. This, indeed,
is the key to a successful parallel implementation of itera-
tive learning algorithms. In our implementation, the weights
synchronization along with update only takes less than two
minutes. Recall that MapReduce framework only provides a
single-key storage architecture. In order to distribute (k, j)
keys, we need an efficient function to construct a one-value
composite key from two simple keys and to recover the sim-

6Define the sparseness of a vector as the percentage of zero
entries, denoted as η(x). For Yahoo’s behavioral dataset, the
converged weight vectors have an average η(wk) = 29.7%
and 84% wk’s has an η(wk) ≤ 50%; while for feature vectors
it’s almost for certain that η(xi) > 97%.

213

ple keys back when needed. Specifically, we define the fol-
lowing operators for this purpose: (1) bigramKey(k, j) = a
long integer obtained by bitwise left-shift 32-bit of k and
then bitwise OR by j; (2) k = an integer obtained from
the high-order 32-bit of bigramKey(k, j); (3) j = an integer
obtained from the low-order 32-bit of bigramKey(k, j).

4.5.3 In-memory Caching
The dense weight vector representation is highly scalable,

but raises challenges in disk IO. Consider a näıve implemen-
tation that reads weight vectors from disk on demand as
it sequentially processes examples. Suppose that there are
n examples, d targets, and on average each example con-
tains dx targets. File IO generally dominates the running
time of large-scale computing. In the worst case of dx = d,
the näıve algorithm thus has a complexity of O(dn), which
obviously is of no use in practice. We tackle this problem
via in-memory caching. Caching weight vectors is, however,
not the solution; since a small subset of examples will re-
quire all weight vectors sit in memory. The trick is to cache
input examples. Now suppose that there are l caches for
the n examples. After reading each cache into memory,
the algorithm maintains a hash map of (target index, ar-
ray index). This hash map effectively records all relevant
targets for the cached examples, and meanwhile provides
constant-time lookup from target index to array index to
retrieve target counts. In the worst case of all caches hit-
ting d targets, our algorithm yields a complexity of O(dl),
where l � n. We argue that caching input data is gener-
ally a very sound strategy for grid-based framework. For
example, a Hadoop cluster of 2, 000 nodes can distribute
256GB data into 128MB blocks with each node processing
only one block on average, and thus l = 1 to 2. In-memory
caching is also applied to the output of the first mapper that
emits (bigramKey(k, j), bigram(k, j)) pairs for each example
i, while aggregating bigram counts into a same bigram key
for each cache. This output caching reduces disk writes and
network traffic, similar to the function of combiner; while
leveraging data locality in memory proactively.

The parallel algorithm, data structures, and in-memory
caching for multiplicative update are also applied to model
initialization. Notice that the multiplicative factor in Eq. (4)
has an identical form as the first initialization method in
Eq. (8), except that the per-example normalizer becomes the
expected target counts instead of the total feature unigram
counts. We show our parallel design formally in Algorithm 2,
and schematically in Figure 2.

5. EXPERIMENTS

5.1 Dataset and Parameters
We conducted a comprehensive set of large-scale experi-

ments using the enormous Yahoo’s user behavioral data, to
evaluate the prediction accuracy and scalability of our par-
allel Poisson regression model. In each experiment reported
below, the controlled parameters are the ones we found em-
pirically superior, as follows. The training data was collected
from a 5-week period of time (2008-09-30 to 2008-11-03)
where the first four weeks formed the explanatory variables
x and the last week was for generating the response variable
y. We used all 512 buckets7 of user data, which gave above

7A bucket is a random partition of cookies, where the par-

Algorithm 2: Parallel multiplicative recurrence

Input: 〈cookieIndex, FeatureVector〉
Output: updated wk,∀k
MapReduce 1: PoissonMultBigram;1

Function: bigramKey(k, j)2

begin3

return a long by bitwise-left-shift 32-bit k and4

bitwise-OR j;
end5

Function: cacheOutput(key, value)6

begin7

if outputCacheSize ≥ upperBound then8

output and clear current cache;9

end10

cache and aggregate bigrams;11

end12

Function: processInputCache()13

begin14

foreach k do15

read wk;16

foreach xi ∈ inputCache do17

λik ← w>k xi;18

yik ← yik/λik;19

cacheOutput(bigramKey(k, j),yikxij), ∀k, j;20

end21

end22

end23

Function: cacheInput(value)24

begin25

if inputCacheSize ≥ upperBound then26

processInputCache();27

clear input cache;28

end29

cache bigrams and hash map of 〈targetIndex,30

targetArrayIndex〉;
randomized feature/target partitioning if specified;31

end32

Mapper → 〈bigramKey(k, j), yikxij〉;33

begin34

cacheInput(FeatureVector);35

end36

Combiner: ValueAggregatorCombiner;37

Reducer: ValueAggregatorReducer;38

MapReduce 2: PoissonMultWeight;39

Mapper: IdentityMapper;40

Partitioner: by k (routing entries with a same target to a41

single reducer);
Reducer → wk;42

begin43

w′kj ← wkj

P
i (yikxij/λik)P

i xij
;44

L1-norm or L2-norm regularization if specified;45

end46

500 millions training examples and approximately 3TB pre-
processed and compressed data. The training examples were
generated in a causal fashion; with a target window of size
one-day, sliding over a one-week period, and preceded by a
4-week feature window (also sliding along with the target
window). We leveraged six types of features: ad clicks and
views (sharing a same dictionary of ads), page views (from
a dictionary of pages), search queries, algorithmic and spon-
sored result clicks (sharing a same dictionary of queries). For
feature selection, we set the frequency thresholds in terms

titioning is done by a hash function of cookie string.

214

<k><k,j>

Data matrix Weight matrix
k j j

k

i

map reduce map reduce

xi

cache IdentityMapper

<k,j>

<i>

wk

normalized bigram count updated weight vector

15-20 passes

PoissonMultBigram PoissonMultWeight

Legend:
1. Variables: x for feature counts, y for target counts, λ for expected target counts, w for model weights;
2. Indices: i for example, j for feature, k for target;
3. <key>: distributing by a single key;
4. <key1, key2>: distributing by a composite key.

Figure 2: Parallel multiplicative recurrence

of touching cookies to be: 50,000 for ads, 10,000 for pages,
and 20,000 for queries. This gave about 150K features com-
prised of 40K ads (×2), 40K pages, and 10K queries (×3).
For robot filtering, we removed examples with the number of
distinct events above 5,000. After model initialization using
the second method as described in Section 4.4, we performed
17 iterations of multiplicative updates to converge weights.
Model evaluation was done using 32 buckets of data (a 1/16
sample) from the next day (2008-11-04) following the train-
ing period. To simulate online prediction, we set the expo-
nential decay ratio δ = 14-day

p
1/2 (i.e., a half-life of 14-day);

and a 6-minute latency between a 5-week feature window
and a 6-minute target window, sliding over one day.

The prediction accuracy is measured by two metrics: (1)
the relative CTR lift over a baseline at a certain operat-
ing point of view recall (also called reach in ad targeting
terminology), where the CTR is normalized by the popu-
lation CTR to eliminate potential variances across buckets
and time; and (2) the area under the click-view ROC curve.
A click-view ROC curve plots the click recall vs. the view
recall, from the testing examples ranked in descending order
of predicted CTR. Each point on the ROC curve gives the
precision in a relative sense (click recall/view recall) corre-
sponding to a particular view recall. The higher the area
under the ROC curve, the more accurate the predictor; and
a random predictor would give a ROC area of 0.5 (a diag-
onal ROC). Since we built models for 60 major BT cate-
gories in one batch, we report average CTR lift weighted by
views in each category, and average ROC area weighted by
clicks in each category. The scalability of our algorithm is
measured by the increase in running time (in hours) with
respect to input size. All our experiments were run on a
500-node Hadoop cluster of commodity machines (2× Quad
Core 2GHz CPU and 8GB RAM).

5.2 The Baseline Model
We compared our results with a baseline model using lin-

ear regression, which is a prior solution to BT [8]. The
linear regression model has two groups of covariates: inten-
sity and recency. Intensity is an aggregated event count,
possibly with decay; while recency is the time elapsed since

a user had a event most recently. Both covariate groups
contain the same six event types as in our Poisson model;
but counts are aggregated into the category being modeled
and restricted to that category. The response variable is a
binary variable indicating clicking (y = 1) or not (y = 0);
thus the regression model predicts the propensity for click-
ing (similar as CTR but unbounded). The linear regression
model was trained with quadratic loss; but constrained on
the signs of coefficients based on domain knowledge, i.e., all
intensity coefficients are non-negative except for ad views
and all recency coefficients are non-positive except for ad
views. The model has two components: a long-term model
was trained to predict the click propensity for the next day
using at least one-month worth of user history; and a short-
term model was trained to predict the click propensity in
the next hour using at least one-week worth of data. The
final clickability score is the product of the long-term and
short-term scores (the independence assumption).

5.3 Results

5.3.1 Data Size
Recall that ad click is a very rare event while carries prob-

ably the most important user feedback information. The
feature space of granular events, on the other hand, has
an extremely high dimensionality. It is therefore desirable
to use more data for training. One major objective of our
large-scale implementation is to scale up to the entire Ya-
hoo’s user data. To evaluate the effect of the size of training
data on the prediction and computational performances, we
varied input data size from 32 buckets to 512 buckets. The
results show, as in Table 1, that as the data size increases,
the prediction accuracy increases monotonically, while the
run-time grows sub-linearly.

Table 1: The Effect of Training Data Size
Buckets 32 64 128 256 512

CTR lift 0.1583 0.2003 0.2287 0.2482 0.2598
ROC area 0.8193 0.8216 0.8234 0.8253 0.8267
Run-time 2.95 3.78 6.95 7.43 14.07

One prior implementation contains a nonparallel training
routine, and trivially parallelized (data parallelism only) fea-
ture vector generation and evaluation routines. For the same
batch of 60 BT-category models trained on 256 buckets of
data, 50K features, and with only one target window of size
one-week (non-sliding), the running time was 29 hours. The
majority of the time (over 85%) was spent on the nonparallel
weight initialization and updates restricted to a single ma-
chine, while feature vector generation and evaluation were
distributed across about 100 nodes using Torque and Moab.
It only took our fully parallel implementation 7.43 hours,
a 4× speed-up; even with 150K features and daily sliding
target window. It is important to note that the prior imple-
mentation was not able to handle as large feature space or
sliding window in tractable time primarily because of scala-
bility limitations.

5.3.2 Feature Selection
When abundant data is available, a high-dimensional fea-

ture space may yield better model expressiveness. But as
the number of features keeps increasing, the model becomes

215

overfitting. In practice, to find the optimal number of fea-
tures is largely an empirical effort. This experiment reflects
such an effort. We examined different numbers and com-
binations of features, as summarized in Table 2; and the
results are shown in Table 3.

Table 2: The Parameters of Feature Selection
Total number Ads (×2) Pages Queries (×3)

60K 10K 10K 10K
90K 20K 20K 10K
150K 40K 40K 10K
270K 80K 80K 10K
1.2M 100K 1M 10K

Table 3: The Effect of Feature Dimensionality
Features 60K 90K 150K 270K 1.2M

CTR lift 0.2197 0.2420 0.2598 0.2584 0.2527
ROC area 0.8257 0.8258 0.8267 0.8267 0.8261
Run-time 14.87 13.52 14.07 13.08 16.42

The results show that 150K is the empirically optimal
number of features given other parameters controlled as de-
scribed in Section 5.1. This optimum is primarily a function
of the size of training data. A similar study was performed
on a 64-bucket training set using the prior nonparallel so-
lution discussed in Section 5.3.1; and we found that 50K
features was the optimal point for a 1/8 sample. As shown
in the column of queries in Table 2, we controlled the num-
ber of queries unchanged in this experiment. This is because
we found, from a prior study, that the contribution of query
features to CTR prediction is insignificant relative to ads
and pages. The run-time results shown in Table 3 confirm
that the running time is approximately a constant w.r.t. the
dimensionality of feature space. This suggests that our im-
plementation is scalable along the feature dimension, which
was made possible by in-memory caching input examples,
reading weight vectors on-demand, and computing updates
in batch, as discussed in Section 4.5.

5.3.3 Feature Vector Generation
As explained in Section 4.3, one key to a scalable so-

lution to BT is a linear-time algorithm for feature vector
generation. We developed such an algorithm by in-place
incrementing and decrementing a shared map data struc-
ture; and hence typically one scan of the input data suffices
for generating all examples. In this experiment, we verified
the scalability of the feature vector generation routine, and
the prediction performances resulted from different sizes of
sliding target window. Over a one-week target period, we
generated examples with a sliding target window of sizes 15-
minute, one-hour, one-day, and one-week, respectively. The
results are illustrated in Table 4.

The results show that, as the target window size reduces
from one-week to 15-minute, the run-time for feature vector
generation remains approximately constant; even though the
number of active examples increases by 13 folds at the high
end relative to the low. Here an active example is defined
as the one having at least one ad click or view in any cate-
gory being modeled. The total run-time does increase since
the downstream modeling routines need to process more ex-
amples, but at a much lower rate than that of the number

Table 4: Linear-time Feature Vector Generation
Size of tgt. win. 15-min 1-hour 1-day 1-week

CTR lift 0.1829 0.2266 0.2598 −0.0086
ROC area 0.8031 0.8145 0.8267 0.7858

Act. ex. (106) 2, 176 1, 469 535 158
Run-time (fv-gen) 1.5 1.57 1.43 1.38
Run-time (total) 31.03 27.37 14.07 9.23

of examples increasing. As for prediction accuracy, one-day
sliding gives the best CTR lift and ROC area.

5.3.4 Stratified Sampling
The training examples can be categorized into three groups:

(1) the ones with ad clicks (in any BT-categoy being mod-
eled), (2) the ones with zero ad clicks but nonzero ad views,
and (3) the ones with neither ad clicks nor views, or so-called
negative examples. It is plausible that the first group carries
the most valuable information for predicting CTR, followed
by the second group and then the third. It has computa-
tional advantages to sample less important examples. In this
experiment, we tested different stratified sampling schemes,
where all nonzero-click examples were kept, view-only and
negative examples were sampled independently at different
rates. The results are summarized in Table 5.

Table 5: Stratified Sampling
Sampling rates CTR lift ROC area Run-time

neg = 0; view = 1 0.2598 0.8267 14.07
neg = 0.2; view = 1 0.2735 0.8243 12.77
neg = 0.5; view = 1 0.2612 0.8208 13
neg = 1; view = 1 0.2438 0.8162 11.88
neg = 0; view = 0.5 0.2579 0.8280 8.9
neg = 0; view = 0.2 0.2462 0.8266 7.57
neg = 0; view = 0 −0.0328 0.7736 5.38

The negative examples only impact the denominator in
the update formula as in Eq. (4). Since the denominator
does not depend on λi, it can be pre-computed as a normal-
izer in the multiplicative factor; and then the multiplicative
recurrence only needs to iterate over the active examples.
Our implementation exploits this sparseness, thus the run-
time is only sensitive to the view-only sampling rate. Table 5
shows that a small sampling rate for negative examples (0
or 0.2) combined with a large view-only sampling rate (0.5
or 1) yields superior results, which confirms the argument
about different information contents in sub-populations.

5.3.5 Latency
In the offline evaluations reported on so far, we placed a

6-minute latency (also called gap) window between a 5-week
feature window and a 6-minute target window. Assuming a
uniform distribution of a target event over the target win-
dow, the expected latency was 9 minute. In other words,
we disregarded any event happening during the 9-minute
latency window for predicting that particular target event.
This was to simulate an online prediction environment where
the data pipeline was not real-time after an user event was
triggered and before the production scoring system saw that
event. However, user activities within the session where an
ad is served, especially some task-based information, are

216

considered very relevant [2]. The objective of this experi-
ment is to validate the potential of latency removal. The
models were trained in the same way as described in Sec-
tion 5.1, but evaluated with no gap and a one-minute sliding
target window. As the results show, in Table 6, the latency-
reduced evaluation yields a significantly higher prediction
accuracy than the non real-time setup, by a 17% improve-
ment in CTR lift and a 1.5% edge in ROC area. The ROC
curves for the category“Technology”before and after latency
removal are plotted in Figure 3.

Table 6: The Effect of Latency Removal

Latency
6-min gap no-gap

6-min target 1-min target

CTR lift 0.2598 0.4295
ROC area 0.8267 0.8413

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

View recall

C
lic

k
re

ca
ll

zero−gap−1min−target
6min−gap−6min−target

Figure 3: ROC plots before and after latency re-
moval for the “Technology” category

6. DISCUSSION
Behavioral targeting is intrinsically a large-scale machine

learning problem from the following perspectives. (1) To
fit a BT predictive model with low generalization error and
a desired level of statistical confidence requires massive be-
havioral data, given the sparseness the problem. (2) The
dimensionality of feature space for the state-of-the-art BT
model is very high. The linear Poisson regression model uses
granular events (e.g., individual ad clicks and search queries)
as features, with a dimensionality ranging from several hun-
dred thousand to several million. (3) The number of BT
models to be built is large. There are over 450 BT-category
models for browser and login cookies need to be trained on
a regular basis. Furthermore, the solution to training BT
models has to be very efficient, because: (1) user interests

and behavioral patterns change over time; and (2) cookies
and features (e.g., ads and pages) are volatile objects.

Our grid-based solution to BT successfully addresses the
above challenges through a truly scalable, efficient and flex-
ible design and implementation. For example, the existing
standalone modeling system could only manage to train 60
BT-category models using about one week end-to-end time.
Our solution can build over 450 BT models within one day.
The scalability achieved further allows for frequent model
refreshes and short-term modeling. Finally, scientific exper-
imentation and breakthroughs in BT requires such a scalable
and flexible platform to enable a high speed of innovation.

7. REFERENCES
[1] http://hadoop.apache.org/.

[2] S. Agarwal, P. Renaker, and A. Smith. Determining
ad targeting information and/or ad creative
information using past search queries. U.S. Patent
10/813,925, filed: Mar 31, 2004.

[3] A. C. Cameron and P. K. Trivedi. Regression Analysis
of Count Data. Cambridge University Press, 1998.

[4] J. Canny. GaP: a factor model for discrete data. ACM
Conference on Information Retrieval (SIGIR 2004),
pages 122–129, 2004.

[5] J. Canny, S. Zhong, S. Gaffney, C. Brower, P. Berkhin,
and G. H. John. Granular data for behavioral
targeting. U.S. Patent Application 20090006363.

[6] E. Chang. Scalable collaborative filtering algorithms
for mining social networks. In The NIPS 2008
Workshop on ”Beyond Search: Computational
Intelligence for the Web”, 2008.

[7] Y. Chen, D. Pavlov, P. Berkhin, and J. Canny.
Large-scale behavioral targeting for advertising over a
network. U.S. Patent Application 12/351,749, filed:
Jan 09, 2009.

[8] C. Y. Chung, J. M. Koran, L.-J. Lin, and H. Yin.
Model for generating user profiles in a behavioral
targeting system. U.S. Patent 11/394,374, filed: Mar
29, 2006.

[9] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[10] N. E. Gibbs, W. G. Poole, Jr., and P. K. Stockmeyer.
A comparison of several bandwidth and profile
reduction algorithms. ACM Transactions on
Mathematical Software (TOMS), 2(3):322–330, 1976.

[11] D. D. Lee and H. S. Seung. Algorithms for
non-negative matrix factorization. Advances in Neural
Information Processing Systems (NIPS), 13:556–562,
2000.

[12] D. A. Spielman and S.-H. Teng. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes
polynomial time. Journal of the ACM, 51(3), 2004.

217

	Introduction
	Background
	Linear Poisson Regression
	Large-Scale Implementation
	Data Reduction and Information Loss
	Feature Selection and Inverted Indexing
	Feature Vector Generation in O(1n)
	Data-driven Weight Initialization
	Parallel Multiplicative Recurrence
	Scalable Data Structures
	Fine-grained Parallelization
	In-memory Caching

	Experiments
	Dataset and Parameters
	The Baseline Model
	Results
	Data Size
	Feature Selection
	Feature Vector Generation
	Stratified Sampling
	Latency

	Discussion
	References

