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Abstract

Estimating the intrinsic dimension of a high-dimensional
data set is a very challenging problem in manifold learning
and several other application areas in data mining. In this
paper we introduce a novel local intrinsic dimension estima-
tor, conical dimension, for estimating the intrinsic dimension
of a data set consisting of points lying in the proximity of
a manifold. Under minimal sampling assumptions, we show
that the conical dimension of sample points in a manifold
is equal to the dimension of the manifold. The conical di-
mension enjoys several desirable properties such as linear
conformal invariance and it can also handle manifolds with
self-intersections as well as detect the boundary of manifolds.
We develop algorithms for computing the conical dimension
paying special attention to the numerical robustness issues.
We apply the proposed algorithms to both synthetic and
real-world data illustrating their robustness on noisy data
sets with large curvatures.

1 Introduction

Recently, there have been much renewed interests in de-
veloping efficient algorithms for constructing nonlinear
low-dimensional manifolds from sample data points in
high-dimensional spaces, emphasizing simple algorith-
mic implementation and avoiding optimization prob-
lems prone to local minima. This is mostly due to the
fact that many high-dimensional data sets in real-world
applications can be modeled as sets of data points lying
in the proximity of a low-dimensional nonlinear man-
ifold embedded in a high-dimensional space. For ex-
ample in analyzing image data sets, the dimension is
usually considered as the number of the pixels of the
image, which can be very high, but the intrinsic dimen-
sion of a set of images representing the same 3D objects
under different poses and lighting conditions [1] can be
modeled in a very low dimensional space. Therefore,
discovering the nonlinear structure from a set of data
points sampled from the manifold represents a very chal-
lenging unsupervised learning problem giving rise to the
currently active research field of manifold learning [4, 1].

Several efficient manifold learning methods have
been proposed which include Isomap, local linear em-
bedding (LLE), Laplacian eigenmaps, manifold chart-
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ing, Hessian LLE, and LTSA [5, 3, 4, 1, 2]. Most of these
algorithms require a good estimate of the intrinsic di-
mension of the low-dimensional manifold and there are
several methods proposed for intrinsic dimension esti-
mation. Those methods fall into two categories: global
estimators and local estimators. Global methods es-
timate the dimension using all the samples at a time
whereas local methods, like the one presented here, es-
timate the dimension at each sample point. Fukunaga
and Olsen [10] first proposed to estimate locally the di-
mension by counting the number of non-zero eigenvalues
(i.e. greater than an arbitrary chosen threshold) of the
covariance matrix computed using neighbors of a sam-
ple point. Trunk [12] introduced at the same time an
algorithm based on similar ideas. More recent methods
include the one using the residual variance curve and
the intrinsic dimension is estimated by looking for the
“elbow” in the curve [1], and several of the methods
are based on the idea that for a uniform distribution
on a d-dimensional manifold, the probability of a small
ball of radius ǫ is O(ǫd) [6, 7]; Other methods include
approaches based on geodesic entropic graphs and fast-
rate vector quantization [8, 9].

The nonlinear structures of data sets arising from
real-world applications can be rather complex including
the cases where there might be several pieces of mani-
folds each of possibly different intrinsic dimensions and
the pieces can also intersect with each other. Those
more complicated cases have not been adequately ad-
dressed in the literature so far. The purpose of this
article is to propose a more versatile intrinsic dimension
estimator which we call conical dimension, it is a lo-
cal dimension estimator that can handle more complex
data sets, in particular it can be used for non-uniformly
sampled manifolds with large curvatures and self inter-
sections.

The rest of the article is organized as follows: in sec-
tion 2, we introduce the concept of conical dimension of
a sample of data points from a manifold using the notion
of cones with respect to a linear subspace. Under min-
imal sampling assumptions, we show that the conical
dimension of sample points in a manifold is equal to the
dimension of the manifold. In section 3, we propose an
algorithm for computing the conical dimension, and use
this algorithm to detect self-intersection and boundary



of the complex dataset, and modifications of the algo-
rithm are given to deal with noisy data sets. Experiment
results using the proposed algorithms are presented in
section 4 with the comparison with other intrinsic di-
mensionality estimation methods as well. The conclu-
sions are given in section 5.

2 Conical dimension

We proposed conical dimension as a local dimension
estimator. The idea behind conical dimension is to find
the dimension at a given sample point by examining the
dimension of the cone spanned by its neighbors.

2.1 Notations and Definitions To introduce the
notion of conical dimension, we need several basic
definitions from manifold theory. Let M be a connected
compact manifold (possibly with boundaries) embedded
in R

m, where the dimension of the ambient space m
is a strictly positive integer. We denote by d the
dimension of the manifold M , it satisfies d ≤ m. M is of
dimension d means that around any point of M , there is
a neighborhood equivalent to an open ball of R

d, where
an equivalence is a smooth invertible map whose inverse
is also smooth. A manifold with boundary is a smooth
space where each point has a neighborhood equivalent
to an open ball or half of an open ball, those latter
points form the boundary of the manifold. A manifold
is compact if it is bounded and closed, it is connected if
any two points can be joined by a path embedded in the
manifold. Notice that the definition of manifold implies
that there is no self-intersection. (For self-intersecting
surfaces which cannot be sampled in the way described
below, the proposed conical dimension will still be able
to detect the intersection locus.)

Let X be a data set of N points sampled from M,
i.e., X = {x1, x2, · · · , xN}, xi ∈ M. We also assume
that there is a topology on X , in the sense that for
each sample point xi ∈ X , we have a neighborhood
Ni ⊂ X which also contains xi. In the sequel, the
data set X together with the set of neighborhoods
{Ni, i = 1, . . . , N} will be called a topological sampling
ofM. Let Ti(M) be the tangent space to M at xi, we
will use the notation (xi; p) to denote a vector in Ti(M),
which emits from xi with the direction p. In additional,
we denote a vector starting at xi and ending at xj by
(xi, xj). For any vector (xi; p) in Ti(M) we denote by
Ti((xi; p)) the half subspace of Ti((xi; p))

Ti((xi; p)) = {(xi; q) ∈ Ti(M), qT p ≥ 0}.

whose boundary is normal to (xi; p) and contains p.
Let si be the radius of the largest d-dimensional ball

centered at xi whose intersection with X is included
in Ni and for which there exists a vector (xi; p) in

Ti(M) such that B(xi, si) ∩ Ti((xi; p)) is included in
the orthogonal projection of M on Ti(M) (for an
illustration in 1D see Figure 1). The existence of such
an si follows from the compactness ofM. We also define
the radius of the manifold at a point x ∈ M to be the
largest number R such that any m-dimensional ball of
radius less than R and tangent toM at x intersects M
at x only.

Figure 1: Illustration of the definition of si

2.2 Definition of Conical Dimension Now we are
ready to introduce the concept of conical dimension. Let
V be a k-dimensional vector subspace of R

m, we use the
notation C(x, V ) to denote a cone centered at a point
x ∈ R

m with direction V and angle π/2, which is the
set of all points y ∈ R

m such that the angle between the
vector (x, y) and the vector subspace V is less than or
equal to π/4. A cone of dimension k centered at x ∈ R

m

is a cone C(x, V ) for some k dimensional vector space
V .

Figure 2: Cones of dimension 1 and 2.

Figure 2 illustrates with a one-dimensional cone and
a two-dimensional cone: on the left panel, the one-



dimensional subspace V is represented by a straight line
and the light-shaded area represents (part of) the one-
dimensional cone; on the right panel, two-dimensional
subspace V is represented by the dark-shaded area
and the light-shaded area represents (part of) the two-
dimensional cone.

Definition 2.1. The conical dimension cdim(xi) of a
sample xi ∈ X is the smallest dimension of the subspace
generating the cones centered at xi, which contains its
neighborhood Ni.

2.3 Intrinsic dimension estimator To justify the
notion of conical dimension, we first show that under
certain sampling conditions the conical dimension is
identical to the dimension of the manifoldM.

Proposition 2.1. If the topological sampling X of M
satisfy the following conditions

(1) Ni ⊂ B(xi,
√

2Ri) where Ri is the radius of the
manifold at xi

(2) For all x ∈M , there is a sample xi ∈ X such that
the cartesian distance d(x, xi) satisfies

d(x, xi) <
sin(π/8)

1 + sin(π/8)
si

Then cdim(xi) = d for all xi ∈ M (d is the dimension
of M).

The essence of the above conditions is that the sam-
pling needs to adapt to the curvature of the manifold,
and the proximity between different pieces of the man-
ifold. Those two conditions are minimal in the sense
that they are necessary, with possibly different values
for the constants, to ensure that a local dimension es-
timator recovers the dimension d of a manifold M. In
particular, the first condition says that the higher the
curvature or the closer the distance between two distinct
parts of the manifold, the smaller should be the neigh-
borhoods of the sample points. The second condition
says that there should be no large region in the mani-
fold containing no sample points, i.e., the neighborhood
of any sample point should be large enough so that it
does not looks like the sampling of a manifold with a
strictly smaller dimension.

Proof. First, we show that cdim(xi) ≤ dim(M). For
this, we show that the cone C(xi, Ti(M)) of dimension
d centered at xi with direction of the tangent space
Ti(M) to M at xi contains the neighborhood Ni of
xi. Using condition 1, the m-dimensional ball centered
at xi with radius

√
2Ri contains all the neighbors of

xi. If such a neighbor xj ∈ Ni does not belong to the
cone C(xi, Ti(M)), it means that the angle between the
vector (xi, xj) and the tangent space Ti(M) is greater
than π/4. If we denote by p the orthogonal projection of
xj on Ti(M), then the angle between the vectors (xi; p)
and (xi, xj)) is greater than π/4. This is impossible
since it implies that there exists a ball with radius Ri

tangent to M at xi that contains xj . Figure 3 shows
the intersections of the balls and the cone with the plane
through xi containing the vectors (xi, xj) and (xi; p), we
see that the factor

√
2 has been chosen so that the points

in the ball or radius less than
√

2Ri belongs either to
the tangent cone or to a tangent ball of radius Ri.

Figure 3: condition (1) implies cdim(xi) < dim(M)

Now we prove that cdim(xi) ≥ dim(M). If this
were not the case, we could find a cone of dimension
less than d centered at xi and containing Ni. If d = 1,
then this cone would be of dimension 0, hence it would
be reduced to the single point xi. This implies that
Ni = {xi}. Let us then consider the ball B(xi, si)
of radius si centered at xi. By definition of si, there
exists a point p on the tangent plane Ti such that the
intersection of B(xi, si) with the half plane containing p
is included in the orthogonal projection ofM on Ti (see

the illustration in Figure 4). Since sin(π/8)
1+sin(π/8) < 0.5 and

the manifold is connected, we can find a point x ∈ M
such that the ball of radius sin(π/8)

1+sin(π/8)si centered at x

is included in B(xi, si) and that does not contain xi.
By the assumption in condition 2, this ball contains at
least one sample of X , and the distance of this latter to
x being less than si, it should be contained in Ni. This
contradicts Ni = {xi}, and conclude the proof for the
one-dimensional case.

If d > 1, then there exists a point p on the tangent
plane Ti such that the intersection of B(xi, si) with
the half plane Ti((xi; p)) is included in the orthogonal



Figure 4: 1D illustration of condition (2)

projection of M on Ti. Let us then consider a 2-
dimensional plane included in Ti passing through xi

and containing the vector (xi, p). Projecting the cone
(represented as the shaded area in Figure 5) and the ball
of radius si on this 2D plane, since M is connected, we
can find inside B(xi, si), a ball centered onM of radius

sin(π/8)
1+sin(π/8)si (the gray disc on the figure 5 represents its

projection on the 2d-plane) that will not contain any
sample. Like in the case d = 1, this would contradict
the second condition and the proof is completed.

Figure 5: 2D projection for illustration of condition (2),
which implies cdim(xi) > dim(M) in 2D+

Remark 2.1. Notice that the factor sin(π/8)
1+sin(π/8) is the

radius of the gray circle in the extreme case where the
axis of the cone is in the direction of the vector (xi; p)
(cf. Figure 5). In other cases we can find a larger disc

included in the circle and not intersecting with the cone.

2.4 Linear conformal invariance The conical di-
mension is intrinsically associated with the manifold un-
derlying the set of the sample points, as it does not de-
pend on the particular way this manifold is embedded
in R

m. More precisely, we prove the following linear
conformal invariance property of the conical dimension.

Proposition 2.2. Let X be a topological sampling of
M in R

m, and x be a sample point in X. For any
linear conformal transformation T from R

m to R
p we

have cdim(T · x) = cdim(x), where cdim(T · x) is the
conical dimension of the image of x by T , computed in
the image of X by T .

Proof. The linear conformal transformations are those
linear transformations that preserve angles, they com-
prise orthogonal transformations and dilations (hence
those transformations are invertible). The inequality
cdim(T · x) ≤ cdim(x), follows from the fact that the
image by T of a cone of dimension cdim(x) centered
at x is a cone of the same dimension centered at T · x
(T being invertible it preserves the dimension). The in-
equality cdim(T ·x) ≥ cdim(x) follows from the previous
inequality since the inverse of a linear conformal map is
also linear conformal. Hence cdim(T · x) = cdim(x).

This property implies dimensional embedding inde-
pendence, in the sense that the conical dimension is the
same whether it is computed for X in R

m or in R
m⊕R

l

when in the latter case we added new coordinates by
simply adding 0 entries to the vectors of X . Notice that
this invariance property, however, is false for other types
of cones.

3 Computing cdim

In this section we introduce an algorithm to compute
the conical dimension. This algorithm is exact when
the ambient space is of two dimension and it gives
approximate results for higher dimension cases.

Given a sample x in X , we denote by vi the
neighbor vectors, i.e., vectors whose origin is x and
end-point are the sample points in the neighborhood of
x. We are mainly interested in the angles between the
vectors. We can therefore choose an arbitrary vector
v0 among the neighbors and replace vi by its negative
−vi whenever the angle between v0 and vi is greater
than π/2, i.e., when their scalar product is negative.We
therefore obtain a set of vectors that lie on the same
side of the hyperplane orthogonal to v0. To compute the
conical dimension of x, we have to find the smaller right
cone that contain those neighbor vectors. We proceed
by computing the length of the subset of the neighbor



vectors whose pair-wise angles are all greater than π/2.
We will always assume that the sample point x has at
least one neighbor vector v0, if it is not the case, the
conical dimension of x will be 0.

Remark 3.1. The reason why we use a right cone
(angle π/2) is that π/2 is the smallest cone’s angle
such that if we can find an empty cone of dimension
n centered at a point then the intrinsic dimension is
less than d − n. Also π/2 is the largest cone’s angle
that gives dimension d for neighbor vectors forming an
orthonormal basis.

3.1 Algorithm We are ready to present an algorithm
for estimating the conical dimension. For a sample point
x, let E1 = {v0, . . . , vk} the set of neighbor vectors.
Figure 6 shows the algorithm of cdim in detail.

Remark 3.2. The worst case complexity of the above
algorithm is bounded by

(

k
2

)

+ . . . +

(

k

d̂

)

< kd̂,

where d̂ is the estimated cdim(x) from the above algo-
rithm. However, in practice, the cardinality of Ep,

|Ep| ≪
(

k
p

)

,

and the algorithm runs much faster than indicated by
the worst case complexity.

Remark 3.3. In two-dimension case, the conical di-
mension is either one or two. To have the conical di-
mension cdim(x) = 1, the neighbor vectors vi have to fit
in a one-dimensional right cone, i.e., there must exist
a vector v such that the angle between vi and v is less
than π/4. In the two-dimension case the angles satisfy
the triangular equality, for any pair of neighbor vectors
vi and vj, the angle between vi and vj is equal to the
sum of the angle between vi and v and the angle be-
tween vj and v. The two latter being less than π/4, the
angle between vi and vj is less than π/2. Conversely,
if any pair of neighbor vectors have an angle less than
π/2, since all the vectors fit in the cone generated by the
two vectors with larger negative angle with v0, they fit
in a right one-dimensional right cone. Therefore, in the
two dimensional case the algorithm computes the exact
conical dimension.

Remark 3.4. For higher dimension cases or when a
vector is replaced by a higher dimensional space, the an-
gle triangular equality is not true anymore. For exam-
ple, we can find three vectors that fit in a two dimen-
sional right cone (that is fit in the exterior) but have

mutual angles greater than π/2 in three dimensions. An
example is given in Figure 7, where the three vectors
have coordinates (2, 0, 1), (0, 2,−1) and (0,−2,−1).

Figure 7: A three-dimensional counterexample

It has to be noticed that the dimension involved
here is not the dimension of the ambient space, but the
dimension of the manifold. Hence it gives a simple test
for low dimensional manifolds, even when embedded in
high dimensional space.

3.2 Sampling errors When considering real-world
examples, sample points are obtained with sampling er-
rors and they do not belong exactly to the underlying
manifold but rather in a tubular neighborhood of it.
The net effect of those sampling errors is the introduc-
tion of large curvatures at small scale. For the coni-
cal dimension to remain an effective estimator, we need
to exclude these small areas with large curvature when
choosing the neighborhood vectors. Figure 8 shows that
if point xj are sampled with the noise level ǫ, the result-
ing sample data points are contained in the small ǫ-ball
centered at their noiseless counterparts. If the two sam-
ple data points are too close to each other, the effect of
noise will be detrimental, since the cone centered at xi

with direction of the vector (xi, xj), will gravely deviate
from the noiseless case (the blue cone in the Figure 8),
under the effect of ǫ-ball of xj . The grey cones in Figure
8 show some of those potential cones. Therefore, when
selecting the neighborhood, we remove all the neighbors
which are too close to the sample data itself under the
effect of noise. According to Figure 8, it can be a small
ball with radius of ǫ. Detail algorithm of this denoise
method is given in Figure 9, and the numerical result
will be given in next section.

3.3 Intersection Detection The result of coni-
cal dimension computation can be applied to self
intersection/high curvature locus detection in low di-
mensional manifold.

Figure 10 shows the sampling of a one dimensional



Algorithm 3.1. cdim(X,K)
1 compute the K neighbors by L2 distance in ascending distance order
2 For each sample xn

3 compute the neighborhood vectors Vn = {v0, v1, · · · , vK}
4 replace vi, i = 1, · · · , K, by −vi, if vT

0 vi < 0
5 compute the signs of the dot product T = V T V
6 initial label set E1 = {{1}, {2}, · · · , {K}}, d = 1
7 while label set Ed is not empty
8 for each element of the label set Ed, say {l1, l2, · · · , ld}
9 for i← 1 to K
10 if ∀j = 1, · · · , d, T (i, lj) < 0, and i 6= l1, l2, · · · , ld
11 construct a new element for Ed+1 as {l1, l2, · · · , ld, i}
12 d=d+1
13 output the cdim of sample xn is d

Figure 6: Algorithm of cdim

Algorithm 3.2. denoise cdim(X,K,ǫ)
1 compute L2 distance in ascending distance order
2 Choose K nearest neighbors for each sample xi, whose distances with xi are greater than ǫ
3 repeat step 2-13 of cdim

Figure 9: Algorithm of denoise cdim

Figure 8: Illustration of sampling errors.

manifold embedded in R
2 whose topology was deter-

mined using ǫ-neighbors. All the points have a calcu-
lated dimension equal to one, except around the inter-
section, where the local dimension is two. Figure 11
shows the randomly sampling of two planes, which in-
tersect with each other. It is a two dimensional manifold
embedded in R

3. The algorithm cdim with 10 nearest
neighbors recovers the intrinsic dimension, except at the
intersection locus, which marked with Black color.

This works as long as the locus of intersection is
small compared to the total number of samples, since
the conical dimension of points close to the intersection
is generally higher than the dimension of the manifold.
This later property allows us also to identify the inter-

Figure 10: 1D Self intersections example.

section locus, therefore we consider those sample points
of high conical dimension in low dimensional manifold
as intersection. Figure 12 shows the algorithm, more
experiments will be shown in next section.

3.4 Boundary Detection The notion of conical di-
mension can also be used to detect the boundary of a
sampled manifold. We define a half cone C(x, V, H)
to be the part of a cone C(x, V ) centered at a point
x ∈ R

m with direction V which is on the same side of
an hyperplane H orthogonal to V .

Definition 3.1. A sample xi ∈ X is said to be on



Algorithm 3.3. Intersection cdim(X,K)
1 compute the cdim of X with K neighbors, ie, call cdim(X,K)
2 calculate avgcdim, the average cdim for X
3 round towards nearest integer of avgcdim, save as d
4 output all the sample points, whose cdim are greater than d

Figure 12: Algorithm of intersection detection under cdim

Figure 11: 2D Self intersections example.

the boundary of the data set X if we can find a half
cone of dimension cdim(xi) − 1 that do not intersect
the neighborhood Ni.

A sample point on the boundary of a manifold when
viewed without the points in the interior of the manifold
will appear to be in a manifold of dimension one less.
So the above approach of using a half cone is to ignore
the sample points in the interior of the manifold when
computing the conical dimension of the sample point in
question.

Figure 13 represents the points (represented as
vertices of the graph) belonging to the boundary of the
data set X with conical dimension 2, showing for each
of them an empty one dimensional half cone ( shaded
triangles) and the topology is given by the edges of the
graph.

Figure 14 shows the algorithm of calculating the
boundary points after we know the conical dimension of
each point.

4 Experimental Results

4.1 Conical Dimension and Comparisons We
implemented the algorithms in Matlab, first of all, we
tested our algorithm on different kinds of data sets to
find the dimension, and compared our cdim results with
several existing dimension detection methods: MLE
[7]and correlation dimension [14].

Figure 13: Illustration of Boundary detection.

The first dataset, we use the classical swiss roll, we
randomly generated 1000 data points by

t = (3*pi/2)*(1+2*rand(1,N)); s = 21*rand(1,N);

X=[t.*cos(t);s;t.*sin(t)];

Obviously, it is not uniformly sampling data set, we
generated the swiss roll dataset 100 times and applied all
the intrinsic dimension estimators on them, the results
show in Table 1 are the average of the 100 results.

Next, we tested two image datasets, the Isomap face
database 1 and the hand rotation sequence 2, example
images are shown in Figure 15. The face dataset
contains 698 64×64 gray images, representing an object
in different camera viewers and light condition, so its
dimension can be modeled as 3 (2 degrees of freedom
for face motions, 1 degree of freedom for the lights).
The hand image dataset is a real video sequence (481
frames) of a hand holding a bowl and rotating along
a 1-d curve in space, although the frame size is rather
large, 480×512, it actually embedded in a 2 d space. In
our test, we choose 20 nearest neighbors, and obtained
the results in Table 1.

The last dataset, the 8-loop data set represents
the image sequence of simulating a black disc moving

1http://isomap.stanford.edu/datasets.html
2http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html



Algorithm 3.4. BoundaryDetector(X, K, cdim)
1 Compute the K neighbors by L2 distance in ascending distance order
2 For each sample xn

3 compute the neighborhood vectors Vn = {v0, v1, · · · , vK}
4 compute the signs of the dot product T = V T V
5 if there exist cdim(xn)− 1 vector(s) with positive dot product with all other neighborhood vectors
6 out put this sample to be boundary

Figure 14: Algorithm of Boundary Detection

Figure 15: Two image dataset: hand rotation and Isomap faces (example images)

along a 8-loop shaped curve. Figure 16 shows the
trace of the disk’s moving. For the image sequence,
each frame only has one black disc. The embedded
manifold has therefore the topology of an 8, so it is
a self intersecting 1D curve. We applied 15 neighbors
among the algorithms.

Figure 16: The trace of a black disk’s moving.

All the results of above 4 datasets are shown in
Table 1. We see that conical dimension gives better
results than the other algorithms, and this estimator
is particulary relevant when applied to manifolds with
self-intersections.

4.2 Self-Intersection Detection In this experi-
ment, we first tested our Intersection cdim algorithm
on Roman surface, which is a self-intersecting immer-
sion of the real projective plane into three-dimensional

space. It is a complicit surface and has several place
of self-intersection, such as it can be constructed by
splicing together three hyperbolic paraboloids and then
smoothing out the edges. For the experiment, we gen-
erated 2000 sample data on incomplete Roman surface
by

t = pi*rand(1,N);

s = pi*rand(1,N);

X=[cos(t).*sin(s).*cos(s);

sin(t).*sin(s).*cos(s);

cos(t).*sin(s).*cos(s).^2];

Figure 17 shows this Roman surface, and Figure 18
shows the results of the detection on random sampling
Roman surface data set, where the intersection (high
dimension points) are marked with black.

The second example, we consider 2 colors (black and
white) image, and calculate the dimension of each pixel
in the image by its feature. The same color pixels are
belong to the same submanifold, and the edges between
the two colors can be considered as intersection. Here
we tested on some image of MNIST data set 3 and use 3
patch represent as the feature of the center pixel. Figure
19 shows the result. The first and third row shows
the images from MNIST data set, and the second and
fourth row are the dimensions of each pixel for above
images respectively, where black pixels are of dimension
1, gray pixels are of dimension 2, and the white pixels
are dimension 3.

It is obvious that this self-intersection detection
work well in those two examples. And how to separate

3http://yann.lecun.com/exdv/mnist



dataset Sample size MLE Corr. Dim Cdim True dim
swissroll(100) 1000 1.84 1.96 2.00 2
hand 481 2.88 1.97 2.0 2
face 698 3.98 3.52 2.83 3
8-loop 62 3.49 8.60 1.00 1

Table 1: Dimension estimation for different datasets
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Figure 17: incomplete Roman surface

the submanifolds from the intersection will be the future
work.

4.3 boundary detection Again we implement the
BoundaryDetection algorithm in Matlab, and here are
some examples. First two are the classic surface of swiss
roll and incomplete tire, refer to Figure 20,21. The
boundary points are marked with black circles.

We also tested it on the Isomap face dataset. Figure
22 shows the boundary data in 3d coordinates space (2
poses and 1 light condition).

4.4 Effect of noise In order to test the stability of
the conical estimator against noise, we compared the
estimation given by our algorithm cdim and denoise
cdim and MLE on the dataset obtained by sampling a
sharp surface and adding a gaussian noise characterized
by its standard variation to the samples. The 2000
sample points data are generated by

s = 2*pi*rand(1,N);

t = rand(1,N);

X = [t.*cos(s);t.*sin(s);t.^(3/2)];

Figure 23 displays this sharp surface without noise.
We repeated the test 20 time, the average results are
displayed in Figure 24, where x-axis is the percentage
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Figure 18: Intersections Detection on Roman surface

of noise, from 1 to 50 (%), and y-axis is the estimated
dimensionality. It shows that conical estimator is less
sensitive to the noise than MLE. And our denoise cdim
performs more robust than other 2 methods.

5 Conclusions and Remarks

In this paper, we introduced a new local intrinsic di-
mensionality estimator, conical dimension, by examin-
ing the dimension of the cone spanned by the neighbors
of given sample point, presented the theoretical proof
and its property. Corresponding cdim, boundary de-
tection, intersection detection, and denoise algorithms
are proposed and tested in synthetic dataset and real-
world dataset as well. The results show effective and
robustness of our algorithms.

These algorithms open the possibility on investigat-
ing the underlying manifold structure of real dataset
and resolving the intersection, which can be considered
as a new approach of solving some application prob-
lems. For instance, to the experiment result of 2 color
image pixel intersection detection given in the paper,
separating those 2 submanifolds from the intersection,
becomes a new approach as segmentation. So as classi-
fication or clustering problems, assume different classes
or clusters conform to different submanifolds, it can be



Figure 19: Intersection detection of pixel features

solved by dividing the submanifolds from the intersec-
tions. Investigating intersection /boundary also open
a new view of unfolding the manifold (or dimensional-
ity reduction). With detected boundary, high dimen-
sion data can be embedded into any predefined shape
(boundary) in low dimensional space, which can be im-
plemented by semi-supervised nonlinear dimensional-
ity reduction [15]. With the detected intersections, we
can keep the intersection structure during the dimen-
sionality reduction by assembling low dimensional sub-
manifolds onto those intersection points in higher low-
dimensional space. These topics are the the subject of
ongoing studies.

In the other hand, as we mentioned in the paper,
cdim method is a good approximate of conical dimen-
sion, seeking a better approximate is a challenging po-
tential further research. As a local intrinsic dimen-
sionality estimator, cdim algorithm is sensitive to the
neighborhood selection according to the sampling as-
sumptions, therefore adaptive neighborhood selection is
another continuous topic to this study, which can solve
the noise effect as well.
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