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Abstract—The problem of graph matching in general is NP-
complete and many approximate pairwise matching techniques
have been proposed. For a general setting in real applications,
it typically requires to find the consistent matchings across a
batch of graphs. Sequentially performing pairwise matching is
prone to error propagation along the pairwise matching sequence,
and the sequences generated in different pairwise matching
orders can lead to contradictory solutions. Motivated by devising
a robust and consistent multiple-graph matching model, we
propose a unified alternating optimization framework for multi-
graph matching. In addition, we define and use two metrics
related to graph-wise and pairwise consistencies. The former
is used to find an appropriate reference graph which induces
a set of basis variables and launches the iteration procedure.
The latter defines the order in which the considered graphs
in the iterations are manipulated. We show two embodiments
under the proposed framework that can cope with the non-
factorized and factorized affinity matrix, respectively. Our multi-
graph matching model has two major characters: i) the affinity
information across multiple graphs are explored in each iteration
by fixing part of the matching variables via a consistency-
driven mechanism; ii) the framework is flexible to incorporate
various existing pairwise graph matching solvers in an “out-
of-box” fashion, and also can proceed with the output of other
multi-graph matching methods. The experimental results on both
synthetic data and real images empirically show that the proposed
framework performs competitively with the state-of-the-art.

I. INTRODUCTION

A preliminary version of the presented paper appeared in [1]. The current
paper makes several further extensions and improvements: i) incorporate the
factorized graph matching in our formulation, and solve it via a path-following
algorithm; ii) propose two metrics for graph-wise and pairwise consistency,
which are used for the effective finding of basis variables and updating order
for the alternating optimization procedure. In particular, the preliminary work
does not address these two problems as only a few graphs are tested in [1].
However, they become more critical when a relatively large number of graphs
are considered; iii) perform extensive evaluations that involves more graph
samples, additional datasets, and more state-of-the-arts for comparison.
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GRAPH matching (GM) plays a critical role in both
theory and application for computer science community.

Briefly speaking, graph matching aims to find correspondence
between two feature sets, with a wide spectrum of applica-
tions that require feature matching in image processing and
computer vision, as diverse as image registration [2], object
recognition [3], shape matching [4], object tracking [5], and
action recognition [6], among others. Different from the point
based matching methods such as RANSAC [7] and Iterative
Closet Point (ICP) [8], GM methods incorporate both the
unary node-to-node, as well as the second-order edge-to-edge
similarity as structural information. As discussed in [9], by
encoding the additional second-order edge similarity in the
graph representation and matching process, GM methods can
usually lead to better node correspondence solutions. Although
extensive research has been done for decades [10], deriving
optimal GM is still a challenging problem in both theory
and practice since the GM problem can be formulated as a
quadratic assignment problem (QAP) [11], being well-known
NP-complete [12][13].

Graph matching is mostly considered under the two-graph
scenario [9], [14], [15], [16], [17], [18] etc. However, in many
real applications, given a batch of graphs referring to identical
or related structures, it is required to find the global node
mappings among all graphs, which is essentially related to
graph clustering [19], [20], [21], [22], classification [23], [24],
[25] and indexing [26]. Due to the advance of modern imaging
and scanning technologies, there is an increasing need for
multi-graph matching in various applications. In [27], objects
are scanned using infrared, optical, cartographic and Synthetic
Aperture Radar (SAR) that are desired to be combined to
improve representations. In addition, 3D shape analysis often
requires to model objects by multi-view assembly [28].

From the methodology perspective, pairwise graph matching
methods aim to find the correspondences that preserve the
structural invariance between two graphs. Though being suc-
cessful when the structural invariance property is roughly hold,
pairwise matching methods tend to fail when the differences
between the input graphs are significant or the graph noises
are nontrivial. This is because the optimization solver may be
trapped in local optima and/or far from the semantic ground
truth especially when large noises exist. However, a set of
graphs open the possibility to explore the global information
and matching consistency regularization that help improve the
matching accuracy. For instance, directly producing node cor-
respondences between two significantly deformed graphs via
pairwise matching techniques is extremely error-prone; while
ideally, an indirect matching with a sequence of interpolating
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graphs yields more robust results. For arbitrary graphs, simply
applying the existing pairwise matching algorithms on each
pair of graph is far from satisfaction. Such a pairwise matching
based scheme encodes no global reasoning and regularization
due to the separated and independent matching process, re-
sulting in information-loss and vulnerability to local noises.
Moreover, different orders of sequential pairwise matching
would usually lead to inconsistent matching results, which
means XTiaXaj 6= XTibXbj for matching graph i and j, and
the anchor graph is a and b respectively. Here X is the node-
mapping assignment matrix whose formal definition would be
given later in the paper. This fact has been illustrated and
discussed in our conference paper [1].

Compared with the vast existing work on the pairwise
graph matching problem [9], [14], [15], [16], [17], [18],
[29], [30] etc., the topic of multi-graph matching is in fact
a relatively less-investigated one in the image processing
and computer vision community [27], [31], [32]. Motivated
by the limitations of the existing approaches, we aim to
design a robust method to obtain consistent node-to-node
correspondence across a collection of loosely related objects or
weighted graphs. Despite the fact that no theoretical guarantee
is provided for obtaining a globally optimal solutions (note the
problem is NP-complete), in this paper, we do take account
the global information of the entire set of graphs to generate
approximated solutions that tend to satisfy the structural
information and matching consistency across all the graphs.
To evaluate the effectiveness of the proposed multi-graph
matching approach, we perform extensive empirical studies
on both synthetic datasets that are built using the popular
protocols [15], [29], as well as the well-known benchmark
datasets including the CMU motion sequence, the POSE-
sequence, and the WILLOW-ObjectClass data.

The major contributions of our work are:
First, we propose a unified framework, which has two

alternating optimization algorithm variants to cope with non-
factorized and factorized affinity matrix in the objective func-
tion, respectively. Our method bears several merits: i) the
pairwise affinities over multiple graphs are jointly explored, in
the hope of being more robust against local noises, which is
empirically observed in our extensive tests; ii) the framework
is flexible to incorporate various existing pairwise matching
techniques in an “out-of-box” fashion, in two stages for both
before and during the iteration; iii) our method does not
impose any consistency requirement on the initial matching
inputs. By contrast, other methods [32], [33] require the initial
solutions must be inconsistent, which allows them to improve
the overall accuracy by enforcing consistency. Therefore, our
method can start with, and further improve the results of [32],
[33] also in an “out-of-box” fashion.

Second, we define and use the metrics related to graph-
wise/pairwise consistency to address two key challenges in
our framework: i) appropriate selection of the reference graph
which induces a set of basis variables to proceed the iterative
optimization procedure effectively; ii) adaptive setting of the
iterative updating order, which improves the convergence
speed by a notable margin. Compared with the preliminary
version [1], the consistency-driven framework outperforms in

extensive empirical tests.

II. RELATED WORK

As a general problem for matching structural data, graph
matching has been extensively studied for decades not only in
image processing and computer vision, but also in computer
science and mathematics [10], [34]. Here we view the problem
from several key aspects that account for the main threads of
the related work, mostly in the area of image processing and
pattern recognition. We will discuss pairwise matching and
multiple graph matching separately.

A. Advances on pairwise graph matching

Machine Learning Methodologies: Conventional graph
matching methods first compute an affinity matrix and keep
the affinity metrics unchanged during the entire matching
process. Recent work leverage various leaning algorithms for
estimating the optimal affinity matrix [9], [17], [35], [36],
[37], and the methods can fall into either supervised [17],
unsupervised [9], or semi-supervised [35] learning paradigm.
The problem of estimating the optimal setting of the affinity
metric is out of the scope of this paper. We assume the affinity
matrix is prior known which is the same with most of related
work [4], [14], [15], [16], [29], [38], [39] etc.

Higher-Order Affinity Modeling: Combing the unary and
second-order edge information has been heavily investigated
since such a type of matching schemes plays a good tradeoff
between computational complexity and representation capa-
bility [4], [14], [15], [38], [39]. Recently, the higher-order
information has been encoded to achieve more robust match-
ing paradigms. Several representative hyper-graph matching
methods have been proposed for pattern recognition and image
processing applications [35], [40], [41], [42], [43] that encode
higher-order information to enhance the matching distinctive-
ness. However, a slight increase in the order would lead to a
combinatorial explosion of the state space. As a result, most of
higher-order methods, such as the related work we mentioned
here, are typically applied on very sparse graphs with no more
than third-order features. In addition, it is worth noting that
the term pairwise used in this paper refers to matching two
graphs, while in the context of hyper-graph matching, pairwise
sometimes refers to the second-order edge affinity.

Optimization Methods: Most approaches first formulate
an objective function, and then employ certain optimization
methods to derive optimal matching results [4], [14], [38],
which can vary among a wide spectrum of optimization
techniques and strategies. Several recent work first relax the
objective function to a convex-concave formulation [29], [44].
Then the optimal solutions are obtained using the so-called
path following strategy and a modified version of the Frank-
Wolfe algorithm [45]. Probabilistic matching paradigms are
also developed, which have shown power in interpreting and
addressing hyper-graph matching problems [15], [42], [43].

B. Advances on multiple graph matching

The multi-graph matching problem is also referred as Com-
mon Labeling [31] or Multiple Isomorphism [46]. In [31], a
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common labeling is defined as a bijective mapping between
all graph nodes in the considered graphs to a virtual node set.
The common labeling is constructed by a consistent multiple
isomorphism [46], where an isomorphism involves assigning
each node from one graph to one of the other graphs.

Compared with the pairwise matching problem, the multiple
graph matching has not been extensively studied, and only
a few address this problem using principled formulations
or techniques. A loosely related early work [47] aims at
finding a maximum spanning tree on a super graph whose
vertices represent graphs, and its edges represent matching
correspondences between two graphs. The edges on the super-
graph are weighted by their “quality” such as matching affinity
score as we will describe later in this paper. Very recently,
Sole-Ribalta and Serratosa [48] (and its journal version [31])
generalize the classical Graduated Assignment Graph Match-
ing (GAGM) algorithm [14], [16] from two-graph to multi-
graph case, which generates the common labeling by matching
all graph nodes to a virtual node set. This method is assumed
to inherit the sound performance of the original method, while
being more time-consuming as it repeatedly applies GAGM
across graph pairs iteratively. Other two recent work [33],
[32] start their procedure on an inconsistent pairwise matching
configuration that covers all graph pairs. Given N graphs
with n nodes per each, the former method first builds an
N -dimensional probabilistic hyper-cube with size n in each
dimension, whereby each cell indicates the probability for the
N -node correspondence from N graphs respectively. Then the
consistency and binarization are fulfilled in a post-processing
step. The latter employs spectral approximation to eigenvector
decomposition on the matching configuration matrix stacked
by all raw pairwise matching solutions (assignment matrix),
and recover the consistent matching solutions. There are also
several other more recent work on matching a batch of graphs
by self-boosting [49] and multi-view point registration [50].

III. PRELIMINARIES FOR GRAPH MATCHING

In this section, several notations used in this paper and two
definitions related to the proposed framework will be intro-
duced, followed by a retrospection on existing formulations for
pairwise graph matching under two paradigms: non-factorized
and factorized representations of the affinity matrix.

A. Notations and definitions

Throughout the paper, R denotes the real number domain.
Bold capital letters denote for a matrix X, bold lower-case
letters for a column vector x, and hollow bold letters for a set
X. All non-bold letters represent scalars. XT is the transpose
of X; diag(x) is a diagonal matrix whose diagonal elements
are x; vec(X) is the column-wise vectorized matrix X. tr(X)
is the trace of matrix X. In ∈ Rn×n is an identity matrix and
the subscript n will be omitted when it can be inferred from
context. 1m×n, 0m×n ∈ Rm×n are matrices of all elements
being ones and zeros. 1n is the abbreviation for 1n×1. X ◦ Y
and X ⊗ Y denote the Hadamard and Kronecker products of
matrices. |X| is the cardinality of the set X, ‖X‖F = tr(XTX)
for the Frobenious norm and ‖ · ‖p is the p-norm.

(a) two graphs and the associated affinity matrix (b) the star tree structure

Fig. 1: Illustrations for: a) the pairwise matching affinity matrix induced by two sample
graphs. Darker cells in the matrix denote smaller value within the normalized value
range [0, 1]; b) the star tree structure for the reference graph together with the specified
“updated” graph and the resting “fixed” graphs in one iteration of the proposed two
methods. Five pairwise terms are considered: Kru, Kf1u, Kf2u, Kf3u, Kf4u.

Specifically, his paper intensively uses Xij to denote the
pairwise matching matrix between graph i, j, and X =
{Xij , i, j = 1, . . . , N} for the set of pairwise matching matrix
over a graph set denoted by G = {G1, . . . ,GN}. We call X
the matching configuration w.r.t. G. If not explicitly stated, we
follow the convention that using N for the cardinality of G,
n for the number of nodes in a graph, and m for edges.

Now we introduce two definitions regarding with matching
consistency induced by the initial pairwise matching results
from any pairwise matching solver. As would be shown later in
this paper, these two definitions play a key role in the proposed
alternating optimization framework. In general, they are used
to solve two common problems associated with an alternating
optimization method, respectively: i) how to choose a set of
base pairwise matching variables to proceed the iteration; ii)
how to set an optimal rotating order for alternating updating.

Definition 1. Given N graphs G={Gk, k = 1, . . . , N}
and the pairwise matching configuration X = {Xij , i, j =
1, . . . , N}, the graph-wise consistency of graph Gk is defined

as Cg(Gk,X)=1−
∑N−1

i=1

∑N
j=i+1 ‖Xij−XikXkj‖F /2
nN(N−1)/2 ∈ [0, 1] where

Xij is the pairwise permutation matrix over the graph set G.

Definition 2. Given a set of graphs G={Gk, k = 1, . . . , N},
matching configuration X, and a reference graph Gr, for any
other graph Gu, the pairwise consistency between Gu and Gr is
defined as Cp(Gu,Gr,X) = 1−

∑N
i=1 ‖Xri−XruXui‖F /2

nN ∈ [0, 1]

We leave the details of using the two definitions to Section
IV in the context of the proposed multi-graph matching
framework. In the rest of this section, we depict the two
existing pairwise graph matching formulations, which are the
origins of the proposed multi-graph matching algorithms.

B. Non-factorized pairwise graph matching
Given two graphs G1(V1, E1,A1) and G2(V2, E2,A2), where

V denotes nodes, E , edges and A, attributes. There is
an affinity matrix K ∈ Rn1n2×n1n2 defined such that
Kia;jb, (i, j = 1, . . . , n1), (a, b = 1, . . . , n2) measures the
edge pair affinity (vi, vj) vs. (va, vb) from two graphs. The
diagonal term Kia;ia describes the unary affinity of a node
match (vi, va). Rigorously, the affinity value Kia;jb for the
edge pair (vi, vj) vs. (va, vb) is located at the ((a-1)n1+i)-th
row and ((b-1)n2+j)-th column of K. One example of K is
illustrated in Fig.1(a). By introducing an assignment matrix
X ∈ {0, 1}n1×n2 for n1 = |V1|, n2 = |V2|, we set Xia = 1 if
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node vi matches node va (0 otherwise). The problem of GM
involves finding the optimal correspondence X, such that the
sum of the node and edge compatibility between two graphs is
maximized. Without loss of generality, we assume n1 ≥ n2 for
different sizes of graphs. This leads to the following two-way
constrained quadratic assignment problem (QAP):

X∗ = argmax
X

vec(X)TKvec(X)

s.t. X1n2 ≤ 1n1 1Tn1
X = 1Tn2

X ∈ {0, 1}n1×n2

The constraints refer to the two-way one-to-one node map-
ping: a node from graph G1 can match at most one node in G2
and every node in G2 is corresponding to one node in G1. There
is no (one/many)-to-many matchings between two graphs.

The above formulation is general as it allows two graphs
having unequal number of nodes (n1 6= n2). Similar to
the previous work [12], [29], we follow the protocol that
converts X from an assignment matrix (X1n2 ≤ 1n1 ) to a
permutation matrix (X1n2

= 1n1
) by adding dummy nodes to

one graph (i.e. adding slack variables to the assignment matrix
and augment the affinity matrix by zeros) in case n1 6= n2.
This is a standard technique from linear programming [51]
and is adopted by [12], [29], [52] etc., being able to handle
superfluous nodes in a statistically robust manner. By taking
this step, the graphs are of equal sizes. This preprocessing
opens up the applicability of existing multi-graph methods
[31], [32], [46] as they are all based on the assumption that all
graphs are of equal sizes. Therefore, the following formulation
is used throughout the paper which assumes n1 = n2 = n.

X∗12 = argmax
X12

vec(X12)
TK12vec(X12) (1)

s.t. X121n2 = 1n1 1Tn1
X12 = 1Tn2

X12 ∈ {0, 1}n1×n2

Here X12 is a permutation matrix which is constructed by
augmenting the assignment matrix with slack columns in case
n1 > n2, such that there is always a bijection between graphs.

The above QAP formulation is used by most existing
GM methods [4], [14], [15], [16], [38], which directly deals
with the large pairwise affinity matrix K. The affinity matrix
plays a central role in GM because it encodes all the first-
order and second-order relations between graphs. The two
common properties of K, full-rankness and indefiniteness,
pose key challenges to conventional GM methods such as
spectral methods [4], [38] and gradient-based approaches [14],
[15], [16]. In addition, its relatively large size also impedes
the applicability when large-size graphs are considered. Thus
the factorized graph matching formulation is studied and
introduced by [29] in parallel which avoids involving the
whole K for optimization.

C. Factorized pairwise graph matching
The authors in [29] show that the affinity matrix can

be factorized as a Kronecker product of smaller matrices,
which decouples the graph structure from the affinity. Specif-
ically a graph G can be denoted by {P,Q,G}, where P =
[p1, . . . ,pn] ∈ Rdp×n, Q = [q1, . . . ,qm] ∈ Rdq×m are the
feature matrices computed for n nodes and m edges. Here dp
and dq are the number of dimensions for unary features and
edge features. The topology of the graph is specified by the
node-edge incidence matrix G ∈ Rn×m such that the non-
zero elements in each column of G indicate the starting and
ending nodes in the corresponding edge. Refer to [29] for
more details. More specifically, given two graphs {P1,Q1,G1}
and {P2,Q2,G2}, let Kp

12 ∈ Rn1×n2 denote the node affinity

matrix, and Kq
12 ∈ Rm1×m2 for the edge affinity matrix, which

is used to measure the similarity of each pair of nodes and
edges, respectively. As shown in [29], then the affinity matrix
for pairwise matching can be factorized to:

K12 = (H2 ⊗H1)diag(vec(L12))(H2 ⊗H1)
T

where Hi = [Gi, Ini ] ∈ {0, 1}
ni×(mi+ni), i = 1, 2

L12 =

[
Kq

12 −Kq
12GT

2

−G1Kq
12 G1Kq

12GT
2 + Kp

12

]
Based on the above factorization of K12, the original pairwise

graph matching objective function can be written as [29]:

J12 =vec(X12)
T (H2 ⊗ H1)diag(vec(L12))(H2 ⊗ H1)

T vec(X12)

=tr
(

L12(HT1 X12H2) ◦ (HT1 X12H2

)
By factorizing L12 to L12 = U12VT12 =

∑c
i=1 ui12viT12 ,

where U12 = [u1
12,u2

12, · · · ,uc12] ∈ R(n1+m1)×c, V =
[v1

12, v212, · · · , vc12] ∈ R(n2+m2)×c, J12 can be derived as [29]:

J12 =
∑
i

tr
(

Ai12X12Bi12XT12
)

(2)

where Ai12 = H1diag(ui12)H
T
1 , Bi12 = H2diag(vi12)H

T
2

Note the above factorization formulation does not require two
graphs being of equal sizes. In the rest of paper, similar to
the non-factorization case, we will add dummy nodes in case
of unequal sizes of graph, to make the two-way constraint
become a bijection. This step will transform X12 to a strict
permutation matrix, which leads to the following convex-
concave relaxation formulation as discussed in [29].

D. Convex-concave relaxations for factorized graph matching
By ensuring X12 a permutation matrix such that XT12X12 =

Inn, the objective can be relaxed to the convex formulation,
by adding a constant term C12 as used in [29]. Thus we have:

Jvex12 (X12) =J12(X12)−
1

2
C12(X12) (3)

where C12 =
∑
i

(
tr(Ai12Ai12X12XT12) + tr(Bi12Bi12XT12X12)

)
On the other hand, as shown in [29], the concave relaxation
Jcav12 can be written as:

Jcav12 =tr
(

KqT
12 (G

T
1 X12G2 ◦GT

1 X12G2)
)

(4)

− tr
(
(G1Kq

12GT
2 )
TX12

)
+ tr

(
KpT

12 X12

)

IV. MULTIPLE GRAPH MATCHING BY
CONSISTENCY-DRIVEN ALTERNATING OPTIMIZATION

First of all, as the same with the preprocessing used in
pairwise graph matching that makes graphs of equal size, we
add dummy nodes to make all input graphs of the same size.
Note this protocol is also used by [31], [32], [46] for multi-
graph matching. Based on this consensus, in what follows we
will present our algorithm with two variants, by factorizing
the affinity matrix and not, respectively. The non-factorized
formulation is a more dominant representation used in most
existing work [4], [39], [15], [16], while the other avoids using
the whole affinity matrix in optimization [29], [30]. We will
provide a unified approach to cope with these two cases.
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A. Non-factorized multiple graph matching
Given N graphs and the pairwise affinity matrix Kij for

each pair of graphs Gi,Gj , without loss of generality, the multi-
graph matching objective function can be written as follows:

X∗ = argmax
X

N∑
i,j=1,i 6=j

vec(Xij)TKijvec(Xij) (5)

s.t. Xij1n = 1n 1TnXij = 1Tn Xij = XTji ∈ {0, 1}n×n

∀i, j = 1, . . . , N ; |X| = N(N − 1)

where X = {Xij , i, j = 1, . . . , N} is the permutation
(augmented assignment) matrix set such that Xij = XTji. Note
that by the definition of affinity matrix as introduced earlier
in the paper, in general Kij 6= Kji, Kij 6= KT

ji. Though
they encode redundant information, we include all Kij in the
objective function, which would be used in the optimization
procedure as we will show in the following.

One obvious observation on the above function is that
the pairwise matching variables Xij are redundant and can
be determined by a compact basis variable set {Xrk, k =
1, . . . , N, k 6= r} (a star tree rooted at the reference graph)
such that any Xij can be computed by XTkiXkj . Consequently,
we design our non-factorized multi-graph matching algorithm
as follows. First, in order to induce a basis matching set to
proceed the optimization procedure, a reference graph Gr is set
by a certain means. Then in each iteration, one can choose a
certain graph Gu in rotation by a certain order Oudt, and update
its mapping with Gr i.e. Xur, by fixing the other N − 2 Xrf
regarding graphs Gf (f = 1, . . . , N, f 6= r, u) against Gr. This
idea is illustrated in Fig.1(b). Now, we reach the following
objective function by dropping the constant terms1 for Xrf :

vec(Xur)TKurvec(Xur) +
N∑

f=1,f 6=r,u
vec(Xuf )TKufvec(Xuf )

Note in the permutation matrix form we have Xuf = XurXrf ,
this leads to the following equation in the vectorized form:

vec(Xuf ) = (Xfr ⊗ I)vec(Xur) (6)

From now on we will use Ffr ∈ Rn2×1 to denote Xfr⊗I, by
replacing vec(Xuf ) via vec(Xuf ) = Ffrvec(Xur) we rewrite
the objective function more compactly as follows:

J(Xur) = vec(Xur)T (Kur +

N∑
f=1,f 6=r,u

FTfrKufFfr)vec(Xur) (7)

It becomes clear that in each iteration the sub-problem (7)
is a standard pairwise graph matching problem, which can be
solved by various pairwise graph matching techniques based
on the QAP formulation in an “out-of-the-box” manner2

So far, we have proposed our alternating optimization
framework that directly deals with the affinity matrix. Note
that in the above discussion, we assume the reference graph Gr
and the updating order oudt are both pre-given. We would still
hold this assumption for presenting the factorized variant in the
next paragraph. In the end of this section, we would address
these two common problems using a principled paradigm.
As we will show later, it is closely related to the graph-
wise/pairwise consistency metrics as defined in Section III.

1For efficiency, we omit the terms regarding Kfu as they have been encoded
by Kuf . This policy is used thought the paper for the proposed algorithms.

2Several matching methods are not or not explicitely based on QAP: e.g.
the graph edit distance based methods [53] and the recent advances [54], [55]
can enjoy better error-tolerance against missing nodes and edges.

Algorithm 1 Consistency-driven Non-factorized Alternating
Optimization for Multi-Graph Matching
Input:
1: N graphs with n nodes of each graph;
2: Pairwise affinity matrix Kij(i, j = 1, . . . , N);
3: Maximum iteration count: Tmax;

Output:
4: Consistent assignment matrix Xij (i, j = 1, . . . , N);

Procedure:
5: Obtain the raw matching configuration X = {Xij} by exhaustively

performing pairwise graph matching over N graphs;
6: Set reference graph Gr = maxGk Cg(Gk,X), {k = 1, . . . , N};
7: Set updating list Oudt in ascending order w.r.t. Cp(Gu,Gr,X)
8: Initialize the best solutions X∗kr = Xkr, k = 1, . . . , N, k 6= r;
9: for t = 1 : Tmax do

10: for u in Oudt do
11: Fix N -2 Xtuf , for f = 1, . . . , N, f 6= r, u, update Xtur by solving

the two-graph matching problem (7);
12: Compute the updated objective score J(Xur) using the updated

Xtur for the objective (7);
13: Compute the so-far best objective score J∗(Xur) using the so-far-

best X∗ur for the objective (7);
14: if Jur > J∗ur , X∗ur = Xtur ;
15: end for
16: end for

Algorithm 2 Consistency-driven Factorized Alternating Opti-
mization for Multi-Graph Matching
Input:
1: N graphs with n nodes of each graph;
2: Graph-wise node-edge incidence matrix Gi, node and edge affinity matrix

Kpij , Kqij (i, j = 1, . . . , N);
3: Maximum iteration count: Tmax, path-following step size δ

Output:
4: Consistent assignment matrix Xij(i, j = 1, . . . , N);

Procedure:
5: Obtain the raw matching configuration X = {Xij} by exhaustively

performing two-graph matching over N graphs;
6: Set reference graph Gr = maxGk Cg(Gk,X), {k = 1, . . . , N};
7: Set updating list Oudt in ascending order w.r.t. Cp(Gu,Gr,X)
8: Initialize the best solutions X∗rk = Xrk, k = 1, . . . , N, k 6= r;
9: for t = 1 : Tmax do

10: for u in Oudt do
11: Fix N -2 Xtfu, for f = 1, . . . , N, f 6= r, u, update Xtru by using

the following path-following procedure:
12: for α = 0 : δ : 1 do
13: update Xtru via applying MFW on the convex-concave relax-

ation: J = (1− α)Jvex + αJcav by formula (10).
14: end for
15: Compute the updated objective score J(Xru) using the updated

Xtru for the objective (9);
16: Compute the so-far best objective score J∗(Xru) using the so-far-

best X∗ru for the objective (9);
17: if Jru > J∗ru, X∗ru = Xtru;
18: end for
19: end for

B. Factorized multiple graph matching

Recent work [29] exploits the underlying structure of affin-
ity matrix K, which is not necessarily negative definite, in the
hope of designing better optimization scheme for addressing
the non-convex issue. The presented algorithm in the previous
section cannot be directly applied to the original factorized
graph matching formulation in [29] as the re-weighted affinity
matrix in (7) lacks a convenient interpretation as the original
affinity matrix that can be factorized (decoupled) into pairwise
similarity and self-structure. In this section, we present an
alternating optimization approach to solve the multiple graph
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matching problem based on the factorized formulation. As
pointed out by [29], the main advantage of factorized model
is avoiding computing and storing the large-sized affinity
matrix by decoupling it into smaller edge-wise and node-wise
matrices as we have shown in the pairwise graph matching for-
mulation. Another notable difference from our non-factorized
multi-graph matching algorithm, is that it derives a specific
convex-concave path-following algorithm as we will present
in this section, while the former can re-use any non-factorized
graph matching solvers [15], [16], [38], [39].

In general, the factorized multiple graph matching problem
can be expressed by maximizing the following objective
function, where Jij is in the form of formula (2):

X∗ = argmax
X

N∑
i,j=1,i 6=j

Jij(Xij) (8)

s.t. Xij1n = 1n 1TnXij = 1Tn Xij = XTji ∈ {0, 1}n×n

∀i, j = 1, . . . , N ; |X| = N(N − 1)

For the factorized graph matching formulation, we will
directly use the matrix form X instead of the vectorized
form x = vec(X) as used in the non-factorized case. As the
same with the non-factorized multi-graph matching problem, a
reference graph Gr is first selected, followed by an alternating
optimization procedure with a certain sequential updating or-
der. Similar to the non-factorized case, we reach the following
objective function without using the affinity matrix:

J(Xru) = Jru(Xru) +
N∑

f=1,f 6=r,u

Jfu(Xfu) (9)

Note J is a function of Xru as Xfu = XfrXru for fixed
Xfr. Its convex-concave relaxation form, which is weighted
by α ∈[0,1], can be written as follows:

Jα(Xru) =(1− α)
(
Jvexru (Xru) +

N∑
f=1,f 6=r,u

Jvexfu (Xfu)
)

(10)

+ α
(
Jcavru (Xru) +

N∑
f=1,f 6=r,u

Jcavfu (Xfu)
)

where Jvex is written by formula (3), and Jcav by formula
(4). As α increases from 0 to 1, this path-following strategy
enjoys the global optimal solution when α = 0 due to the
convex form, and finally leads to an integer solution when
α = 1, for the concave form. Thus it is insensitive to the
initial point, and usually no post-binarization is needed [56],
[57] which otherwise may cause additional performance loss.

For each α ∈ [0, 1], the sub-problem can be solved using
the Frank Wolfe’s algorithm (FW) [45], which is widely
used constrained nonlinear programming. In implementation,
we use the modified Frank Wolfe’s algorithm (MFW) [58]
to speed up its convergence which probably finds a better
searching direction Y by a convex combination of previously
obtained solutions. In the experiments, we used the directions
computed in 2 previous steps. The FW (MFW) algorithm first
computes the optimal direction Y and then determines the
optimal step size λ ∈ [0, 1], with respect to the objective
function (10). The optimal Y with respect to Xru in iteration k
can be calculated by solving the following linear programming
problem by the Hungarian method [59]:

max
Y

tr
(
∇XruJ

α(Xkru)
T (Y− Xkru)

)
(11)

s.t. Y1n = 1n,YT 1n = 1n,Y ≥ 0n×n

where the gradient can be obtained as follows:

∇XruJ
α =(1− α)∇Xru(J

vex
ru +

N∑
f=1,f 6=r,u

Jvexfu ) (12)

+ α∇Xru(J
cav
ru +

N∑
f=1,f 6=r,u

Jcavfu )

Having obtained the optimal Y, the optimal step size λ can
be found at the optimal point of the following parabola:

Jα =(1− α)Jvex(Xru + λY) + αJcav(Xru + λY) (13)

=aλ2 + bλ+ const

Next, we would focus on solving the two common issues
for both non-factorized and factorized variants: i) finding the
optimal reference graph Gr that induces the basis variable
set {Xrk, k = 1, . . . , N, k 6= r} to initialize the iterative
optimization procedure; ii) setting the optimal updating order
Oudt to speed up convergence and to suppress possible error
propagation over alternating optimization. This is because
although in each iteration the objective (7) or (9) contains
affinities over multiple graphs to explore jointly, nevertheless,
this new objective is coupled with the estimated Xrf from the
previous iteration thus cannot fully avoid error propagation.

C. Consistency-driven alternating optimization

First we address the problem related to finding the reference
graph. Our iterative alternating optimization involves a set of
basis mappings between a reference graph and others in an
expectation maximization manner. It is critical to generate
reasonably accurate initial solutions to avoid trapping into
an unsatisfactory local optimum. Specifically, one is given a
raw matching configuration Xraw obtained from independent
pairwise matching without knowing the ground truth. Under
this condition, one is seeking an “appropriate” reference graph
Gr and its associated basis set that span a new matching config-
uration Xspan by Xspanij = XrawTri Xrawrj . One intuitive metric
to approximate the accuracy is the graph-wise affinity score
by

∑N
k=1,k 6=r vec(Xkr)TKkrvec(Xkr) given Gr. However, due

to outliers and local deformation, as well as the difficulty in
setting up the perfect affinity matrix in a parametric manner3,
the ground truth may not correspond to the highest score
modeled by the parametric objective function. Thus graph-
wise score is not a robust indicator to accuracy as shown in
Fig.2, which will be discussed in details in our experiments.

Our embodiment is setting Gr = maxGk Cg(Gk,X) by
Definition (1). The rationale is that the erroneous correspon-
dences are at random yet correct correspondences concur
thus consistent across pairwise matchings. This observation
motivates us choosing Gr as the one maximizing the graph-
wise consistency – Definition (1), in the hope that it would
induce the most accurate basis set for initialization, or equally:
minr

∑N
i,j=1 ‖X

span
ij − XrawTri Xrawrj ‖p, where ‖‖p is the p-

norm for a matrix. Since the resultant matching matrices are

3Currently the affinity function is mostly modeled by parametric functions,
the fixed parameters by whatever manual setting [16], or learned from training
samples [17], [36] etc. are still unable to perfect fit the score with accuracy,
leading to the existence of discrepancy between score and accuracy.
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(a) Deform (b) Outlier (c) Density

Fig. 2: Comparison of four strategies for setting reference graph, updating order and
enforcing score-non-descending path selection constraint, refer to Table I and Table II
for structured descriptions. Accuracy over iteration path by four solvers in different
colors: RRWM (blue), GAGM (green), FGM (black), IPFP (red). The corresponding four
horizontal solid lines in each plot indicate the performance of a baseline by randomly
choosing a graph as the reference one to derive consistent matching configuration. The
curves are generated by averaging 50 random tests over Tmax = 2 iterations, i.e. the
number of inner iteration rounds is (N − 1) ∗ Tmax=38. Zoom in for better display.

TABLE I: Settings of reference graph, alternating updating order, and path selection
strategy for the solution paths as illustrated in Fig.2.

reference graph updating order path selection curve
graphwise consistency pairwise consistency enforced dashed
graphwise consistency random order enforced solid
graphwise consistency pairwise consistency non-enforced dash-dot

graphwise score pairwise score enforced dotted

all binary ones, thus the setting of the reference graph is
insensitive to p. Without loss of generality, we set p = 2.

Given the basis variable set for rotating updating, the next
problem is finding an “optimal” updating order. The pairwise
consistency Cp(Gu,Gr,X) – Definition (2) is used to define
the order in which the sample graphs in the iterations are
considered, so that the least accurate ones are updated first,
thus avoiding error propagation and speeding up the conver-
gence. Motivated by the similar observation in the case of
finding the reference graph, the pairwise consistency measure
is considered to approximate the pairwise matching accuracy.
As a result, the updating variables are ranked in ascending
order with respect to Cp(Gu,Gr,X). Similarly, Cp(Gu,Gr,X)
is also insensitive to which matrix norm ‖‖p (we set p = 2
here) is used as only binary matching matrices are involved.

Note the authors in [31], [33] also define an inconsistency
index for the overall pairwise matching configuration X, or,
multiple isomorphism as termed in their papers. However, that
index is not related to the fine-grained graph-wise/pairwise
consistency, and unable to define the reference graph and
updating order. Perhaps more importantly, the two proposed
definitions in general provide the sketch for deriving other
consistency metrics, which can be tailored in particular appli-
cations. For instance, the graph-wise consistency can be cal-
culated by weighting each term ‖Xij −XirXrj‖ in Definition
(1) by a parameter wij if the prior estimation on the quality of
the initial pairwise matching solution is given. In summary, the
presented two measures themselves already bear some gener-
alities since the binary matrices are insensitive to the choice
of p-norm and they can allow weighted variants as discussed
above. Moreover, our general consistency-driven mechanism
can also benefit from other newly designed metrics.

TABLE II: Parameter settings for solution path illustration as shown in Fig.2.

noise type parameter settings results
deform N=20,nin=12,nout=0,ε=.15,ρ=1,σ2=.05 Fig.2(a)
outlier N=20,nin=8,nout=4,ε=.05,ρ=1,σ2=.05 Fig.2(b)

density N=20,nin=12,nout=0,ε=.05,ρ=.5,σ2=.05 Fig.2(c)

D. Implementation details and convergence discussion

Another consideration is due to the sub-optimality nature
of existing pairwise matching techniques for solving the NP-
hard sub-problem of Eq.(7) or (9) per iteration. Therefore the
newly obtained solution cannot guarantee to achieve higher
affinity score than the previous one, although often empirically
observed. To avoid the score degenerating case, we suggest
enforce a score-non-descending path selection strategy by
comparing the objective score calculated by the new solution
Xtur and the one from the currently maintained solution X∗ur.
The new solution would be dropped if it decreases the score.
As such, we obtain a score-non-descending solution path.
When this strategy is not imposed, Xur would always be
overwritten. We would compare both the “path selection” and
“non-path selection” strategies in our experiments.

Now, we summarize the above discussion and analysis into
two variants of our alternating optimization algorithms, which
are depicted in Alg.1 and Alg.2 for the non-factorized and
factorized model respectively. The score-non-descending path
selection step is plugged in the two algorithm charts.

Fig.2 depicts a comparison under different settings by using
the proposed framework, regarding with the way of setting i)
the reference graph, ii) the updating order and iii) the path
selection strategy. Four pairwise matching solvers are used to
study if the solution path is impacted by the specific pairwise
matching technique or if a more general pattern exists. We
will give a detailed analysis to Fig.2 later in our experiments.

In the last, we provide a general discussion about the
convergence behavior of the proposed methods. Both proposed
algorithms involve updating a set of basis assignment solutions
of length N : {Xtrk, k = 1, . . . , N, k 6= r} w.r.t. the reference
graph Gr in iteration t. Now we concatenate all individual Xtrk
into a single matrix Xt

r = [Xtr1,X
t
r2, . . . ,X

t
rN ]. Since each

Xtrk is a discrete binary permutation matrix thus Xt
r is also

exhaustively enumerable. As a result, as iteration continues,
there exist t and s (t < s), such that the t-th iteration solution
Xt
r would equal to a previous value Xs

r (Otherwise it implies
the solution space is innumerable thus contradicts with the
fact). Furthermore, because both algorithms are deterministic,
thus the iterative solution path would restart the solution path:
Xtrk → Xsrk = Xtrk → Xsrk → · · · in a looping manner. There-
fore, both algorithms would converge to a looping sequences
when t < s or to a fixed point when t = s.

V. EXPERIMENTS AND DISCUSSION

The experiments are performed on both synthetic and real-
image datasets. The synthetic test is controlled by quanti-
tatively varying the disturbance of deformation, outlier and
edge density. The real-image datasets are tested with varying
viewing angles, scales, shapes, and spurious outliers.
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The matching accuracy over all graphs, is calculated by
averaging all pairwise matching accuracy

∑N−1
i=1

∑N
j=i+1 Accij

N(N−1)/2
.

Each Accij computes the matches between the correspon-
dence matrix Xalgij given by the ground truth Xtruij : Accij =

tr(Xalg
ij Xtru

ij )

tr(1nj×ni
Xtru

ij )
. Note we only calculate the accuracy for com-

mon inliers and ignore the matching results over outliers.
The above testing methodologies follow a standard protocol

widely adopted by many related works such as [15], [16], [29].

A. Dataset description and affinity setting

Synthetic data The synthetic test follows the widely used
protocol of [1], [14], [15], [16], [29], [38]. For each trial,
a reference graph with nin nodes is created by assigning
a random attribute to its edge, which is uniformly sampled
from the interval [0,1]. Then the “perturbed” graphs are
created by adding a Gaussian deformation disturbance to the
edge attribute qrij , which is sampled from N(0, ε) i.e. qpij
= qrij+N(0, ε) where the superscript ‘p’ and ‘r’ denotes for
“perturb” and “reference” respectively. Each “perturbed” graph
is further added by nout outliers, which can also be helpful
to make the graphs of equal sizes when the input graphs are
different sizes. Its edge density is controlled by the density
parameter ρ ∈ [0, 1] via random sampling. The edge affinity
is computed by Kij,ab = exp(− (qij−qab)

2

σ2 ) where σ2 is the
edge similarity sensitivity parameter. No single-node feature
is used and the unary affinity Kii,aa is set to zero.

CMU-POSE Sequence This data contains three se-
quences. The first two are from the CMU house (30
marks, 101 frames), hotel (30 marks, 111 frames) sequence
(http://vasc.ri.cmu.edu//idb/html/motion/) which are widely
used in [1], [15], [16], [17], [29], [36]. The third sequence
is sampled from the sedan (VolvoC70) sequence (19 marks,
225 frames) which is viewed from various angles covering a
range of 70 degrees from the POSE dataset [60]. For each
test, an image sequence is sampled which is spaced evenly
by three frames. We utilize this dataset for the outlier test.
We select nin=10 landmarks out of all nant annotated points
(nant=30 for the two CMU sequences, nant=19 for Pose
sedan sequence), and randomly chose nout=4 nodes from
the rest nant−nin nodes as outliers. The graphs are fully
connected to encode all information to suppress outliers.

The affinity matrix is constructed by the edge length
similarity Klen

ij,ab = exp(− (dij−dab)
2

σ2 ) where dij , dab are
the Euclidean distance between two points that are further
normalized to [0,1] by dividing the largest edge length. The
unary affinity is also set to zero in line with [15], [16], [29].

WILLOW-ObjectClass The object class dataset released in
[36] is constructed by images from Caltech-256 and PASCAL
VOC2007. Each object category contains different number of
images: 109 Face, 50 Duck, 66 Wine bottle, 40 Motorbike, and
40 Car images. For each image, 10 feature points were man-
ually labeled on the target object. The edge sampling for the
affinity matrix follows the same way as [29] by constructing
the sparse delaunay triangulation among the marks, since the
triangulation can efficiently encode the object structure when
no outlier exists. For defining the edge affinity, we follow

the protocol of [29], [36] that set the final affinity matrix
re-weighted by the edge length affinity and angle affinity:
Kij,ab = βKlen

ij,ab + (1 − β)Kang
ij,ab, where β ∈ [0, 1] is the

weighting parameter. This is because this dataset is more
geometrically ambiguous than the sequence data if only edge
length is used. The angle for each edge is computed by the
absolute angle between the edge and the horizontal line as used
in [29]. The edge affinity and angle affinity are calculated in
the same way in the CMU-POSE test. For node-wise affinity,
we use the 128-dim SIFT feature [61] s ∈ R128 associated
with each single landmark by Kia;ia = exp(−‖si − sa‖2).

B. Comparing methods

First we give a short description for the used pairwise
matching solvers, which serve as building-blocks for our and
other multi-graph matching algorithms [32], [33]. Other state-
of-the-art multi-graph methods [31], [32], [33] are briefly
described in the sequel. The tests run on a laptop with 2.9G
Intel Core I7 and 8G memory with a single thread. The code
of the comparing methods are all from original authors, apart
from [14], which is implemented by the author of [29].

We select the following widely used pairwise graph match-
ing methods as the pairwise solvers in our methods. In
particular, the parameter settings of these methods as reported
below mostly follow the original settings from the authors. We
further slightly tune the parameters to balance efficiency and
efficacy as matching multiple graphs is more time-consuming.

Graduated assignment (GAGM) GAGM [14] performs
gradient ascent on a relaxed QAP objective driven by the
deterministic annealing procedure. The relaxation level is
controlled by a continuation parameter β, which is updated by
αβt → βt+1 ≤ βmax. We set α=1.1, β0 = 0.5 and βmax=50.
In the CMU-POSE data test, we also replace GAGM with
its variant, i.e. Soft Constrained Graduated Assignment [16]
which is a recent improvement based on GAGM.

Integer projected fixed point method (IPFP) IPFP [39]
approximates the original objective function via transforming
it into a series of linear assignments over iterations, and in
each iteration finds the optimal solution in the discrete domain
via Hungarian method. Then the method finds the re-weighted
solution in the continuous domain along the direction from the
current solution to the optimal discrete solution. We set the
maximum round of iterations as 10 in all experiments, which
is in accordance with the empirical observation by [39].

Re-weighted random walk matching (RRWM) RRWM
[15] introduces a random walk view on the problem and to
some extent can be regarded as a re-weighted version for
GAGM [14] and Spectral Matching [4] methods. We fix its
parameters α=0.2 and β=30 in all experiments.

Fast Bipartite graph matching (FBP) FBP [54] is a re-
cently proposed graph edit distance based method. It approxi-
mates the second-order graph matching problem to a first-order
assignment problem by considering the local edge structure
via fast bipartite matching. It requires to build the node-to-
node cost matrix C ∈ Rn×n which encodes both node-wise
and local structure information around each node. However,
in each iteration of our framework, only the (re-weighted)
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affinity matrix K is given while the attribute matrix (this paper
is dealing with attributed graphs) for each graph is unknown
and cannot be recovered from K. Thus the attribute/adjacency
matrix based steps for computing C as used in [54], [55] are
inapplicable in our framework. To compute the element Cia
when only K is given, we employ the Hungarian method to
compute the assignment cost for the rest of nodes, by fixing
the mapping i → a. Specifically, the input to the Hungarian
method is the row/column of K (by inverting the value so as to
change it from affinity to cost) that can be re-shapen into the
cost matrix w.r.t. i → a i.e. vec2mat(max(K) − Kia,:) – see
Fig.1(a) for illustration. Note this adaption may weaken the
performance of FBP which is originally designed for effective
exploring the individual graph attribute/adjancey information.

Factorized graph matching (FGM) FGM [29] factorizes
the affinity matrix which allows for relaxing the objective to
a convex function and a concave one respectively. We set the
increment step δ = 0.2 for the path-following algorithm, and
the iteration count in the Modified Frank-Wolfe method as 5.

On the other hand, the following peer multi-graph matching
methods are evaluated and compared with our methods:

Graduated assignment based common labeling (GACL)
GACL [48], [31] is a more recent work that extends the
graduated assignment method to solve the multi-graph match-
ing problem, by matching all graph nodes to a virtual node
set. It continuously updates the set of probabilities for the
mapping between the nodes in each graph to the virtual node
set by optimizing the objective function until converge. The
final solution is consistent and discrete. Here we use the
exponential objective function as the same form with ours, but
inverse affinity to cost Kgacl = max(Kours)−Kours element-
wise, as GACL concerns with minimizing the cost function.
We set the parameter in GACL (refer to the original paper)
β0 = .5, βmax = 20, α = 1.1 for the annealing outer loop
αβt → βt+1 ≤ βmax, and set the maximum iteration round
of the inner loop Tin = 5 for cost efficiency.

Modified hype-cube based common labeling (MHCL)
the original hypercube framework is used in [33], [46] while
specifically tested in the three-graph matching case, due to
exponential memory overhead. The algorithm has two main
steps: first, it performs a pairwise matching via existing
pair solvers and averages either discrete assignment solu-
tions or probabilistic ones into an N -dimensional assign-
ment hypercube, as an extension to the permutation matrix
for two graphs. Each element of the hypercube represents
the matching probability for the tuple of N nodes from
N graphs respectively. Second, a post-binarization step is
applied to to obtain the consistent common labeling. While
the original hypercube data structure can only work with a
very small number of graphs, not scalable to large N due
to its memory space overhead is nN . Thus we modify the
original method to a more light-weighted one including the
following four steps: i) adopt a pairwise graph matching
solver to obtain all possible pair assignment solutions X0

ij ;
ii) re-calculate the assignment matrix Xij by averaging the
indirect mapping Xij =

∑N
k=1 XikXkj/N ; iii) use Hungarian

method to binarize Xij ; iv) use the SYNC method (when
N > n) or Maximum Spanning Tree (MST) [62] over the raw

configuration4 (when N≤n) to obtain consistent matchings.
Permutation synchronization (SYNC) SYNC [32] em-

ploys spectral analysis and approximation to eigenvector de-
composition on the matching configuration matrix comprised
of all initial pairwise matching solutions, and recover the con-
sistent matching solutions. Note that the SYNC method only
can work when the number of nodes is less than the number
of graphs, thus similar to the sub-step in the MHCL method,
Maximum Spanning Tree (MST) is used when n ≤ N .

C. Incorporating both pairwise and multi-matching solvers
Having described the above multi-graph matching methods,

we provide a further comparison for the advantage of our
framework, which covers two aspects: i) better reusing various
pairwise matching techniques in an “out-of-the-box” fashion;
ii) proceeding with the output of other multi-graph matching
methods to improve the solution.

For the first aspect, our framework not only leverages the
pairwise matching solver to compute the putative matchings
in the first stage for initialization and consistency estimation,
but also reuses the solver during the iterative alternating
optimization. In this second stage, the affinity matrix is re-
newed, containing the global information beyond two graphs.
In contrast, the peer methods MHCL/SYNC use the pairwise
matching technique in one-shot: only for the purpose of
obtaining the initial pairwise matching configuration, while the
post-procedure is immune from any pairwise matching solver.
For the above reason, in the following plots when our methods
are tested, we use the naming convention “X-Y” to term the
different pairwise matching solvers used in two stages. While
the compared other multi-graph matching methods are set to
always use the first stage solver as termed by “X”.

For the second aspect, the proposed framework can either
use the proposed reference graph driven mechanism, or reuse
any other multi-graph matching methods to generate an initial
matching configuration X. As we will show later, these two
approaches perform similarly in accuracy, while using the
reference graph based initialization only involves one-shot
O(N3) times of multiplication of permutation matrix which
can be very fast, compared with the spectral analysis based
method SYNC related to SVD computing with the complexity
of O(N2n3) and the tedious three-layer looping procedure for
GACL whose time complexity would be further discussed later
in this section. Moreover, SYNC/MHCL are both unable to
proceed their processing given the output of our algorithms,
because they require the input solutions are inconsistent and
then transform the inconsistent solution to a consistent one.

To make the plots in the rest of the paper more digestible,
the methods with their acronyms are listed for cross-reference.
• PAIR The baseline which performs exhaustive PAIRwise

graph matching over the whole graph set. Note the
consistency over pairwise matchings is not guaranteed;

• AREF Abbreviated for Adaptive REFerence Graph Se-
lection, which consists of three steps: i) perform exhaus-
tive pairwise matching; ii) select the most “consistent”

4The raw configuration induces a fully connected super graph for each node
is a graph, and the edge is the pairwise matching score. A Maximum Spanning
Tree (MST) can be found which spans a new consistent configuration [47].
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graph as the reference Gr according to the metric of
graph-wise consistency; iii) use its pairwise matching
solutions Xrk with other graphs to span the new pairwise
matching solutions by Xij = XTriXrj ;

• FREF Abbreviated for Fixed (random) REFerence
Graph Selection, which replaces the first two steps of
AREF by randomly selecting a reference graph while
keeping the third step the same. It is very efficient since
only a linear number of pairwise matchings are performed
w.r.t. the number of graphs N ;

• GACL Abbreviated for Graduated Assignment based
Common Labeling as proposed in [31], [48];

• SYNC Abbreviated for SYNChronization in [32];
• MHCL Abbreviated for Modified Hype-Cube based

Common Labeling, which is introduced earlier in this
paper as an modified version of [33], [46] to handle the
memory bottleneck when more graphs are involved;

• FREF+/GACL+/SYNC+/MHCL+ Perform Alg.1/2 us-
ing FREF/GACL/SYNC/MHCL’s output as initial input.
The difference to Alg.1/2 is setting X∗kr in step (8) as the
solutions from other methods instead of pairwise match-
ings. All “plus-sign” cases also use the consistency-driven
method to set the reference graph and updating order,
and this can be done in a free-rider fashion since other
methods also require computing pairwise matchings. It
is worth noting that FREF+ in fact corresponds to the
method in our conference version [1] since either the
reference graph or the updating order is randomly set;

• ALG1
2 One of our two methods, being Alg.1 when non-

factorized graph matching solvers are adopted including
RRWM/IPFP/GAGM, or Alg.2 when factorized solvers
are used like FGM. Note our method in fact can also be
termed as AREF+ based on the above naming convention.
This is because the result of AREF in fact initialize both
Alg.1 and Alg.2 in step (8). For this reason, in the related
plots, AREF and ALG1

2 are in the same red color;
• ALG1

2* same as ALG1
2, but does not enforce the score-

non-descending path selection strategy.

D. Time complexity analysis

Since the existing multi-graph matching methods SYNC
[32], MHCL [33], [46] start with the pairwise matching
solutions, and our methods also use pairwise matching solvers
for initialization and optimization. Thus we will consider
a specific pairwise matching solver and estimate the time
complexity when applying it for the different methods.

Non-factorized multi-graph matching Without loss of
generality, we choose RRWM [15] as the pairwise matching
solver, and study the overall time complexity when applying
it in our non-factorized method for Alg.1. RRWM involves
an iterative procedure, in each iteration, the power iteration
method [63] and Sinkhorn method [64] are employed. The
cost of the former is O(m2) and the latter, which is denoted as
τSh = O(n2) largely depends on the convergence speed, thus
we have τrrwm = Trrwm(O(m2)+τSh) where Trrwm refers to the
number of iteration rounds. For our method, first RRWM is
performed on each pair of graphs whose cost is O(N2τrrwm),

then the cost of setting the reference graph and updating
order is O(N3n3) where O(n3) refers to the permutation
matrix multiplication that in fact can be signification speeded
up at the code level typically in a linear time w.r.t. n. In
each iteration, as shown in formula (7), it adds up N − 2
indirect pairwise affinities in addition with the direct affinity
objective. Building this whole objective function as the input
to RRWM costs O(Nn4) per iteration. The whole overhead
is N(τrrwm +O(Nn4)) +O(N3n3) +N2τrrwm as our method
stops when all assignment matrix are updated for one time, i.e.
after N−1 round of iterations. The time complexity estimation
for applying other pairwise graph matching solvers including
IPFP/GAGM can also be derived in a similar manner.

We further study the time complexity of other peer multi-
graph matching methods. i) SYNC: it involves a one-shot
SVD to find the n leading eigenvectors on the grouped
assignment matrix of size nN × nN , whose complexity is
O(N2n3), and N iterations of Hungarian method with cost
O(NτHun) = O(Nn3). Thus the total cost is τsync =
O(N2n3) + N2τrrwm; ii) MHCL: it performs the Hungarian
method to binarize each matrix which is averaged by the pu-
tative assignment matrices from N(N−1)

2 pairwise matchings.
The cost is O(N2n3)+O(N3n3), where the first term is con-
cerned with the Hungarian method, and the second is related to
the averaging step involving N3 times of permutation matrix
multiplication, which can usually be optimized to O(N3n) at
the code level. Then SYNC is performed to obtain consistency.
Thus its time complexity is O(N3n3) +N2τrrwm; iii) GACL:
according to the analysis by the authors in [31], its complexity
is O(N2m2) + τSh per iteration which is further surrounded
by two layers of loops. Specifically, the outer loop concerns
a continuation method which gradually increases the control
parameter β. The inner loop concerns iteratively updating the
assignment matrix towards the virtual node set by given a fixed
β. Thus the total complexity is TgaO(N2m2) where Tga is the
total number of iterations over two layers of loops, which in
fact is significantly larger than N or n.

Factorized multi-graph matching Due to currently we are
unable to identify any other factorized multi-graph matching
method to our best knowledge, thus we only present the
result for our method. Specifically, Besides the step for initial
pairwise matching, reference graph and updating order setting,
Alg.2 further involves i) factorizing the N(N − 1) pairs
of graphs that involves SVD decomposition at the cost of
O((n +m)3) per each; and ii) using the MFW method used
in each iteration that includes calculating the gradient of the
objective function ∇2

Xur
Jij at the cost of O((n + m)2) for

each pair (i, j), which is repeatedly performed over N − 1
terms

∑N
f=1,6=r,u Jfu + Jru in the objective function; iii)

performing the Hungarian method at the cost of O(n3) to
obtain the optimal line search direction Y given the calculated
gradient ∇2

Xur
J ; iv) the step-size search given the optimal

search direction that is at the same cost of computing gradient.
Thus the total complexity is O(N2(n+m)3) + TfwO(N(n+
m)2 + n3) + N3n3 + N2τrrwm where Tfw is the number of
iterations for the MFW method.

Table III summarizes the time complexity by the general
theoretical analysis. In general, Alg.1 would be relatively more
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(a) Deform RRWM-RRWM (b) Deform GAGM-GAGM (c) Deform IPFP-IPFP (d) Deform FBP-FBP (e) Deform FGM-FGM

(f) Outlier RRWM-RRWM (g) Outlier GAGM-GAGM (h) Outlier IPFP-IPFP (i) Outlier FBP-FBP (j) Outlier FGM-FGM

(k) Density RRWM-RRWM (l) Density GAGM-GAGM (m) Density IPFP-IPFP (n) Density FBP-FBP (o) Density FGM-FGM

Fig. 3: Accuracy on synthetic dataset by varying the disturbance level. The pairwise matching solvers are the same for initial pairwise matching and alternating optimization.

TABLE III: Time complexity comparison, where τrrwm = O(m2 + n2).

method time complexity
Alg.1 O(N2n4 +N3n3) +N2τrrwm
Alg.2 O(N2(n+m)3 +N3n3) +N2τrrwm
SYNC [32] O(N2n3) +N2τrrwm
MHCL [33] O(N3n3) +N2τrrwm
GACL [31] TgaO(N2m2)

efficient when N is large and n small. Alg.2 can be accelerated
when there are only a few edges. Fig.8 depicts a more specific
comparison where one can find our methods bring slightly
more overhead compared with other methods when non-
factorized model is used (RRWM/GAGM/IPFP/FBP). While
the factorized variant FGM is even more costive.

E. Results and further discussion

First, we use Fig.2 to compare our graph-wise/pairwise
consistency-driven strategies for setting the reference graph
and the alternating updating order, with the score-driven
alternative and the baseline by using a random updating
order. Moreover, the impact of score-non-descending path
selection strategy is also tested. In terms of the score-driven
reference graph selection, the graph-wise score is defined
as Sg(Gr,X) =

∑N
k=1,k 6=r vec(Xkr)TKkrvec(Xkr); regarding

the score-driven updating order setting, the pairwise-score

for each graph Gu, to Gr, is defined by Sp(Gu,Gr,X) =
vec(Xur)TKurvec(Xur).

To comprehensively study the behavior of different strate-
gies, the four pairwise matching solvers tested in the paper
(RRWM/IPFP/GAGM/FGM) are tested and plot in different
colors in Fig.2. Each curve is an average over 50 random
synthetic trials that involves 20 graphs by adding three types
of random noises: i) deformation noise on the edge attributes;
ii) a half ratio of random outliers; and iii) down-sampled edge
density, respectively. Readers are referred to and Table I and
Table II for the details of the testing settings. We present
several observations together with our analysis as follows:

i) As the iteration continues, accuracy grows especially in
the first half rounds of iterations i.e. iter#= N−1. Note this
is the first time when the algorithm finishes the updating
for all N−1 basis matchings Xrf . Specifically, RRWM/FGM

TABLE IV: Parameter settings for synthetic test in Fig.3, Fig.4. The settings in Fig.5
are the same with Fig.4 for deformation, outlier and density tests.

x-axis fixing parameter results
ε=.04-.24 N=20,nin=12,nout=0,ρ=1,σ2=.05 Fig.3(abcde)
nout=1-6 N=20,ε=.05,nin=8,ρ=1,σ2=.05 Fig.3(fghij)
ρ =.4-.9 N=20,nin=12,nout=0,ε=.05,σ2=.05 Fig.3(klmno)
N=4-32 nin=10,nout=0,ε=.15,ρ=1,σ2=.05 Fig.4(abcde)
N=4-32 nin=6,nout=4,ε=.05,ρ=1,σ2=.05 Fig.4(fghij)
N=4-32 nin=10,nout=0,ε=0,ρ=.5,σ2=.05 Fig.4(klmno)
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(a) Deform RRWM-RRWM (b) Deform GAGM-GAGM (c) Deform IPFP-IPFP (d) Deform FBP-FBP (e) Deform FGM-FGM

(f) Outlier RRWM-RRWM (g) Outlier GAGM-GAGM (h) Outlier IPFP-IPFP (i) Outlier FBP-FBP (j) Outlier FGM-FGM

(k) Density RRWM-RRWM (l) Density GAGM-GAGM (m) Density IPFP-IPFP (n) Density FBP-FBP (o) Density FGM-FGM

Fig. 4: Accuracy on synthetic dataset by varying the graph number. The pairwise matching solvers are the same for initial pairwise matching and alternating optimization.

significantly lift the accuracy which is initialized by the
basis set induced by the selected reference graph. In contrast
IPFP/GAGM are less effective in seeking quality solutions
over iterations. This is consistent with their proved capability
by [15], [29] in the context of pairwise graph matching.

ii) Regarding the proposed consistency-driven optimization
method, the path selection strategy (dashed curve) in general
improves the robustness and in particular avoids the degener-
ation cases when IPFP/GAGM are used. Nevertheless, as for
FGM, enforcing path selection leads to slightly worse results
compared with no path selection constraint is enforced. This
also suggests IPFP/GAGM are less robust in finding a quality
solution path thus require additional score-non-descending
constraint, which meanwhile reduces its exploration capability.

iii) The graph-wise consistency-driven mechanism of setting
the reference graph for initialization (dashed curve), show
advantages to the random selection baseline (horizontal solid

TABLE V: Parameter settings for real-image test in Fig.6 and Fig.7. The settings in Fig.8
regarding time cost are the same with Fig.6 and Fig.7 which show accuracy.

object graph # σ2 β nin,out edge ρ results
car 4-24 0.1 .9 10,0 delaunay Fig.6(abcde)

duck 4-24 0.1 .9 10,0 delaunay Fig.6(fghij)
bike 4-24 0.1 .9 10,0 delaunay Fig.6(klmno)

hotel 4-24 .05 0 10,4 full Fig.7(abcde)
house 4-24 .05 0 10,4 full Fig.7(fghij)
sedan 4-25 .05 0 10,4 full Fig.7(klmno)

curve), as well as the score-driven approach (dotted curve).
iv) The pairwise consistency-driven mechanism for setting

the updating order, speeds up the performance improvement
over iterations. The score-driven method exhibits similar
speeding up pattern (dotted curve), while the former curve is
more steep in general. In contrast, the random updating order
(solid curve) results in a linear improvement in the first half of
iterations, and all methods slow down their accuracy-climbing
trends in the second half of iterations. Thus in the following
experiments, we employ the graph-wise/pairwise consistency
mechanisms and fix the iteration parameter Tmax = 1 for
cost-efficiency. In another word, all Xrk are updated once.

In addition, extensive evaluations are performed on the
synthetic test by varying the noise level (Fig.3) and graph
number (Fig.4, Fig.5), and on the real image by varying the
graph number (Fig.6, Fig.7). The time costs on several tests
are depicted in Fig.8. The parameter settings of these tests can
be found in Table IV and Table V for synthetic test and real
image test. Further discussions are presented as follows:

i) In Fig.3 we present our synthetic evaluation by varying
the noise level related to deformation, outlier and edge density.
On one hand, as the noise grows, our method consistently
performs competitively and boosts performance in two cases:
a) used as an independent solver (red & purple solid curves);
b) coupled with other solvers by using their output as the
initial input (solid curve in corresponding colors whose names
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(a) Deform RRWM-IPFP (b) Deform RRWM-FBP (c) Outlier RRWM-IPFP (d) Outlier RRWM-FBP (e) Density RRWM-IPFP (f) Density RRWM-FBP

(g) Deform IPFP-RRWM (h) Deform IPFP-FGM (i) Outlier IPFP-RRWM (j) Outlier IPFP-FGM (k) Density IPFP-RRWM (l) Density IPFP-FGM

Fig. 5: Accuracy on synthetic dataset by varying the graph number. The pairwise matching solvers are different: the former for initial matching, the latter for alternating optimization.

end with a ‘+’ sign). The observations from Fig.2 is cross-
verified here: IPFP/GAGM are less effective in lifting the
initial input, so for the newly added solver FBP. While more
notable improvements are attained by RRWM/FGM. On the
other hand, our non-factorized model (IPFP/GAGM/RRWM)
that enforces the score-non-descending path selection strategy
(ALG1 in red) performs similarly with the counterpart that
does not enforce such a strategy (ALG1∗ in purple). Especially
when IPFP is used, ALG1 outperforms notably to ALG1∗.
However, when the factorized model (FGM) is used, the score-
non-descending path selection strategy affects the performance
adversely: ALG2 in red is worse than ALG2∗ in purple,
especially when heavy noises are imposed. This is perhaps
due to the side-effect of the conservative score non-descending
strategy that blindly confines the effective exploration capabil-
ity of FGM especially when the objective score deviates from
semantic similarity due to large noises.

ii) Fig.4 and Fig.5 are used to evaluate the impact when
a growing number of graphs are involved. When plugged
with RRWM/GAGM/FGM, our methods tend to exhibit a
syngeneic effect as the number of graphs increases. While
IPFP/FBP shows less exploration capability, which has also
been evidenced by Fig.3. Our methods also consistently and
notably lift the initial input obtained by other methods. Note
in Fig.5 RRWM/FGM boosts the less accurate initial solutions
which is generated by the independent pairwise matching
using IPFP (top row), but not vice versa (bottom row). Table
IV depicts the detailed configuration of the synthetic tests,
where 50 random trials are performed for all tests.

iii) For real images, the results on Willow-Object are shown
in Fig.6. It involves related objects (car, duck, motorbike)
that are viewed by different angles and scales. Moreover,
the outliers are added in the CMU-POSE sequence (house,
hotel and volvoC70), whereby the performance is plot in
Fig.7. Readers are referred to Table V for the related settings.
Multiple trials are performed such that it exhaustively traverses
all images. Similar to the synthetic test, our methods perform

competitively. Fig.8 plots the time costs. Our methods boost
MHCL/SYNC at the expense of more run-time. Moreover,
compared with RRWM/IPFP, the FGM based solver is less
efficient. GACL tends to be even more inefficient due to its
deterministic annealing mechanism (see more details in time
complexity analysis and the paper [31]). Similar observations
are made from the synthetic test while the plots are omitted.

iv) Last but not least, in all above experiments, ALG1
2

notably outperforms its preliminary version FREF+ [1] where
the consistency-driven mechanism is not used. This clearly
shows the direct advantage of the presented work against [1].

VI. CONCLUSION

We have proposed both non-factorized and factorized for-
mulations and an alternating optimization framework for joint
multiple graph matching. For the non-factorized variant, it
is reduced to a pairwise graph matching problem over itera-
tions, which can be solved by various existing non-factorized
pairwise graph matching solvers based on the QAP formu-
lation. For the factorized one, we also enable the reuse of
the existing convex-concave relaxation based pairwise graph
matching solver. Meanwhile, the graph-wise and pairwise
consistency metrics are proposed to set the reference graph
and the order of sequential variable updating respectively,
which are two key aspects associated with our algorithms.
Extensive experimental results on synthetic and real-images
show competitive performance of the proposed approaches.
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