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Multi-Graph Matching via Affinity Optimization
with Graduated Consistency Regularization

Junchi Yan, Minsu Cho, Hongyuan Zha, Xiaokang Yang, Senior Member, IEEE, and Stephen M. Chu

Abstract—This paper addresses the problem of matching common node correspondences among multiple graphs referring to an

identical or related structure. This multi-graph matching problem involves two correlated components: i) the local pairwise matching

affinity across pairs of graphs; ii) the global matching consistency that measures the uniqueness of the pairwise matchings by different

composition orders. Previous studies typically either enforce the matching consistency constraints in the beginning of an iterative

optimization, which may propagate matching error both over iterations and across graph pairs; or separate affinity optimization and

consistency enforcement into two steps. This paper is motivated by the observation that matching consistency can serve as a

regularizer in the affinity objective function especially when the function is biased due to noises or inappropriate modeling. We propose

composition-based multi-graph matching methods to incorporate the two aspects by optimizing the affinity score, meanwhile gradually

infusing the consistency. We also propose two mechanisms to elicit the common inliers against outliers. Compelling results on

synthetic and real images show the competency of our algorithms.

Index Terms—Graph matching, feature correspondence

Ç

1 INTRODUCTION

GRAPH matching (GM) [5], [6] has received attentions
over decades, and has found wide applications in

various problems such as bioinformatics [7], data fusion [8],
scene analysis [9], [10], graphics [11] and information
retrieval [12]. GM lies at the heart of a range of computer
vision tasks—object recognition, shape matching, object
tracking, and image labeling among others, which require
finding visual correspondences—please refer to [4] for more
references. Different from point based matching or registra-
tion methods such as RANSAC [13] and Iterative Closet
Point (ICP) [14], GM incorporates both unary node-to-node,
and pairwise edge-to-edge structural similarity. By encoding
the geometrical information in representation and matching
processes, GM methods are in general supposed to be more
robust to deformation noise, missing data, and outliers. Due
to its well-known NP-complete nature, existing GM meth-
ods involve either finding approximate solutions [15], [16],
[17] or obtaining the global optima in polynomial time for

few types, such as planar graph [18], bounded valence
graph [19], and tree structure [20].

Most GM methods focus on establishing one-to-one cor-
respondences between a pair of feature points [16], [21],
[22], [23], [24]. The pairwise GM problem can be formulated
as a quadratic assignment problem (QAP) that accounts
for both individual node matches (unary terms) and pairs
of matches (pairwise terms). The general QAP formulation
refers to the Lawler’s QAP [25] as used in this paper.
Another formulation i.e., Koopmans-Beckmann’s QAP [26]
is a special case of the former one.

In many applications, similar objects do not appear in
isolation or in pair, but more frequently in collections. This
context potentially allows for higher quality matching and
analysis. Given a batch of graphs referring to an identical or
related structure, it is required to find the matchings across
all graphs. In fact, multi-graph matching is applied to infus-
ing multi-source sensor data [8]. Graphic analysis often
requires to model objects by multi-view assembly [27]. The
work of [12] applies multi-graph matching to multi-source
topic alignment. It is also related to graph clustering, classi-
fication and indexing. Emerging multi-graph matching
methods [1], [2], [28], [29], [30], [31], [32] are proposed,
which will be discussed in the next section.

2 RELATED WORK AND MODELS

2.1 Pairwise Graph Matching

The problem of pairwise GM involving two graphs has been
extensively studied in the literature. It is beyond the scope
of this paper to introduce an exhaustive body of these
works. As it will be detailed later in this paper, our methods
and many other multi-graph matching methods [2], [4],
[30], [31] build on pairwise GM solvers as a black-box,
regardless of the specific context in which these pairwise
GM techniques are devised, such as machine learning based
approaches [21], [23], [33], [34], [35], hyper-graph matching
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approaches [33], [36], [37], [38], [39], [40] and other applica-
tion-oriented GM systems [3], [41].

Most pairwise GM methods [16], [17], [24], [42], [43], [44]
are directly based on the Lawler’s QAP. Given two graphs G1

and G2 of size n1 and n2, an affinity matrix K 2 Rn1n2�n1n2

is defined such that its elements fKia;jbgn1i;j¼1
n2
a;b¼1 measure

an edge pair affinity fðvi; vjÞ $ ðva; vbÞgn1i;j¼1
n2
a;b¼1 from two

graphs. The diagonal term fKia;iagn1;n2i¼1;a¼1 describes a unary

affinity of a nodematch fvi $ vagn1;n2i¼1;a¼1. Most GMworks [1],

[4], [15], [16] conventionally defineK such that elementKia;jb

for edge pair ðvi; vjÞ $ ðva; vbÞ is located at the ((a� 1Þn1 þ i)
th row and ((b� 1Þn2 þ j)th column ofK.

We use assignment matrix X to establish the one-to-one
correspondence such that Xia ¼ 1 if node vi matches va, and
0 otherwise. The problem of GM involves finding X such
that the sum of the node and edge compatibility is maxi-
mized. Without loss of generality, similar to [15], [16], by
assuming n1 � n2, it leads to the widely used constrained
quadratic assignment problem:

X� ¼ argmax
X

vecðXÞTKvecðXÞ

s:t: X1n2 � 1n1 1Tn1X ¼ 1Tn2 X 2 f0; 1gn1�n2 :
(1)

The constraints refer to two-way one-to-one mapping: a
node from G1 can match at most one node in G2 and every
node in G2 correspondes to one node in G1. There is neither
one-to-many nor many-to-many matching.

The above formulation is as general as it allows two
graphs to have different number of nodes (n1 6¼ n2). A com-
mon protocol adopted by the previous studies [4], [15], [42]
is converting X from an assignment matrix (X1n2 � 1n1 ) to a

permutation matrix (X1n2 ¼ 1n1 ) by adding dummy nodes

to one graph (i.e., adding slack variables to the assignment
matrix and augment the affinity matrix by zeros) in case
n1 6¼ n2. This is a common technique from linear program-
ming and is widely adopted by, e.g. [15], [42], such that is
supposed can handle superfluous nodes in a statistically
robust manner (see the last paragraph of Section 2.3 in [42]).
By taking this step, the graphs are of equal sizes. This pre-
processing also opens up the applicability of existing multi-
graph methods [30], [32], [45] as they all assume that all
graphs are of equal sizes. Therefore, the following formula-
tion is derived which assumes n1 ¼ n2 ¼ n:

X� ¼ argmax
X

vecðXÞTKvecðXÞ

s:t: X1n2 ¼ 1n1 1Tn1X ¼ 1Tn2 X 2 f0; 1gn1�n2 :
(2)

Here X is a square permutation matrix by augmenting
the raw matching matrix with slack columns if n1 > n2.
This technique can also be applied in our composition-
based method as will be shown later in the paper.

2.2 Multi-Graph Matching

Recently, matching a collection of related graphs becomes
an emerging topic from various research communities
including computer vision [4], [31], machine learning [2],
[30], pattern recognition [28], [32], [45], graphics [11] and
information retrieval [12], among others. We divide the

state-of-the-arts into two categories concerning how the
affinity and matching consistency are explored.

i) affinity-driven approaches [4], [31], [32], [46]: usually
a set of basis pairwise matchings is first generated
which derive the matchings for each pair. Then, an
objective regarding the overall pairwise matching
affinity score is maximized by different algorithms.
Sol�e-Ribalta and Serratosa [32] extend Graduated
Assignment [42] for two-graph to multiple graphs.
Each graph is associated with an assignment matrix
mapping the nodes to a virtual node set. Then, the
variable set is updated in a deterministic annealing
manner to maximize the overall pairwise affinity
score. Yan et al. [4], [31] adaptively find a reference
graph Gr, which induces a compact basis matching

variable set fXkrgNk¼1; 6¼r over N graphs. An alternat-

ing optimization framework is devised to update
these basis variables in a rotating manner. The early
work [46] by Gavril selects a set of basis variables
from initial pairwise matching solutions via finding
a maximum spanning tree (MST) on a super graph
w.r.t the overall affinity.

ii) consistency-driven approaches [2], [28], [30], [45]:
these methods usually are comprised of two steps.
First, a pairwise GM solver is employed to obtain the
matchings over all (or a portion of) graph pairs. Sec-
ond, a spectrum smoothing technique is devised to
enforce global matching consistency in the sense that
two sequential pairwise matching in different com-
position orders shall lead to two identical solutions.
Specifically, Sol�e-Ribalta and Serratosa [28], [45] use
a hyper-cube tensor to represent the N-node match-
ing likelihood, each from N different graphs. Then a
greedy method is used to binarize the final solutions
satisfying the one-to-one two way constraints.
Pachauri et al. [30] employ spectral analysis via
eigenvector decomposition on the initial pairwise
matching solutions, and obtain a set of new consis-
tent matchings. This method relies on the assump-
tion that the initial pairwise matchings are corrupted
by Gaussian-Wigner noise which is too ideal in real-
ity. Chen et al. [2] address the ‘partial similarity’
problem when only a part of nodes can find their
correspondences in other graphs. They formulate the
problem into a tractable convex programming prob-
lem, and solve it by a tailored first-order Alternating
Direction Method of Multipliers.

Common to the above approaches is that they either
enforce consistency early by using a compact set of basis
variables for pairwise matchings [4], [28], [31], [45], which
inherently runs at the risk of propagating errors across itera-
tions and graphs; or assume the initial pairwise matchings
are obtained with corruptions by a certain pairwise GM
method, and perform spectral smoothing on the initial
matchings, in fact ignoring affinity information in the proce-
dure [2], [28], [30], [45].

Specifically, a widely used multi-graph matching formu-
lation [4], [31], [32] is as follows. Under the assumption of
invertible matching relations Xij ¼ XT

ji, it enforces matching
consistency over all pairwise matchings:
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X�
ij ¼ argmax

Xij

XN�1

i¼1

XN
j¼iþ1

vecðXijÞTKijvecðXijÞ

s:t: ITniXij ¼ 1Tnj ;XijInj ¼ 1ni ;Xij ¼ XikXkj
N
k¼1; 6¼i;j:

(3)

The above formulation assumes each graph only contain the
matchable common inlier nodes. In case there is notable
ratio of unmatchable outliers, this paper further devises an
effective common inlier eliciting mechanism.

2.3 Philosophy of This Paper

Different from the peer methods, we adopt a composition
based affinity optimizing procedure, which is gradually reg-
ularized by matching consistency. The rationale is that the
affinity is indicative to ground truth in early iterations.
Nevertheless, it becomes less informative as the optimized
affinity saturates. In fact, the affinity function is often biased
to true accuracy due to: i) arbitrary noises over graphs;
ii) inherent difficulty in modeling the affinity function via a
compact parametric model. In contrast, consistency becomes
a useful regularizer to improve the accuracy. In this spirit, in
the presence of many outliers, we further propose node-wise
consistency and affinity drivenmechanisms to elicit the com-
mon inliers. Our methods are simple and general such that it
can work with any types of graphs, and involve only one
major parameter �. Extensive empirical results illustrate the
efficacy of ourmethods as concluded in Section 5.

3 PROPOSED ALGORITHMS

Given the initial matching configuration Xð0Þ by a pairwise
matcher, e.g. [15], [16], one can further derive a new pairwise

matching X
ð1Þ
ij by the composition of a few ‘good’ matchings

i.e., X
ð1Þ
ij ¼ X

ð0Þ
ik1
X
ð0Þ
k1k2

. . .X
ð0Þ
ks�1ks

X
ð0Þ
ksj

to replace the original X
ð0Þ
ij .

And the matching accuracy is improved or ideally maxi-
mized, by means of interpolating the sequence Gi;Gk1 ; . . . ;

Gks�1
;Gks ;Gj. The key problem of this composition framework

is how to set up the appropriate compositional replacements.
This paper devises a mechanism for iteratively finding

the appropriate new composition to replace the old
one without knowing their true accuracy. We will start
with a baseline Algorithm 1, and two variants for compa-
rison. Then a graduated consistency-regularized method
Algorithm 2 is highlighted with two efficient variants as
depicted in Algorithm 3. We first introduce several nota-
tions and definitions.

3.1 Notations and Definitions

Throughout the paper, R denotes the real number domain.
Bold capital letters denote a matrix X, bold lower-case letters
a column vector x, and hollow bold letters a set X. All non-

bold letters represent scalars. XT , vec(X) is the transpose and
column-wise vectorized version of X; tr(X) is the trace of X.
In 2 Rn�n is an identity matrix and subscript n is omitted
when it can be inferred from context. 1m�n; 0m�n 2 Rm�n is
the matrix with elements being all ones or zeros, respec-
tively. 1n is the abbreviation for 1n�1. jXj is the cardinality of

the setX, and kXkF ¼ trðXTXÞ denotes the Frobenious norm.
This paper usesX ¼ fXijgN�1;N

i¼1;j¼iþ1 to denote the set of pair-

wise matching matrices over N graphs fGkgNk¼1, which is also

termed matching configuration. K ¼ fKijgNi;j¼1 denotes the

affinity matrix set. We also use Xc to denote a solution set
which is fully consistent (the subscript ‘c’) as there is no con-

tradictory matchings for fXij 6¼ XikXkjgNi;j;k¼1. If not otherwise

stated explicitly, we use N for the number of considered
graphs, n and m for the number of nodes and edges,
respectively.

So far we have not presented a definition for consis-
tency. Similar concepts have been used in [2], [4], [28], [30],
[31] and mentioned earlier in this paper. Now we give the
formal definitions for consistency induced by the pairwise
matchings X. In addition, we also define two variants of a
super graph and a concept related to matching composi-
tion. We do not claim the credit for the novelty of these
definitions though the key metric for unary consistency is
first proposed in the conference version [1] of this paper.
Rather, we hope to provide a systematic view on the idea
of consistency.

Definition 1. Given N graphs fGkgNk¼1 and the pairwise match-

ing configuration X ¼ fXijgN�1;N
i¼1;j¼iþ1, the unary consistency of

graph Gk is defined as

Cuðk;XÞ ¼ 1�
PN�1

i¼1

PN

j¼iþ1
kXij�XikXkjkF =2

nNðN�1Þ=2 2 ð0; 1�.

Definition 2. Given graphs fGkgNk¼1 and matching configuration
X, for any pair Gi and Gj, the pairwise consistency is defined as

CpðXij;XÞ ¼ 1�
PN

k¼1
kXij�XikXkjkF =2

nN 2 ð0; 1�.

Definition 3. Given N graphs fGkgNk¼1 and X, we call X is fully

consistent if and only if

PN�1;N

i¼1;j¼iþ1
CpðXij;XÞ

NðN�1Þ=2 ¼ 1 and (or)PN

k¼1
Cuðk;XÞ
N ¼ 1. The following equation always holds:PN

k¼1
Cuðk;XÞ
N ¼

PN�1;N

i¼1;j¼iþ1
CpðXij;XÞ

NðN�1Þ=2 . We further define the overall

consistency ofX asCðXÞ ¼
PN

k¼1
Cuðk;XÞ
N 2 ð0; 1�.

Definition 4. Given fGkgNk¼1 and X, for node fN ukg
n
uk¼1 in

graph Gk, its consistency w.r.t. X is defined by Cnðuk;XÞ ¼

1�
PN�1

i¼1

PN

j¼iþ1
kYðuk;:ÞkF =2

NðN�1Þ=2 2 ð0; 1� where Y ¼ Xkj� XkiXij

and Yðuk; :Þ is the ukth row of matrix Y.

Definition 5. Given fGkgNk¼1, X, K, for node fN ukg
n
uk¼1 in Gk,

its affinity w.r.t. X and K is defined by Snðuk;X;KÞ ¼PN
i¼1; 6¼k vecðXuk

ki Þ
TKkivecðXkiÞ, where Xuk denotes the matrix

X with zeros except for the ukth rows as is.

Definition 6. Given fGkgNk¼1 and X, the affinity-wise super
graph Ga

sup is defined as an undirected weighted graph s.t.

each node k represents Gk, and edge weight eij is the affinity

score JijðXijÞ ¼ vecðXijÞTKijvecðXijÞ induced by X.

Definition 7. Given fGkgNk¼1 and X, the consistency-wise super
graph Gc

sup is defined as an undirected weighted graph s.t. node

k represents Gk, and the weight of edge eij is the pairwise con-

sistency CpðXij;XÞ ¼ 1�
PN

k¼1
kXij�XikXkjkF =2

nN .
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Definition 8. The path Zijðk1; k2; . . . ; ksÞ from Gi to Gj is defined
as the chain Gi ! Gk1! 	 	 	 ! Gks! Gj which induces:
Yijðk1; k2; . . . ; ksÞ , Xik1Xk1k2 . . .Xksj. Its order sij is the
number of the intermediate graphs between Gi, Gj. The path

score is Jijðk1; k2; . . . ; ksÞ ¼vecðYijÞTKijvecðYijÞ.

We present several comments to the above definitions.
The unary consistency Cuðk;XÞ in Definition (1), which
makes its debut in the conference version [1] of this paper, is
a functionw.r.t. the graph index k andX. In contrast, the pair-
wise consistency CpðXij;XÞ in Definition (2) is generalized to
the one w.r.t. two variables of Xij and X. Note Xij does not
necessarily belong to X. The pairwise consistency metric is
symmetric such that CpðXij;XÞ ¼ CpðXji;XÞ, which derives
Definition (3). Definition (4) and (5) break down to node level
consistency/affinity similar to unary ones, and they will be
used in the proposed inlier elicitingmechanism.

The super graph, either for affinity-wise Ga
sup in

Definition (6), or consistency-wise Gc
sup in Definition (7),

is a connected (not necessarily fully connected) graph as a
portion of pairs are matched by a certain means, and a maxi-
mum spanning tree [46] can be found with no less total
weight of every other spanning tree.

Definition (1) and Definition (2) are used by [4] to set
the alternating variable updating order. In contrast, this
paper considers the role of consistency as a regularizer for
the affinity optimization. The overall consistency for X as in
Definition (3), further tells the relation between unary con-
sistency and pairwise consistency. A similar overall
‘inconsistency’ metric appears in [32], [47].

The affinity-wise super graph Ga
sup in Definition (6) is

similar to the one in [48], of which the author proposes to
build a graph where each shape is a vertex, and edges
between shapes are weighted by the cost of the best match-
ing. We put it in the scenario for the problem of weighted
multi-graph matching. Furthermore, we give a similar defi-
nition for a consistency variant Ga

sup in terms of consistency-

wise edge weights in Definition (7).
Finally, Definition (8) is related to the idea of approxi-

mate path selection as used in our algorithms. Obviously,
when X is fully consistent, any two paths between two
given graphs would induce the equal solution.

Based on the above definitions and discussion, we pres-
ent our main approaches in the rest of this section.

3.2 Composition Based Affinity Optimization

Since most GM methods aim to maximize an objective func-
tion regarding with affinity score [4], [15], [16], [17], [31], we
also follow this methodology in this section. Our basic ratio-
nale is that the node matching regarding with the highest
affinity score between two graphs can be found along a
higher-order path, as related to Definition (8), instead of the
direct (zero-order) pairwise matching. We formalize this
idea as follows:

Without loss of generality, assume the affinity-wise
super graph Ga

sup is fully connected and induced by the
configuration X. Given Gi, Gj, all loop-free matching paths
on the super graph can form a set of loop-free paths Zij ¼
fZijðk1; . . . ; ksÞgN�2

s¼1 , whose cardinality jZijj ¼
PN�2

s¼1 s!.
Hence the overhead for finding the highest affinity score

solution is intractable since
PN�2

s¼1 s! times of compositions
need be computed. Given the matching configuration

Xðt�1Þ, one alternative is approximating the optimal Z�
ij by

a series of iterations involving the first-order paths. The
problem of finding the optimal third-party graph Gk at iter-
ation t becomes:

k� ¼ argmax
N

k¼1
J
�
X
ðt�1Þ
ik X

ðt�1Þ
kj

�
: (4)

This can be regarded as approximately compositing the iter-
atively generated piecewise paths, into a higher-order one
that consists of multiple intermediate graphs.

Algorithm 1. Composition Based Affinity Optimization
CAO

Require: fKijgN�1;N
i¼1;j¼iþ1, T , g 2 ð0; 1Þ;

1: Perform pairwise matching to obtain initial Xð0Þ;

2: Calculate Jð0Þ ¼
PN�1;N

i¼1;j¼iþ1 vecðX
ð0Þ
ij Þ

T
KijvecðXð0Þ

ij Þ;
3: for t ¼ 1 : T do
4: for all i ¼ 1; 2; . . . ; N � 1; j ¼ iþ 1; . . . ; N do

5: update X
ðtÞ
ij ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj by solving Eq. (4);

6: end for
7: end for
8: if CðXðtÞÞ ¼ 1, return X�

c ¼ XðtÞ;
9: if CðXðtÞÞ < g then
10: Build the super graph Ga

sup by pairwise affinity JðXðtÞ
ij Þ

and find a maximum span tree to generate X�
c ;

11: else
12: If n � N , build the super graph Gc

sup by CpðXðtÞ
ij ;X

ðtÞÞ and
find a maximum span tree to generate X�

c ; Otherwise,
perform the smoothing method [30] to obtain X�

c ;
13: end if

The above idea is concretized into an iterative algorithm
termed as Composition based Affinity Optimization (CAO) as
described in the chart of Algorithm 1. At iteration t, every

X
ðtÞ
ij is updated by seeking the path with order s ¼ 1 via

maximizing the affinity score according to Eq. (4). The effi-
cacy of such a composition driven affinity optimization
strategy can be justified by an intuitive analysis: even
though matching Gi and Gj is inherently ambiguous when
both are largely corrupted, it is still possible to improve
matching accuracy by an intermediate graph Gk that can
find the quality pairwise matches between fGi;Gkg and
fGk;Gjg respectively. The following proposition depicts the
convergence of Algorithm 1.

Proposition 1. Algorithm 1 (CAO) is ensured to converge to a
stationary configuration X� after a finite number of iterations.

Proof. For each JðXijÞ, it forms a non-descending sequence
over iterations which is bounded by the upper boundeJij ¼ maxfvecðYÞTKijvecðYÞ;Y 2 Png in the discrete per-

mutation space Pn: JðXð0Þ
ij Þ � JðXð1Þ

ij Þ � 	 	 	 � JðXðtÞ
ij Þ

� 	 	 	 � eJij. Thus XðtÞ will converge. tu

In fact, Algorithm 1 (CAO) cannot guarantee the con-
vergent X� satisfying full consistency i.e., CðX�Þ ¼ 1 in
Definition (3). Thus, after the iteration procedure, a post
step for enforcing full consistency is optionally performed.
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For a heuristical implementation, when the resultant
CðX�Þ is less than a given threshold g, which suggests the
consistency metric is not reliable, the affinity-wise super
graph Ga

sup in Definition (6) is built to generate the final

fully consistent X�
c . Otherwise, we utilize consistency to

smooth the final solution in two cases: i) when N > n i.e.,
the number of graphs is larger than the number of nodes,
the method in [30] is adopted to obtain X�

c ; ii) otherwise,
the consistency-wise super graph Gc in Definition (7) is
built to obtain X�

c . We apply this strategy in all our algo-
rithms for post-processing to achieve full-consistency. Yet
how to realize full consistency in post-step is not the focus
of this paper and it has also been addressed by other
works such as [2], [30]. Moreover, in the presence of a con-
siderable number of outliers, enforcing the full consis-
tency may cause performance degeneration due to
unmatchable outliers as will be shown in our experiments
(Fig. 3).

In order to obtain a comprehensive view of the affinity
optimization model, we consider two additional variants of
CAO (Algorithm 1). One uses pairwise consistency instead
of affinity to update solutions. The other replaces the first-
order path selection with a second-order one. In fact, there
exist other random search strategies aside from the fist-
order one described here, and these random search variants
can be derived by our framework.

The first variant uses the following equation, regarding
with the pairwise consistency in Definition (2), to replace
Eq. (4) in the step of updating X

ðtÞ
ij :

k� ¼ argmax
N

k¼1
Cp

�
X
ðt�1Þ
ik X

ðt�1Þ
kj ;Xðt�1Þ�: (5)

Unlike CAO, this consistency-driven variant CAOcst (note
superscript added) cannot ensure to converge to a stationary
configuration. In particular, the consistency optimization

mechanism at each round, can only guarantee CpðXðtÞ
ij ;

Xðt�1ÞÞ � CpðXðt�1Þ
ij ;Xðt�1ÞÞ for any pair of i, j. Nevertheless, it

cannot ensureCpðXðtÞ
ij ;X

ðtÞÞ � CpðXðt�1Þ
ij ;Xðt�1ÞÞ. Thus the non-

decreasing property CpðXð0Þ
ij ;X

ð0ÞÞ � CpðXð1Þ
ij ;Xð1ÞÞ � . . . does

not hold, although they are bounded by CpðXðtÞ
ij ;X

ðtÞÞ � 1. For

similar reasons, one cannot ensure CðXðtÞÞ � CðXðt�1ÞÞwhere
Cð	Þ is defined in Definition (3). As the solution space is dis-
crete and finite, CAOcst either converges to a stationary point
or forms a looping solution path. The former case is much
more often observed in our tests.

The second-order variant CAO2nd is derived by replacing

X
ðtÞ
ij ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj with X

ðtÞ
ij ¼ X

ðt�1Þ
iv Xðt�1Þ

vu X
ðt�1Þ
uj :

u�; v� ¼ argmax
N

u;v¼1
yTKijy; y ¼ vec

�
X
ðt�1Þ
iv Xðt�1Þ

vu X
ðt�1Þ
uj

�
: (6)

This method has better exploration capability than the first-
order one, at the expense of growing searching space from

OðNÞ toOðN2Þ in terms of traversing the rest graphs (or graph
pairs for the second-order case). As the same with CAO, the
second-order method can also guarantee convergence due to
its score non-decreasing property. These three methods are
evaluated in Fig. 1 together with Algorithm 2 (CAO-C) aswill
be introduced later. See Table 1 for the settings.

One can see that CAO outperforms CAOcst notably. This
is because CAOcst is based on the assumption that correct
matchings are dominant and the meaningful correspond-
ences can be realized along many different paths of match-
ings. This assumption breaks given an unsatisfactory initial

Xð0Þ. For CAO2nd, it outperforms the first-order method,
while its overhead becomes significantly larger when more
graphs are involved. Note Algorithm 2 (CAO-C) and its

variant CAO-Cinv also appear in Fig. 1. We leave them to
the next section.

Fig. 1. Comparison of CAO, CAOcst, CAO2nd, CAO-C and CAO-Cinv on the synthetic random graphs. RRWM [16] is used as the pairwise matcher to
generate the initial configuration (‘RRWM’). ‘CAO*’ denotes CAO dismissing the step of L9-13, so for other methods (best viewed in color). Refer to
Table 1 for settings.
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Algorithm 2. Composition Based Affinity Optimization
via Graduated Consistency Regularization CAO-C

Require: fKijgN�1;N
i¼1;j¼iþ1; T , �

ðT0Þ ¼ �ð0Þ, f�ðtÞgT0�1
t¼1 ¼ 0, g;

1: Perform pairwise matching to obtain initial Xð0Þ;

2: Calculate J ð0Þ ¼
PN�1;N

i¼1;j¼iþ1 vecðX
ð0Þ
ij Þ

T
KijvecðXð0Þ

ij Þ;
3: for t ¼ 1 : T do
4: for all i ¼ 1; 2; . . . ; N � 1; j ¼ iþ 1; . . . ; N do

5: update X
ðtÞ
ij ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj by solving Eq. (7);

6: end for
7: if t > T0, �

ðtÞ ¼ minð1;b�ðt�1Þ);
8: end for
9: Perform the same post-processing as inAlgorithm 1 (L9-13).

3.3 Graduated Consistency Regularization

Our key rationale is viewing the consistency as a regularizer
for affinity maximization. Note that maximizing pairwise
affinity score among all pairs cannot always ensure the
consistency constraint. There are two facts from which the
bias between affinity score and true accuracy comes: i)
corruption associated with the raw feature for constructing
the affinity function, such as outliers, missing measure-
ments due to sparse edge sampling, and deformation etc.;
ii) the difficulty in parameterizing the affinity function
using unary and pairwise features. As a result, there can be
a case that for some pairs of graphs, the true ground truth
matching configuration does not correspond to the highest
affinity score. Thus purely maximizing the overall affinity is
biased to accuracy, though maximizing overall consistency
alone (Algorithm 1cst) is even more biased as has been stud-
ied in the previous section. This is roughly analogous to
loss function modeling in machine learning, where one not
only considers empirical loss on the training dataset, but
also employs a regularizer to account for over-fitting.

One shall note as a baseline method, CAO separates
affinity score maximization and consistency smoothing into
two independent steps. It is yet appealing to tackle the two
aspects jointly, which is motivated by two facts: i) For the
initial assignment matrix Xð0Þ obtained by the pairwise
graph matching solver, its scores are more informative for
the true accuracy; ii) After several iterations of affinity
improvement, affinity becomes less discriminative and con-
sistency becomes more indicative.

In this spirit, we infuse the matching consistency by a
weighted term, whose weight � is gradually increased. As a
result, the evaluation function at each iteration is changed
from Eq. (4) to a weighted one1 between Eq. (4) and Eq. (5)

by setting Y
ðt�1Þ
ikj ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj :

k� ¼ argmax
N

k¼1
ð1� �ÞJ

�
Y
ðt�1Þ
ikj

�
þ �Cp

�
Y
ðt�1Þ
ikj ;Xðt�1Þ�: (7)

This method is detailed in the chart of Algorithm 2: Com-
position based Affinity Optimization via Graduated Consistency
Regularization CAO-C.

Similar to CAOcst, CAO-C in general cannot guarantee to
converge to a stationary configuration, since the non-

decreasing property of the sequence fCpðXðtÞ
ij ;X

ðtÞÞg1t¼0 does

not always hold. Our empirical tests show this method often
converges to a stationary X� after 10 iterations or so. In our
experiments, we stop it when the number of iterations
arrives at a certain threshold T .

To make our study more comprehensive, like CAOcst

to CAO, we further devise a counterpart to CAO-C by
swapping the role of consistency and affinity: the iteration
is driven by choosing the anchor graph that lifts the pair-
wise consistency by Eq. (5) for CAOcst. The affinity weight
is increased akin to the consistency used in CAO-C. Hence,
the evaluation function becomes:

k� ¼ argmax
N

k¼1
�J

�
Y
ðt�1Þ
ikj

�
þ ð1� �ÞCp

�
Y
ðt�1Þ
ikj ;Xðt�1Þ�: (8)

We call this algorithm CAO-Cinv where the superscript

denotes for ‘inverse’. The parameter settings �0 and b are
identical to CAO-C. We omit the algorithm chart for CAO-

Cinv since it is akin to CAO-C. It is outperformed by CAO-C
as shown in Fig. 1, which validates our idea.

3.4 Two Efficient Variants

The step of computing CpðXðt�1Þ
ik X

ðt�1Þ
kj ;Xðt�1ÞÞ in CAO-C

is repeated for each new k because it depends on the gener-

ated candidate X
ðt�1Þ
ik X

ðt�1Þ
kj . Therefore, its complexity for the

consistency term is OðN2n3Þ for updating each X
ðtÞ
ij .

The overall cost is OðN4n3Þ per iteration. To reduce this
overhead, we are motivated to use two efficient consistency

metrics to delegate CpðXðt�1Þ
ik X

ðt�1Þ
kj ;Xðt�1ÞÞ.

The first proxy metric is the unary consistency as des-
cribed in Definition (1). Note this metric is also what we
adopt in our preliminary work [1] where it is referred as
‘Algorithm 2’. Its evaluation function is:

k� ¼ argmax
N

k¼1
ð1� �ÞJ

�
X
ðt�1Þ
ik X

ðt�1Þ
kj

�
þ �Cu

�
k;Xðt�1Þ�: (9)

The merit of this metric is all fCuðk;Xðt�1ÞÞgNk¼1 can be pre-
computed at each iteration only for once.

Alternatively, we devise another consistency estimator
by first pre-computing all fCpðXðt�1Þ

ij ;Xðt�1ÞÞgN�1;N
i¼1;j¼iþ1 in the

beginning of each iteration t� 1, and then adopting Eq. (10)

in the hope of approximating CpðXðt�1Þ
ik X

ðt�1Þ
kj ;Xðt�1ÞÞ for

updating X
ðtÞ
ij :

k� ¼ argmax
N

k¼1
ð1� �ÞJ

�
X
ðt�1Þ
ik X

ðt�1Þ
kj

�

þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cp

�
X
ðt�1Þ
ik ;Xðt�1Þ�Cp

�
X
ðt�1Þ
kj ;Xðt�1Þ�q

: (10)

We term the two variants as Composition based Affinity
Optimization via Efficient Graduated Unary (or Pairwise) Consis-
tency Regularization as depicted in the chart of Algorithm 3.
In this paper, they are further abbreviated by CAO-UC and
CAO-PC, where the added characters ‘U’, ‘P’ denote for
‘unary’ and ‘pairwise’ respectively. CAO-UC has a conver-
gence property as stated in below.

1. Note the affinity is not directly comparable with either the unary
or pairwise consistency as the latter fall in ½0; 1�while the former is arbi-
trary depending on how the affinity matrix is set. In our implementa-
tion, the affinity score is further normalized by JðXijÞ ¼ JðXijÞ=
maxijfJðXð0Þ

ij Þg where the denominator is a constant. This convention is

also used when Jc is introduced in Section 3.5.

6 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 38, NO. X, XXXXX 2016
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Algorithm 3. Composition Based Affinity Optimization
via Efficient Graduated Unary (or Pairwise) Consistency
Regularization CAO-UC, CAO-PC

Require: fKijgN�1;N
i¼1;j¼iþ1, T , g, �

ðT0Þ ¼ �ð0Þ, f�ðtÞgT0�1
t¼1 ¼ 0;

1: Perform pairwise matching to obtain initial Xð0Þ;

2: Calculate J ð0Þ ¼
PN�1;N

i¼1;j¼iþ1 vecðX
ð0Þ
ij Þ

T
KijvecðXð0Þ

ij Þ;
3: for t ¼ 1 : T do
4: Compute fCuðk;Xðt�1ÞÞgNk¼1 for CAO-UC;

5: Or update fCpðXðt�1Þ
ij ;Xðt�1ÞÞgN�1;N

i¼1;j¼iþ1 for CAO-PC;

6: for all i ¼ 1; 2; . . . ; N � 1; j ¼ iþ 1; . . . ; N do

7: Update X
ðtÞ
ij ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj by Eq. (9) for CAO-UC;

8: Or update X
ðtÞ
ij ¼ X

ðt�1Þ
ik X

ðt�1Þ
kj by Eq. (10) for CAO-PC;

9: end for
10: if t > T0, �

ðtÞ ¼ minð1;b�ðt�1Þ);
11: end for
12: Perform the same post-processing as in Algorithm 1 (L9-13).

Proposition 2. CAO-UC will converge to a stationary X�.

Proof. Given two graphs Gi, Gj of n nodes for each, first,
define the set of score difference fDJijg as DJij ¼
jvecðXÞTKijvecðXÞ � vecðYÞTKijvecðYÞj, 8X;Y, between any
two assignment matrices X, Y 2 Rn�n in the enumerable
permutation space. Suppose the largest value of difference

is DeJij which is constant given Kij. We further define the

largest difference denoted by DeJG ¼ maxfDeJijgN�1;N
i¼1;j¼iþ1 for

all pairs in the graph.
For a certain iteration in CAO-UC, suppose the most

consistent graph in Definition (1) is Ga, and the second
one is Gb. At iteration t it will finally satisfy the condition:

DCðtÞ
u ¼ Cuða;XðtÞÞ � Cuðb;XðtÞÞ > ð1��Þ

� DeJG as �ðtÞ ! 1 by

�ðtÞ ¼ minðr�ðt�1Þ; 1Þ.2 Then, the following inequality will

hold for any k 6¼ a and fGigN�1
i¼1 ; fGjgNj¼iþ1:

ð1� �ÞJ
�
X
ðtÞ
ia X

ðtÞ
aj

�
þ �Cu

�
a;Xðt�1Þ�

¼ ð1� �ÞJ
�
X
ðtÞ
ia X

ðtÞ
aj

�
þ �Cuðb;Xðt�1ÞÞ þ �DCðtÞ

u

¼ ð1� �Þ
�
J
�
X
ðtÞ
ia X

ðtÞ
aj

�
� J

�
X
ðtÞ
ik X

ðtÞ
kj

��
þ ð1� �ÞJ

�
X
ðtÞ
ik X

ðtÞ
kj

�
þ �Cuðb;Xðt�1ÞÞ þ �DCðtÞ

u

� �DCðtÞ
u � DeJG þ ð1� �ÞJ

�
X
ðtÞ
ik X

ðtÞ
kj

�
þ �Cuðk;Xðt�1ÞÞ

> ð1� �ÞJ
�
X
ðtÞ
ik X

ðtÞ
kj

�
þ �Cuðk;Xðt�1ÞÞ:

(11)

As a result, all fXðtþ1Þ
ij gN�1;N

i¼1;j¼iþ1 will be updated by

X
ðtþ1Þ
ij ¼ X

ðtÞ
ia X

ðtÞ
aj . In fact, at iteration t, XðtÞ becomes fully

consistent in Definition (3), and cannot be lifted by either
affinity or consistencymetrics used in this paper. tu

The iterative procedure in CAO-UC may run out of itera-
tions before it converges to a stationary and consistent con-
figuration. A post-processing step is needed in line with
Algorithm 1 (CAO) and Algorithm 2 (CAO-C) if necessary.

CAO-PC also often converges to a stationary X� similar
to CAO-C, yet there is no theoretical guarantee. Fig. 2 illus-
trates how the overall matching accuracy is lifted via the
proposed algorithms (settings in Table 2).

In summary, Algorithm 1, Algorithm 2, Algorithm 3
can be conceptually unified in one framework by three
steps: i) initialize pairwise matchings X via a two-graph
matcher; ii) iterative affinity optimization by different
mechanisms of setting the trade-off parameter � and com-
puting the consistency scores; iii) post-process X if
needed. By this perspective, the state-of-the-arts [2], [30]
only perform step i and iii, while [4], [31] always impose
hard consistency in step ii and hence dispense with step
iii. Moreover, the methods [4], [31] need to solve a two-
graph matching problem per iteration, while our methods
only evaluate the score by a composed solution, which is
more efficient and general.

TABLE 1
Settings for Synthetic Test in Fig. 1, Fig. 3

parameter settings results

N ¼ 30, ni ¼ 10, no ¼ 0, r ¼ .9, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1a, Fig. 3a

N ¼ 30, " ¼ .05, ni ¼ 8, r ¼ 1, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1b, Fig. 3b

N ¼ 30, ni ¼ 10, no ¼ 0, " ¼ .05, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1c, Fig. 3c

N ¼ 30, ni ¼ 10, no ¼ 0, " ¼ .05, r ¼1, s2 ¼ .05, T ¼ 6 Fig. 1d, Fig. 3d

ni ¼ 10, no ¼ 0, " ¼ .15, r ¼ .9, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1f, Fig. 3f

ni ¼ 6, no ¼ 4, " ¼ 0, r ¼ 1, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1g, Fig. 3g

ni ¼ 10, no ¼ 0, " ¼ 0, r ¼ .5, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 1h, Fig. 3h

ni ¼ 10, no ¼ 0, " ¼ .05, r ¼ 1, s2 ¼ .05, c ¼ .1, T ¼ 6 Fig. 1i, Fig. 3i

Fig. 2. Performance on synthetic random graphs by varying the maximum iteration threshold T for T0 ¼ 2 used in the algorithm charts (best viewed in
color). Refer to Table 2 for settings.

2. In case Cuða;XðtÞÞ ¼ Cuðb;XðtÞÞ, without loss of generality, one can
choose any of them as the largest one, and choose the next Gc as the sec-

ond largest if Cuða;XðtÞÞ > Cuðc;XðtÞÞ:

YAN ET AL.: MULTI-GRAPH MATCHING VIA AFFINITY OPTIMIZATION WITH GRADUATED CONSISTENCY REGULARIZATION 7
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3.5 Eliciting Affinity and Consistency for Inliers

One limitation of many previous studies for both pairwise
and multi-graph matching, including those mentioned in
this paper, is that they enforce all nodes in one graph to
have matchings from the other(s), either by explicitly using
a permutation matrix imposing strict node-to-node corre-
spondences [15], [49], or implicitly doing so by generating
node-to-node matchings as many as possible such that the
objective affinity score is optimized [22], [23], [34], [36],
[37]. A common practice when applying a pairwise GM
method is assuming one of two graphs as a reference
graph, such that each of its nodes can find a match in the
other testing graph.

Several existing works also consider the presence of out-
liers. The Graduated Assignment method [22] attempts to
handle outlier nodes by assigning them to additional slack
variables. In the presence of a large number of outliers, this
approach is not widely adopted due to its sensitivity to
parameters for the slack variables. The very recent work [3]
proposes a general approach via a max-pooling mechanism
suited for the scenario of matching two graphs with a large
number of outliers. A less relevant work is by Torresani
et al. [50] which also allows nodes to be assigned in an
unmatchable status in an energy function induced on the
Markov Random Field. However, its complex objective
function is designed that account for various similarity
measurements e.g. appearance descriptors, occlusions, spa-
tial proximity etc. beyond the general setting of the affinity
matrix considered in this paper. Moreover, the associated
parameters need to be learned with labeled correspondence
ground truths which impedes its applicability. Other pair-
wise GM methods e.g. [41] integrate the point detection and
matching in a synergic manner, while this paper assumes
the graphs are given being not tailored to visual problems.

As a building-block, any of these pairwise GM methods
can be used for our approaches and other state-of-the-arts
[2], [4], [30], [31] to initialize Xð0Þ. Nevertheless, the context
of multiple graphs opens the space for a more robust
mechanism to prune outliers such that only the affinity
and consistency relevant to inliers are considered. We aim
to devise a general outlier-rejection mechanism indepen-
dent of the data such as node distribution, graph attributes
and noises type etc.

We describe our ‘inlier nodes’ eliciting method using the
node-wise consistency Cnðuk;XÞ in Definition (4). Another

alternative is using the node-wise affinity Snðuk;X;KÞ via
Definition (5), which can be applied in a similar fashion
thus its description is omitted here.

First, given the matching configuration X, each node
in one graph is scored by the node-wise consistency in
Definition (4). Assume the number of common inliers i.e., ni

for all graphs is known, which is available when a reference
template is given, or estimated by other means e.g. [2].
How to estimate ni is not the focus of this paper.

Then we make two revisions for all of our methods: i)
the pairwise affinity term vecðXÞTKvecðXÞ is modified by
keeping the rows of X that correspond to the first ni (the
number of inliers) nodes in descending order by their

node-wise consistency score Cnðuk;XÞ in Definition (4),
and zeroing the rest of rows. This is because the affinity or
consistency between outliers is irrelevant to the semantic
matching accuracy and shall be excluded in the optimi-
zation procedure. For node-wise consistency, we use
ccðX;X; niÞ (or caðX;X;K; niÞ for node-wise affinity) to
denote this ‘mask’ operation on X as it is determined by
both the input configuration X and ni (also K in case
of the affinity metric). Then the affinity score is rewritten

as Jcc ¼ vecðccðX;X; niÞÞTKvecðccðX;X; niÞÞ; ii) the consis-
tency term is modified by the following two equations for
unary and pairwise consistencies:

Ccc
u ðk;X; niÞ

¼ 1�
PN�1

i¼1

PN
j¼iþ1 kccðXij � XikXkj;X; niÞkF

niNðN � 1Þ
(12)

Ccc
p ðXij;X; niÞ

¼ 1�
PN

k¼1 kccðXij � XikXkj;X; niÞkF
2niN

:
(13)

We use the above variants for affinity score and consistency
to replace the original J , Cu and Cp in the evaluation func-
tions: Eq. (4), Eq. (7), Eq. (9), Eq. (10). Similar steps are per-
formed by using the node-wise affinity.

4 EXPERIMENTS AND DISCUSSION

The experiments are performed on both synthetic and real-
image data. The synthetic test is controlled by varying the
noise level of deformation, outlier, edge density and initial
pairwise matching coverage. The real images are tested by
varying viewing angles, scales, shapes etc.. The matching
accuracy over all graphs, is calculated by averaging all

pairwise matching accuracy

PN�1

i¼1

PN

j¼iþ1
Accij

NðN�1Þ=2 . Each Accij

computes the accuracy between Xalg
ij and ground truth Xtru

ij :

Accij ¼
trðXalg

ij
Xtru
ij

Þ
trð1nj�niX

tru
ij

Þ. In line with [4], [15], we only calculate the

accuracy for common inliers and ignore themeaningless cor-
respondences between outliers. The above protocol is widely
adopted by relatedworks such as [15], [16].

If not otherwise specified, the parameters of our methods
are universally set as: T0 ¼ 2, T ¼ 6, �ð0Þ ¼ 0:2, g ¼ 0:3,
b ¼ 1:1. Note when t � T0, only affinity is improved without
consistency regularization.

4.1 Dataset Description and Affinity Setting

4.1.1 Synthetic Random Graph Matching

The random graph test follows the common protocol of [15],
[16], [22], [31], [44]. For each trial, a reference graph with ni

nodes is created by assigning a random weight to its

TABLE 2
Settings for Synthetic Test in Fig. 2

test mode parameter settings results

deform N ¼ 20, ni ¼ 10, no ¼ 0, " ¼ .15, r ¼ .9, c ¼ 1, s2 ¼ .05 Fig. 2a
outlier N ¼ 20, ni ¼ 6, no ¼ 4, " ¼ 0, r ¼ 1, c ¼ 1, s2 ¼ .05 Fig. 2b
density N ¼ 20, ni ¼ 10, no ¼ 0, " ¼ 0, r ¼ .5, c ¼ 1, s2 ¼ .05 Fig. 2c
coverage N ¼ 20, ni ¼ 10, no ¼ 0, " ¼ .05, r ¼ 1, c ¼ .1, s2 ¼ .05 Fig. 2d
sampling N ¼ 20, ni ¼ 8, no ¼ 2, " ¼ .1, r ¼ 1, c ¼ 1, s2 ¼ .05 Fig. 2e
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edge, uniformly sampled from the interval ½0; 1�. Then the
‘perturbed’ graphs are created by adding a Gaussian defor-
mation disturbance to the edge weight qrij, which is sampled

from Nð0; "Þ i.e., qpij ¼ qrij þNð0; "Þ where the superscript ‘p’

and ‘r’ denotes for ‘perturb’ and ‘reference’ respectively.
Each ‘perturbed’ graph is further added by no outliers,
which can also be helpful to make the graphs of equal sizes
when the input graphs are of different sizes. Its edge
density is controlled by the density parameter r 2 ½0; 1�
via random sampling. The edge affinity is computed by

Kia;jb ¼ expð� ðqij�qabÞ2

s2
Þ where s2 is the edge similarity sen-

sitivity parameter. No single-node feature is used and the
unary affinity Kia;ia is set to zero, leaving the matching
score entirely to the pairwise geometric information. In
addition, we control the ‘coverage’ of the initial matching
configuration X by parameter c 2 ½0; 1�, which denotes the
rate of matching pairs generated by the pairwise matching
solver, and the rest 1� c portion of pairs are assigned with
a randomly generated matching solution. A description of
these parameters is listed in Table 3.

4.1.2 Synthetic Random Point Set Matching

The random point set matching is also explored as tested in
[3], [43]. First, ni inliers fpkg

ni
k¼1 are randomly generated on

the 2-D plane via Gaussian distribution Nð0; 1Þ as the refer-
ence point set. Then each point is copied with Gaussian
noise Nð0; "Þ to generate N random points by further add-
ing no outliers via Nð0; 1Þ. The edge weight is set by the
Euclidean distances qij ¼ kpi � pjk for each graph. The sub-

sequent steps are the same with the random graph matching
case. This dataset is used for the synthetic testing in compar-
ison with MPM [3] under a relatively large number of
outliers. This is because the max-pooling method MPM is
designed for geometric relation rather than arbitrary edge
weights as in the random graph matching setting.

4.1.3 CMU-POSE Sequence

It contains four sequences. Two sequences are from the
CMU house (30 landmarks, 101 frames), hotel (30 land-
marks, 111 frames) sequence (http://vasc.ri.cmu.edu//
idb/html/motion/) which are commonly used in [15], [16],
[23], [31], [34]. The other two sequences are sampled from
the ‘VolvoC70’ and the ‘houseblack’ (both 19 landmarks,
225 frames) covering a range of 70 degrees of viewing
angles from the POSE dataset [51]. We use this data for
the ‘partial similarity’ test. We select ni ¼ 10 landmarks out
of all nant annotated landmarks, and randomly choose
no ¼ 4 nodes from the rest nant�ni nodes as ‘outliers’. We
perform edge sampling following the same way as [15] by
constructing the sparse delaunay triangulation among the
points (no distinction to inliers or outliers). The affinity

matrix is set by Kia;jb ¼ expððdij�dabÞ2

�s2
Þ where dij, dab are the

Euclidean distances between two points normalized to ½0; 1�
by dividing the largest edge length. The diagonal is set zero
as the same as [15], [16].

4.1.4 WILLOW-ObjectClass

This dataset (ObjectClass for short) released in [34] is con-
structed using images from Caltech-256 and PASCAL
VOC2007. Each object category contains different number of
images: 109 Face, 50 Duck, 66 Wine bottle, 40 Motorbike, and
40 Car images. For each image, 10 feature points are manually
labeled on the target object. We further add no random out-
liers detected by a SIFT detector in our outlier test. The edge
sampling for the affinity matrix follows the same way as [15]
by constructing the sparse delaunay triangulation among the
landmarks as done in the CMU-POSE sequence test. We use
the protocol of [15], [34] that sets the final affinity matrix re-
weighted by the edge length affinity and angle affinity:

Kia;jb ¼ bKlen
ia;jb þ ð1� bÞKang

ia;jb where b 2 ½0; 1� is the weight-

ing parameter. This is because this dataset contains more
ambiguities for structural symmetry as pointed out in [4],
than the sequence dataset if only length information is
used. The angle for each edge is computed as the absolute
angle between the edge and the horizontal line as used in
[15]. The edge affinity and angle affinity are calculated as
in the CMU-POSE test, and leave unary terms zero.

Fig. 7 illustrates the visual results on real images.

4.2 Comparing Methods and Time Complexity

The implementations of all comparing methods are the
authors’ Matlab code and all tests run on a laptop (2.9 G
Intel Core I7 and 8 G memory) with a single thread.

4.2.1 Re-Weighted Random Walk Matching (RRWM)

Since many existing multi-graph matching methods [2], [4],
[28], [30], [31], [45] require a pairwise GM solver in different
ways, we choose RRWM [16] due to its cost-effectiveness.
We set its parameters a ¼ 0:2, b ¼ 30.

4.2.2 Max-Pooling Matching (MPM)

MPM [3] is an outlier-tolerant method computing the affin-
ity score of each candidate match via maximal support from
nearby matches. This method is tested in the presence of
more outliers.

Several state-of-the-art multi-graph matching methods
are evaluated, and all methods start with an initial matching
configuration Xð0Þ obtained by RRWM.3

4.2.3 Alternating Optimization for Multi-Graph Matching

(MatchOpt)

MatchOpt [4] transforms the multi-graph matching prob-
lem into a pairwise one by a star structure on which the
alternating updating is carried out. Both factorized and

TABLE 3
Main Parameters for Experimental Settings

inlier# outlier# estimated ni deform density coverage

ni no nest " r c

3. Due to space limitation, we have to omit a few peer multi-graph
and point-set matching methods, including graduated assignment
based common labeling [32], [47], the joint feature matching [52] and
[11]. The method in [32], [47] has been evaluated in [4], and [2] is a
more advanced method from [11]. The feature matching method [52]
only considers unary features descriptors rather than the second-order
or higher-order information as formulated in the GM problem.
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non-factorized models are devised. Here the latter is com-
pared as it has been shown in [4] more cost-effective. We
set its iteration threshold T ¼ 4.

4.2.4 Match Lifting via Convex Relaxation (MatchLift)

MatchLift [2] adopts a first-order approximate algorithm.
The main cost OðN3n3Þ is computing the eigenvalues. This
solver typically requires 10-20 rounds iterations to reach an
optimum, and thus we set T ¼ 20.

4.2.5 Permutation Synchronization (MatchSync)

MatchSync [30] uses spectral analysis to the grouped ‘target
matrix’ T of size nN � nN (Eq. (7) in [30]) stacked by all ini-

tial fXð0Þ
ij g

N
i;j¼1. Its largest cost Oðn3N2Þ refers to the one-shot

SVD to find the n leading eigenvectors of ‘T ’. As MatchSync
is applicable only when n � N , thus the Maximum Span-
ning Tree is used on the consistency-wise super graph Gc

sup

if n > N .
The overall time complexity for all compared methods is

summarized in Table 4. Now we consider the time complex-
ity of our methods in several aspects.

First, computing the pairwise score JðXikXkjÞ in all our

methods by trying N � 2 anchor graph fGkgNk¼1;6¼i;j is

repeated for NðN�1Þ
2 pairs, at the unit cost of Oðn3Þ as Xij is a

sparse permutation matrix. Thus the related overhead is

OðN3n3Þ, which is also the complexity of CAO. Computing

the initial Xð0Þ requires OðN2tpairÞ depending on the pair-
wise matching solver.

The second category refers to the computing of the pair-
wise consistency fCpðXikXkj;XÞgNi;j;k¼1 in CAO-C. The com-
plexity of Cp is OðNnÞ, thus similar to the first category,

the total overhead per iteration is OðN4nÞ.
The third one refers to the off-line computing unary

and pairwise consistency as used in CAO-UC or CAO-PC.
The cost for computing each Cu can be reduced to OðN2nÞ,
thus the overall cost of computing fCuðk;XÞgNk¼1 forN graphs

is OðN3nÞ. Thus the overall complexity of CAO-UC is

OðN3n3Þ þOðN3nÞ þOðN2tpairÞ. On the other hand, comput-

ing the off-line pairwise consistency fCpðXðt�1Þ
ij ;Xðt�1ÞÞgN�1;N

i¼1;j¼iþ1

costsOðN3nÞ at the expense ofOðNnÞ for eachCp. The overall
complexity of CAO-PC is the samewith CAO-UC.

Finally, the inlier-eliciting ccð	;X; niÞ involves computing

the node-wise consistency fCnðuk;XÞgn;N
uk¼1;k¼1

for each node

per graph, thus the total overhead per iteration is OðN3nÞ
by OðN2nÞ per graph. For cað	;X;K; niÞ, the node-wise

affinity in Definition (5) is OðN2n3Þ. The overhead of cc, ca

can both be absorbed in the overall complexity as shown
in Table 4.

4.3 Experimental Results and Discussion

For the ‘RRWM’ and ‘MPM’ curves in the plots, they are gen-
erated by applying the two methods on each pair of graphs
independently. ‘CAO�’ denotes performing CAO without
running the post step L9-13 in the chart of Algorithm 1 and so
for other methods. Fifty random trials are performed for all
synthetic tests. And we plot the average results in the figures.
For real image data, 20 random trials are sampled from the
image set for each setting. For clarity, standard deviations are
not plotted as they are found stable over curves.

4.3.1 In Case of Few Outliers

Fig. 1 gives a comparison with controlled noise level, for
several putative methods in this paper besides the main
algorithms: {CAO, CAOcst, CAO2nd} in Section 3.2 and

{CAO-C, CAO-Cinv} in Section 3.3. Fig. 2 shows the accuracy
optimization behavior as a function of T and based on this
plot, we set T ¼ 6 in all our tests. There is little noise in the
affinity function for the coverage test in Fig. 2d, thus pure
affinity-driven approaches outperform others. In other

cases, CAO and CAO2nd under-perform others and the latter
even slightly degenerates as T grows. Fig. 2e suggests the
relation between the accuracy and the sampling rate r for
the ðN � 2Þ � r graphs used from all graphs over the exhaus-
tive searching space, to find the best anchor graph. Since our
framework is applicable to other random search strategies,
which might also depend on the specific applications. Here
we do not dwell on how to design an efficient random
search technique. We summarize the results as follows:

i) The proposed main method CAO-C outperforms the
baseline CAO and state-of-the-arts in most cases for
both synthetic random graphs (Fig. 3) and real
images (Fig. 4), except for ‘coverage’ test (Figs. 3d
and 3i). In ‘coverage’ test, many pairwise matchings
in the initial Xð0Þ are randomly generated and a con-

sistent X� is biased to the true accuracy. When Xð0Þ is
largely corrupted as controlled by coverage rate c,
the methods utilizing affinity information including
[4] and ours, outperform MatchLift [2] and Match-
Sync [30] that only use the initial matching configu-

ration Xð0Þ as input.
ii) As shown in the bottom row of Fig. 3 in addition

with Fig. 4, the accuracy in general increases as the
number of graphs N grows, though there is some
fluctuations especially for the test on ‘car’ as shown
in Fig. 4a. We think this is due to the inherent
matching difficulty of the sampled images, which is
evidenced by the baseline ‘RRWM’ whose perfor-
mance also fluctuates. We find this phenomenon is
more pronounced as shown in the bottom row of
Fig. 4 due to the larger viewing range when more
frames are sampled. In fact the relative accuracy
improvement against the RRWM baseline is increas-
ing as N grows. This is in line with the intuition
that more graphs can help dismiss local ambiguity.

iii) For the ‘partial similarity’ CMU-POSE data test which
is often the case in reality, as shown in the bottom row
of Fig. 4, without enforcing full consistency, i.e., the
steps of (L9-13) described in Algorithm 1 (dashed
curve) for the proposed algorithms often obtains
higher accuracy than using this constraint (solid

TABLE 4
Complexity Comparison of the State of the Art

algorithm time complexity

CAO, CAO-UC, CAO-PC OðN3n3 þN2tpairÞ
CAO-C OðN4nþN3n3 þN2tpairÞ
MatchLift [2] OðN3n3 þN2tpairÞ
MatchOpt [4] OðN2n4 þN3nþN2tpairÞ
MatchSync [30] OðN2n3 þN2tpairÞ
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curve). It suggests the advantage of the graduated
consistency regularized mechanism against the two-
step hard synchronizationmethodology used inCAO.

4.3.2 In Case of More Outliers

Our methods are tailored for the presence of a large number
of outliers as described in Section 3.5. The performance is
depicted in Figs. 5 and 6, for the tests on synthetic point sets
(inline with the setting for the compared method MPM [3])
and images, by varying the number of outliers, graphs and
the estimated inliers. No post-synchronization is performed
in the outlier tests. We analyze the results as follows:

i) In Fig. 6o, we show an example of the hitting rate
of the top ni nodes in descending order by the
node-wise consistency (solid curve) and affinity
(dashed curve) metrics against true inliers. Given
such reasonable hitting rates (> 0:8), the suite of
our inlier eliciting methods, i.e., the consistency-
driven variant (marked by the superscript ‘cst’)
and the affinity-driven one (marked by ‘sim’) in
general outperforms state-of-the-arts notably. Note
in Fig. 6o, the hitting rate for ‘face’ by the affinity-
driven metric is robust against the number of out-
liers. This is because the landmarks on face form a

Fig. 4. In case of few outliers: evaluation for CAO, CAO-C and the two variants CAO-UC and CAO-PC, and state of the art on real images (best
viewed in color). Refer to Table 5 for settings.

Fig. 3. In case of few outliers: evaluation for CAO, CAO-C and the two variants CAO-UC and CAO-PC, and state of the art on the synthetic random
graph dataset by varying the disturbance level (top row), and by varying the number of considered graphs (bottom row). Refer to Table 1 for settings
(best viewed in color).
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very distinctive structure thus its affinity is more
informative.

ii) The sensitive test w.r.t. the disturbance of ni is illus-
trated in Fig. 5d and the bottom row of Fig. 6, for syn-
thetic data and real images respectively. The eliciting
mechanism boosts the accuracy compared with our

original algorithms which in fact set ni equal to
n ¼ 20 with no discrimination to outliers. Moreover,
the accuracy decline is relatively smooth around the
exact ni ¼ 10 in these plots which suggests the robust-
ness of ourmethods given a rough estimation of ni.

Fig. 5. In the presence of more outliers: random point test for our methods driven by consistency (solid) and affinity (dashed) inlier eliciting
mechanism (best viewed in color). Refer to Table 6 for settings.

Fig. 6. In the presence of more outliers: real image test for our methods driven by consistency (solid) and affinity (dashed) inlier eliciting mechanism
(best viewed in color). Refer to Table 7 for settings.

TABLE 5
Parameter Settings for Real-Image Test in Fig. 4

parameter settings dataset

c ¼ 1; s2 ¼ :1;b ¼ :9; ni ¼ 10; no ¼ 2 WillowObjectClass

c ¼ 1; s2 ¼ :05;b ¼ 0; ni ¼ 10; no ¼ 4 CMU-POSE

TABLE 6
Settings for Random Point Set Test in Fig. 5

parameter settings results

N ¼ 20, " ¼ .02, ni ¼ 6, r ¼ 1, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 5a

" ¼ .05, ni ¼ 6, no ¼ 12, r ¼ 1, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 5b

N ¼ 20, ni ¼ 6, no ¼ 12, r ¼ .9, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 5c

N ¼ 20, ni ¼ 6, no ¼ 12, " ¼ .05, r ¼ 1, s2 ¼ .05, c ¼ 1, T ¼ 6 Fig. 5d
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fiii) Two run-time overhead examples are plot in Fig. 5e for
the synthetic test and in Fig. 6j for real images. CAO-C*
is more costive as we find it converges slower and
need more overhead in each iteration as discussed
in the complexity analysis. Also, all the proposed
algorithms can be parallelized more easily than
other iterative methods like matchOpt, matchSync,
since updating X

ðt�1Þ
ij can be done independently.

iv) MPM outperforms the baseline RRWM but does not
perform as robustly as our methods. We think this is
because MPM is suited under moderate deformation
in addition with the outliers. This often does not hold
in reality and neither in our settings—Tables 6 and 7.

v) In the synthetic point data test for Figs. 5a and 5b,
the affinity-driven inlier eliciting variant outper-
forms the consistency-driven counterpart given the
deformation " < :05. However, as shown in Fig. 5c
when " grows by fixing the number of outliers, the
consistency-driven mechanism outperforms when
" > :05. This is consistent with the motivation of
this paper: consistency becomes helpful in the pres-
ence of a large amount of noises given a small num-
ber of outliers.

5 CONCLUSION

This paper proposes effective, simple and general multi-
graph matching algorithms by incorporating affinity and
consistency via a composition based optimization proce-
dure. The outlier-tolerance variants are designed by elicit-
ing the affinity and consistency associated with inliers.
Experimental results suggest that i) Algorithm 2 (CAO-C)
in general achieves higher accuracy compared with state-

of-the-arts; ii) Algorithm 3 (CAO-UC, CAO-PC) improve
the cost-effectiveness of Algorithm 1 (CAO) especially on
the real images under arbitrary noises.
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