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ABSTRACT
Ranking functions determine the relevance of search results
of search engines, and learning ranking functions has be-
come an active research area at the interface between Web
search, information retrieval and machine learning. Gen-
erally, the training data for learning to rank come in two
different forms: 1) absolute relevance judgments assessing
the degree of relevance of a document with respect to a
query. This type of judgments is also called labeled data and
are usually obtained through human editorial efforts; and 2)
relative relevance judgments indicating that a document is
more relevant than another with respect to a query. This
type of judgments is also called preference data and can usu-
ally be extracted from the abundantly available user click-
through data recording users’ interactions with the search
results. Most existing learning to rank methods ignore the
query boundaries, treating the labeled data or preference
data equally across queries. In this paper, we propose a
minimum effort optimization method that takes into account
the entire training data within a query at each iteration. We
tackle this optimization problem using functional iterative
methods where the update at each iteration is computed by
solving an isotonic regression problem. This more global
approach results in faster convergency and signficantly im-
proved performance of the learned ranking functions over
existing state-of-the-art methods. We demonstrate the ef-
fectiveness of the proposed method using data sets obtained
from a commercial search engine as well as publicly available
data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]:
Learning; D.2.8 [Software Engineering]: Metrics—com-
plexity measures, performance measures

General Terms
Algorithms, Experiments, Theory

Keywords
Ranking functions, learning to rank, minimum effort opti-
mization, labeled data, preference data, user clickthrough,
functional iterative method, isotonic regression, quadratic
programming

1. INTRODUCTION
Search engines are essential tools for finding and explor-
ing information on the Web and other information systems.
To a large extent the quality of a search engine is deter-
mined by the ranking function used to produce the search
results in response to user queries. Research and experi-
ments in information retrieval in the past have produced
many fundamental methodologies and algorithms including
vector space models, probabilistic models and the language
modeling-based methodology [20, 19, 3]. More recently, ma-
chine learning approaches for learning ranking functions gen-
erated much renewed interest from the Web search and in-
formation retrieval community as well as the machine learn-
ing community. It has the promise of improved relevancy of
search engines and reduced demand for manual parameter
tuning [18].

Several machine learning methods for learning to rank have
been proposed and we will present a brief review in the next
section. Most of the methods are based on the supervised
learning paradigm and requires training data which come
mostly in two different forms: 1) absolute relevance judg-
ments assessing the degree of relevance of a document with
respect to a query. This type of labeled data are usually
obtained from explicit relevance assessment by human ed-
itors, where labels or grades indicating degree of relevance
are assigned to documents with respect to a query. For ex-
ample, a judge can assign a label to a document from the
ordinal set Perfect, Excellent, Good, Fair, Bad; and 2) rela-
tive relevance judgments, also known as pairwise preference
data, indicating that a document is more relevant than an-
other with respect to a query [15, 16, 26]. Collecting the
first type of data is labor-intensive while the second type of
data can be generated from potentially unlimited supplies
of user clickthrough data and they also have the advantage
of capturing user searching behaviors and preferences in a
more timely manner [15, 16, 21]. Moreover, it is also easy
to convert labeled data into pairwise preference data.

In this paper, we focus on novel machine learning meth-
ods for learning ranking functions from the two types of
relevance judgments. Unlike most existing learning to rank



methods, we emphasize the importance of appropriately treat-
ing the training data within a query as a whole rather than
ignoring the query boundaries. This is a point similar to
that of exploring query difference in learning to rank dis-
cussed in [25], and it is also in the same spirit as some of the
recently proposed listwise learning to rank methods [7].

In particular, we consider either the labeled or preference
training data within a query as a set of constraints on the
ranking function to be learned. Starting with an arbitrary
ranking function, some of the constraints within this set will
be violated, we need to modify the ranking function to con-
form to this set of constraints as much as possible. There are
many possible ways to achieve this goal. In this paper, we
propose the minimum effort optimization principle: at each
iteration, we should spend the least amount of effort to per-
turbed the current ranking function so as to satisfy this set
of constraints within a query as much as possible. As we will
see, this formulation not only leads to a tractable quadratic
optimization problem, it also has convergence ramifications
for the overall optimization approach for learning the rank-
ing functions. It turns out that the minimum effort opti-
mization at each iterative step can be computed by solving
an isotonic regression problem. Furthermore, the associated
quadratic programming problem takes into account the en-
tire preference data within a query. More importantly, the
proposed approach also delivers comparable or significantly
improved performance of the learned ranking functions over
existing state-of-the-art methods. This will be illustrated in
the experimental study using data from a commercial search
engine as well as data from publicly available sources.

The rest of the paper is organized as follows: in section 2, we
review previous work on the topic of learning ranking func-
tions especially its applications in learning ranking functions
for information retrieval and Web search. In section 4, we
give the precise formulation of the problem of learning from
pairwise preference data. We then argue that minimizing
the total number of contradicting pairs is a natural way to
learn a ranking function and outline a functional iterative
method for its solution. We introduce isotonic regression as
a means for computing the updates in the iterative method.
In section 5, we describe experimental studies using pub-
licly available data as well as data from a commercial search
engine. In the last section, we conclude and point out direc-
tions for further investigations.

2. RELATED WORK
The notion of learning ranking functions in information re-
trieval can be traced back to the work of Fuhr and cowork-
ers [11, 12, 13]. They proposed the use of feature-oriented
methods for probabilistic indexing and retrieval whereby fea-
tures of query-document pairs such as the number of query
terms, length of the document text, term frequencies for the
terms in the query, are extracted, and least-squares regres-
sion methods and decision-trees are used for learning the
ranking functions based on a set of query-document pairs
represented as feature vectors with relevance assessment [11,
12, 13]. In a related work, Cooper and coworkers have de-
veloped similar approaches and used logistic regression to
build the ranking functions and experimented with several
retrieval tasks in TREC [8].

With the advance of the World Wide Web, learning ranking
functions has emerged as a rapidly growing area of research
in the information retrieval, Web search as well as machine
learning communities. Earlier works in this active area in-
clude: RankSVM based on linear SVM for learning ranking
functions [15, 16, 17]. RankNet, developed by a group from
Microsoft Research, proposed an optimization approach us-
ing an objective function based on Bradley-Terry models for
paired comparisons and explored neural networks for learn-
ing the ranking functions [5]. RankBoost discussed in [9],
using ideas of Adaboost for learning ranking functions based
weak learners that can handle preference data.

Most recently, there is an explosion of research in the gen-
eral area of learning ranking functions and its applications
in information retrieval and Web search: machine learning
algorithms for a variety of objective functions that more
closely match the metrics used in information retrieval and
Web search [6, 22, 24]; learning from pairwise preference
data using gradient boosting framework [26, 27]; and ex-
tending pairwise preference learning to list learning [7]. The
workshop learning to rank for information retrieval at SI-
GIR 2007 summarizes many of the recent advances in this
field [18].

3. TRAINING DATA FORMATS
Before we discuss learning to rank in more detail, we first
describe the formats of the training data we will use for
the learning process. We represent each query-document
pair (q, d) by a feature vector, generically denoted by x, and
in Section 5 we discuss the details on extraction of query-
document features. For query q, we have several associated
documents d1, . . . , dn, and the corresponding relevance judg-
ments either in the form of preference data or labeled data.

First, to describe the setting for the preference data more
precisely, let Sq be a subset of the index set

Pn ≡ {(i, j), i, j = 1, . . . , n}.

We assume (i, j) ∈ Sq represents the preference data stating
that di is more relevant than dj with respect to the query
q. Let xi be the feature vector for (q, di), we represent the
above preference dat as xi � xj , (i, j) ∈ Sq, i.e., document
di should be ranked higher than document dj with respect
to the query q. Second, we will convert labeled data into
preference data in the following way: given a query q and
two documents dxi and dj . Let the feature vectors for (q, di)
and (q, dj) be xi and xj , respectively. If di has a higher
(or better) grade than dj , we include the preference xi �
xj while if dj has a higher grade than di, we include the
preference xj � xi.

The training data involve a set of queries Q = {q1, . . . , qQ},
their associated documents and their relevance judgments.
We use x1, . . . , xN to represent the feature vectors for all
the query-document pairs in the training set, and denote
the associated set of preferences (or converted preferences)
as a subset S ⊂ PN . We write the training set concisely as

T = {〈xi, xj〉 | xi � xj , (i, j) ∈ S}, (1)

which can also be written as T = ∪Qi=1Sqi . Notice that each
preference involves two query-document pairs corresponding
to the same query.



4. MINIMUM EFFORT OPTIMIZATION
Given a query q and the associated d1, . . . , dn, a ranking
function ranks those documents according to the functions
values h(x1), . . . , h(xn), say, di should be ranked higher than
dj if h(xi) ≥ h(xj). For a ranking function h, how do learn
such a ranking function from the training set T ?

4.1 Functional iterative methods
Our strategy for learning to rank from T is based on func-
tional iterative methods. We assume we have a function
class H which is closed under summation. We start with an
initial guess h0(x) ∈ H, and at each step m = 1, 2, . . . , we
compute an update gm(x) ∈ H to obtain the next iterate

hm+1 = hm(x) + gm(x).

The basic idea for computing gm(x) is the following: for the
current iterate hm(x), when considering all the query q ∈ Q,
some of the pairs in S are consistent, i.e., hm(xi) ≥ hm(xj),
and the rest becomes contradicting pairs, i.e, hm(xi) <
hm(xj). We modify the functions values at xi from hm(xi)⇒
hm(xi) + δ

(m)
i , i = 1, . . . , N so that the new set of values

hm(xi) + δ
(m)
i are consistent with T , i.e., hm(xi) + δ

(m)
i ≥

hm(xj) + δ
(m)
j , (i, j) ∈ S. We then find gm(x) ∈ H so that

gm(xi) ≈ δ(m)
i , i = 1, . . . , N in the least squares sense, for

example. This least square fitting can be done by using the
gradient boosting trees [10].

4.2 Computing updates using isotonic regres-
sion

Generally, there are many ways to make the values hm(xi)+

δ
(m)
i be consistent with T . But large values of δ

(m)
i may give

rise to gm(x) that result in problems in the convergence of
the functional iterative algorithm (generally, one needs to
control the step size at each iteration in an iterative algo-
rithm in order for the algorithm to converge [4]). Our basic
idea is to achieve consistency with T with as small as pos-

sible a set of δ
(m)
i .

Recall that the set of preferences are always among docu-
ments for the same query, documents are not comparable

across queries. Therefore, the computation of δ
(m)
i decou-

ples into several subproblems each for a single query in Q,
i.e., each based on one Sq. Without loss of generality, let
x1, . . . , xn belong to a single query q, and xi � xj where
(i, j) ∈ Sq and Sq is a subset of Pn. Given the current iter-

ate hm(x), we update hm(xi) to hm(xi)+δ
(m)
i and compute

the δ
(m)
i by solving the following optimization problem,

min
δ
(m)
i

nX
i=1

(δ
(m)
i )2 (2)

subject to

hm(xi) + δ
(m)
i ≥ hm(xj) + δ

(m)
j (i, j) ∈ Sq.

This quadratic programming problem is known as isotonic
regression in the statistic literature. It is generally used
for computing isotonic regression functions. Several special
numerical methods have been proposed for solving (2), in
particular, when Sq ≡ Pn, i.e., we have constraints such as

hm(x1) + δ
(m)
1 ≥ hm(x2) + δ

(m)
2 ≥ · · · ≥ hm(xn) + δ(m)

n ,

(2) can be solved with computational complexity O(n) us-
ing the so-called Pool-Adjacent-Violator (PAV) Algorithm.
This is important because for the preference data converted
from labeled data, the constraints for each query is of the
above form (see section 4.1.1). For general Sq, (2) can be
solved with computational complexity O(n2) [2].

4.3 Incorporating margins
In case the grade difference for each preference pair is avail-
able, we can use it as margin to enhance the constraints in
(2). We now have the following optimization problem,

min
δ
(m)
i

nX
i=1

(δ
(m)
i )2 + λnζ2 (3)

subject to

hm(xi) + δ
(m)
i ≥ hm(xj) + δ

(m)
j + ∆Gij(1− ζ), (i, j) ∈ Sq.

ζ ≥ 0.

Here ∆Gij is the margin, set to be the grade difference be-
tween xi and xj when we have the corresponding labels and
simply 1.0 otherwise;1 We also use ζ as a slack variable al-
lowing softening the constraints imposed by Gij ; λ is the
regularization parameter balancing the two requirements in
the objective function. We suspect that methods in [2] can
be extended to solve (3) with complexity O(n2), but for
the present we treat (3) as a convex quadratic program-
ming problem which can be solved with complexity O(n3)
[4]. Fortunately, in our context n is relatively small and all
the quadratic programming problems across the queries can
be solved in parallel.

4.4 IsoRank
We choose the function class H to be sums of regression
trees which has been widely used in gradient boosting meth-

ods [10]. Once δ
(m)
i are computed, we fit a regression tree

gm(x) to minimize
PN
i=1(gm(xi) − δ(m)

i )2 [10]. We call the
overall algorithm ranking with isotonic regression (IsoRank)
and summarize it in the following

Algorithm 1 IsoRank

Input: A set of pairwise preference data T in (1).
Output: A ranking function hmax(x).
Start with an initial guess h0, for m = 1, 2, . . . ,mmax,

1. Compute δ
(m)
i , i = 1, . . . , N by solving the isotonic

regression problem (3).

2. Fit a regression tree gm(x) so that gm(xi) ≈ δ(m)
i .

3. Update hm+1 = hm(x) + ηgm(x).

There are mainly three parameters in this algorithm: the
number of trees mmax, the number of leaf nodes for each
regression tree, and the shrinkage factor η. The number of
leaf nodes is related to number of features to use in each
regression and is usually set to be a small integer number
around 5-20. The shrinkage factor η controls the step size
along the direction gm(x) in the iterative step and is set to
be small real number around 0.05-0.1. The iteration number
mmax is computed by cross-validation.

1For example, we can map the set of labels {Perfect, Excel-
lent, Good, Fair, Bad} to the set of grades {5, 4, 3, 2, 1}.



Remark. A theoretical analysis of the convergence behavior
of IsoRank is out of the scope of the current paper. Intu-
itively, if gm(x) fits the data (xi, δi), i = 1, . . . , N with high
accuracy, then hm+1(x) will be consistent with many of the
pairs in T . Empirically, we have also observed almost mono-
tonic decreasing of the total number of contradicting pairs
on the training set as m increases (see section 4.3).

5. EXPERIMENTAL RESULTS
In this section, we describe the results of an experimental
study. We carry out several experiments illustrating the
properties and effectiveness of IsoRank. We also compare
its performance with some existing algorithms for learning
ranking functions. We use two data collections for the ex-
periments: one data collection is from a commercial search
engine and the other is LETOR, which is a publicly avail-
able benchmark data collection used for comparing learning
to rank algorithms [18]. We now describe the results for
those two data collections.

5.1 Experiments on a commercial search en-
gine data collection

As we mentioned before, each query-document pair is rep-
resented by a feature vector. For the search engine data,
a feature vector is generated for each query-document pair
and the features can be grouped into the following three
categories:

1) Query features: those dependent on the query only and
have constant values across all the documents within that
query, for example, the number of terms in the query, and
whether or not the query is a navigational query.

2) Document features: those dependent on the document
only and have constant values across all the queries, for ex-
ample, the number of inbound links pointing to the docu-
ment, and the spam score for the document.

3) Query-document features: those dependent on the rela-
tion of the query with respect to the document, for example,
the number of times each term in the query appears in the
document, and the number of times each term in the query
appears in the anchor-texts of the document.

For this search engine data set, we extracted about 200 fea-
tures in total. The data are generated as follows: a set
of queries are first sampled from the search engine query
logs, and a certain number of query-document pairs are
labeled according to their relevance judged by human ed-
itors, we assign a label to each query-document from the set
{perfect, excellent, good, fair, bad}. In total the data set
contains 4,372 queries and 115,278 query-document pairs,
among which 768 are perfect, 4,288 are excellent, 30,325 are
good, 42,571 are fair, and 37,326 are bad.

We then use the above labeled data to generate a set of pref-
erence data as follows: given a query q and two documents
dx and dy. Let the feature vectors for (q, dx) and (q, dy) be
x and y, respectively. If dx has a higher grade than dy, we
include the preference x � y while if dy has a higher grade
than dx, we include the preference y � x. For each query, we
consider all pairs of documents within the search results ex-

Table 1: Precision at K% (average over 5 test folds)
for IsoRank, QBrank, and RankSVM

%K IsoRank QBrank RankSVM

20% 0.9852 0.9785 0.9543
40% 0.9224 0.9123 0.8900
60% 0.8519 0.8427 0.8222
80% 0.7927 0.7858 0.7656
100% 0.7413 0.7372 0.7185

cept those with equal grades. This way, we generate around
1.2 million preferences in total. We randomly split the data
across queries into five folds, use four folds as training the
remaining fold as testing data and report results by averag-
ing the metrics over the five folds. When we examine the
performance of the algorithms on the training data, we show
that using all the data.

5.1.1 Evaluation Metrics
Based on a ranking function h, the document x is ranked
higher than the document y if h(x) > h(y), and we call this
order of x and y the predicted preference based on h. We
use the following metrics to evaluate the performance of a
ranking function h with respect to a given set of preferences
(those expressed in the training data discussed above) which
we considered as the true preferences.

1) Number of contradicting pairs: the number of predicted
preferences inconsistent with the true preferences.

2) Percentage of matched pairs: the percentage of predicted
preferences consistent with the true preferences.

3) Precision atK%: for two documents x and y (with respect
to the same query), it is reasonable to assume that it is easy
to compare x and y if |h(x) − h(y)| is large, and x and y
should have about the same rank if h(x) is close to h(y).
Base on this, we sort all the document pairs 〈x, y〉 according
to |h(x) − h(y)|. We call precision at K%, the fraction of
matched pairs in the top K% of the sorted list. Precision at
100% is equivalent to % of matched pairs.

4) Discounted Cumulative Gain (DCG): DCG has been widely
used to assess relevance in the context of search engines [14].
For a ranked list of N documents (N is set to be 5 in our
experiments), we use the following variation of DCG,

DCGN =

NX
i=1

Gi/ log2 (i+ 1),

where Gi represents the weights assigned to the label of the
document at position i.

5.1.2 Experiment Design and Results
We single out QBrank for comparison with our new al-
gorithm IsoRank because it was shown that QBrank out-
performs some of the existing state of the art learning to
rank algorithms. As is discussed in [26, 27], QBrank uses
a squared hinge loss function which is minimized by an it-
erative gradient boosting method [10]. The key difference
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Figure 1: Number of contradicting pairs over training data (left), DCG over training data (right)
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Figure 2: Average number of contradicting pairs over 5-fold (left), Average DCG over 5-fold (right)

between IsoRank and QBrank is: IsoRank uses the total
number of contradicting pairs as the loss function which
gives rise to a more global approach for updating the it-
erates using the preferences within each queries. QBRank
uses gradient descent, and the computation of the gradients
relies on the individual preferences. A url can appear in
multiple preferences, in this case the average gradient was
used for each distinct url. As a baseline, we also include
the results for RankSVM. The main questions we want to
address are: What is the convergence behavior of IsoRank?
Is the total number of contradicting pairs on the training set
generally monotonically decreasing as the iteration number
of IsoRank increases? How do the two methods IsoRank and
QBrank compare in terms of the three metrics discussed in
the previous subsection?

To answer the first question, Figure 1 shows the total num-
ber of contradicting pairs and DCG5 with respect to number
of iterations (trees) for both QBrank and IsoRank on the
training data. The parameters for base regression trees are
set to be 20 leaf nodes and we 0.1 as the shrinkage factor.
Both methods have a clear convergence trend: DCG5 in-
creases and the total number of contradicting pairs decreases
as the iteration number increases. Figure 1 also demon-
strates that IsoRank has much faster and better convergence
than QBrank, this should not come as a surprise because
each step of IsoRank is more expensive than QBrank. On
the training set, QBrank flattened out after about 200 it-

erations, but IsoRank can still go on for some more itera-
tions will be terminated around 250 iterations using cross-
vlaidation. For performance on the test data, we plot the
five fold average number of the total number of contradicting
pairs and the average DCG5 against number of iterations in
Figure 2. IsoRank is better than QBrank in term of both
metrics.2 As a baseline comparison, we did the same exper-
iments for RankSVM and the average DCG5 over the same
five folds is 6.63, which is worse than both QBrank and Iso-
Rank. Table 2 presents average precision at K% over the
five test folds for IsoRank, QBrank, and RankSVM. As is il-
lustrated in Figure 3, IsoRank consistently outperform both
QBrank and RankSVM over all the five folds.

5.2 Experiments on LETOR data
LETOR was derived from the existing data sets widely used
in IR, namely, OHSUMED and TREC data sets. The data
contain queries, the contents of the retrieved documents,
and human judgments on the relevance of the documents
with respect to the queries. Various features have been ex-
tracted including both conventional features, such as term
frequency, inverse document frequency, BM25 scores, and
language models for IR, and features proposed recently such
as HostRank, feature propagation, and topical PageRank.
The package of LETOR contains the extracted features,
queries, and relevance judgments. The results of several

2Notice that a 1% DCG5 gain is considered significant on
this data set for commercial search engines.



% non-contradicting pairs v. test folds

0.7

0.71

0.72

0.73

0.74

0.75

0.76

1 2 3 4 5

Fold

%
 n

on
-c

on
tr

ad
ic

tin
g 

pa
ir

s

QBrank IsoRank RankSVM

DCG over 5 folds

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

1 2 3 4 5

Fold

D
C

G

QBrank IsoRank RankSVM

Figure 3: Percentage of matched pairs for 5-fold cross validation (left), DCG for 5-fold cross validation (right)

Table 2: NDCG, MAP, and Precision at position n on OHSUMED data(average over 5 folds)

Methods ndcg@1 ndcg@2 ndcg@3 ndcg@4 ndcg5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.498 0.483 0.473 0.461 0.450 0.605 0.595 0.586 0.562 0.545 0.440
RankSVM 0.495 0.476 0.465 0.459 0.458 0.634 0.619 0.592 0.579 0.577 0.447
FRank-c4.2 0.545 0.510 0.499 0.478 0.469 0.671 0.619 0.617 0.581 0.560 0.446
ListNet 0.523 0.497 0.478 0.468 0.466 0.643 0.629 0.602 0.577 0.575 0.450
AdaRank.MAP 0.542 0.496 0.480 0.471 0.455 0.661 0.605 0.583 0.567 0.537 0.442
AdaRank.NDCG 0.514 0.474 0.462 0.456 0.442 0.633 0.605 0.570 0.562 0.533 0.442
MHR-BC 0.552 0.490 0.485 0.480 0.467 0.652 0.615 0.612 0.591 0.566 0.440
QBRank 0.563 0.536 0.483 0.471 0.463 0.708 0.676 0.624 0.589 0.570 0.452
IsoRank 0.565 0.556 0.520 0.505 0.488 0.653 0.676 0.643 0.617 0.588 0.457

state-of-the-arts learning to rank algorithms, e.g., RankSVM,
RankBoost, AdaRank, Multiple hyperline ranker, FRank,
and ListNet, on the data sets are also included in that pack-
age.

5.2.1 Letor data collection
OHSUMED. The OHSUMED data set is a subset of the
MEDLINE database, which is popular in the information
retrieval community. This data set contains 106 queries.
The documents are manually labeled with absolute rele-
vance judgements with respect to the queries. There are
three levels of relevance judgments in the data set: def-
initely relevant, possibly relevant and not relevant. Each
query-document pair is represented by a 25-dimensional fea-
ture vector. The total number of query-document pairs is
16,140, among which 11,303 are not relevant, 2585 are pos-
sibly relevant, and 2252 are definitely relevant.

TREC2003. This data set is extracted from the topic dis-
tillation task of TREC20033. The goal of the topic distil-
lation task is to find good websites about the query topic.
There are 50 queries in this data set. For each query, the
human assessors decide whether a web page is an relevant
result for the query, so two levels of relevance are used: rel-
evant and not relevant. The documents in the TREC2003
data set are crawled from the .gov websites, so the fea-
tures extracted by link analysis are also used to represent
the query-document pair in addition to the content features

3http://trec.nist.gov/

used in the OHSUMED data set. The total number of fea-
tures are 44 and total number of query-document pairs is
49,171: 516 relevant examples and 48,655 non-relevant ex-
amples.

TREC2004. This data set is extracted from the data set of
the topic distillation task of TREC2004, so it is very similar
to the TREC2003 data set. This data set contains 75 queries
and 74,170 documents (444 are relevant and 73,726 non-
relevant) with 44 features.

Since TREC data have only two distinct labels with very
skewed distribution, the ranking on that data is more like
a binary classification problem on imbalanced data, and
thus less interesting than commercial search egnine data and
OHSUMED data from a ranking point of view.

5.2.2 Evaluation Metrics
To be consistent with Letor evaluation we use the three per-
formance metrics: Precision, Mean average precision and
Normalized Discount Cumulative Gain. All these evalua-
tion measures are widely used for comparing information
retrieval systems. In the case of multiple levels of judge-
ments, the Normalized Discount Cumulative Gain (NDCG)
is used [14]. The NDCG value of a ranking list is calculated
by the following equation:

NDCG@n = Zn

nX
i=1

(2ri − 1)/ log(i+ 1)



Table 3: NDCG, MAP, and Precision at position n on TD2003 data(average over 5 folds)

Methods ndcg@1 ndcg@2 ndcg@3 ndcg@4 ndcg@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.260 0.280 0.270 0.272 0.279 0.260 0.270 0.240 0.230 0.220 0.212
RankSVM 0.420 0.370 0.379 0.363 0.347 0.420 0.350 0.340 0.300 0.264 0.256
FRank-c4.2 0.440 0.390 0.369 0.342 0.330 0.440 0.370 0.320 0.260 0.232 0.245
ListNet 0.460 0.430 0.408 0.386 0.382 0.460 0.420 0.360 0.310 0.292 0.273
AdaRank.MAP 0.420 0.320 0.291 0.268 0.242 0.420 0.310 0.267 0.230 0.188 0.137
AdaRank.NDCG 0.520 0.410 0.374 0.347 0.326 0.520 0.400 0.347 0.305 0.268 0.185
QBRank 0.540 0.460 0.418 0.384 0.360 0.540 0.460 0.393 0.330 0.284 0.231
IsoRank 0.520 0.450 0.421 0.392 0.367 0.520 0.450 0.373 0.325 0.288 0.248

Table 4: NDCG, MAP, and Precision at position n on TD2004 data(average over 5 folds)

Methods ndcg@1 ndcg@2 ndcg@3 ndcg@4 ndcg@5 P@1 P@2 P@3 P@4 P@5 MAP

RankBoost 0.480 0.473 0.464 0.439 0.437 0.480 0.447 0.404 0.347 0.323 0.384
RankSVM 0.440 0.433 0.409 0.406 0.393 0.440 0.407 0.351 0.327 0.291 0.350
FRank-c4.2 0.440 0.467 0.448 0.435 0.436 0.440 0.433 0.387 0.340 0.323 0.381
ListNet 0.440 0.427 0.437 0.422 0.421 0.440 0.407 0.400 0.357 0.331 0.372
AdaRank.MAP 0.413 0.393 0.402 0.387 0.393 0.413 0.353 0.342 0.300 0.293 0.331
AdaRank.NDCG 0.360 0.360 0.384 0.377 0.377 0.360 0.320 0.329 0.300 0.280 0.299
QBRank 0.400 0.373 0.372 0.365 0.359 0.400 0.340 0.311 0.287 0.256 0.294
IsoRank 0.453 0.440 0.425 0.407 0.396 0.453 0.413 0.360 0.317 0.283 0.336

where ri is the grade assigned to the i-th document of the
ranking list. In our experiments, ri takes value of 0, 1 and
2 in OHSUMED data set for not, possibly and definitely
relevant documents respectively. For data sets with binary
judgments, such as TREC2003 and TREC2004 data set, ri
is set to 1 if the document is relevant and 0 otherwise. The
constant Zn is chosen so that the perfect ranking gives an
NDCG value of 1.

We apply QBrank and IsoRank to LETOR data and com-
pare them with other state-of-the-arts learning to rank algo-
rithms reported in LETOR package. Since this data are sig-
nificantly different from the commercial search engine data
in term of features, grades, etc, we re-tune the base regres-
sion tree parameters on their corresponding validation data.
Unlike on the commercial search engine data where we plot
DCGs for different methods against iterations (or number of
trees), we tune the number of trees as well for QBrank and
IsoRank on the validation set. For IsoRank, we simply set
the regularization parameter λ in (3) to be 10 without much
tuning.

Table 2 presents experimental results of the nine methods
on OHSUMED data, which, as mentioned earlier, are more
interesting than TREC data from a ranking point of view.
From the table, one can observe that 1) IsoRank outper-
forms QBRank at almost all metrics and 2) both are better
than the remaining seven methods. The first observation
demonstrates the effectiveness of ”global view” and ”mini-
mum effort” featured in IsoRank while the second indicates
boosting tree approaches work well for learning to ranking.
It is also interesting to see that some methods especially
RankBoost performs quite differently on the two TREC data
sets as shown in Table 3 and 4 respectively: RankBoost is

the worst in TD2003, but the best in TD2004. This could be
due to the characteristics of the data (only two distinct la-
bels with highly skewed distributions) and the method itself
(ability to learn from imperfect data). In contrast, IsoRank
seems more robust and performs reasonably well on both
TREC data sets.

6. CONCLUSIONS AND FUTURE WORK
In this paper we propose a new method for learning rank-
ing functions for information retrieval and Web search: we
use the total number of contradicting pairs as the objective
function and develop a novel functional iterative method
to minimize the objective function. It turns out that the
computation of the updates in the iterative method can in-
corporate all the preferences within a query using Isotonic
regression. This more global approach result in improve-
ment in the performance of the learned ranking functions.
We could also include in IsoRank tied pairs, e.g. pairs of
urls 〈xi, xj〉 with same grades. We denote the set of (i, j)
in those tied pairs as Vq. Accordingly, we would have the
following optimization problem,

min
δ
(m)
i

nX
i=1

(δ
(m)
i )2 + λ1nζ

2
1 + λ2nζ

2
2 (4)

subject to

hm(xi) + δ
(m)
i ≥ hm(xj) + δ

(m)
j + ∆Gij(1− ζ1), (i, j) ∈ Sq.

|hm(xi) + δ
(m)
i − hm(xj)− δ(m)

j | ≤ ζ2, (i, j) ∈ Vq.

ζ1, ζ2 ≥ 0.

As future research directions, we plan to provide more rig-
orous analysis of IsoRank, characterize theoretical as well



as computational properties of the computed updates and
their relations to gradient descent directions. We will also
seek to provide better understanding on the characteristics
of the data sets that influence the performance of various
existing methods for learning ranking functions, those can
include the levels of relevance judgment, the heterogeneity
of the features and the noise levels of the preference data.
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