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Abstract. Local methods for manifold learning generate a collection of local parameterizations
which is then aligned to produce a global parameterization of the underlying manifold. The alignment
procedure is carried out through the computation of a partial eigendecomposition of a so-called
alignment matrix. In this paper, we present an analysis of the eigen-structure of the alignment
matrix giving both necessary and sufficient conditions under which the null space of the alignment
matrix recovers the global parameterization. We show that the gap in the spectrum of the alignment
matrix is proportional to the square of the size1 of the overlap of the local parameterizations thus
deriving a quantitative measure of how stably the null space can be computed numerically. We also
give a perturbation analysis of the null space of the alignment matrix when the computation of the
local parameterizations is subject to error. Our analysis provides insights into the behaviors and
performance of local manifold learning algorithms.

1. Introduction. Consider the following unsupervised learning problem: we are
given a parameterized manifold M of dimension d embedded into the m-dimensional
Euclidean space Rm, d < m, and M = f(Ω) with a mapping f : Ω → Rm, where Ω
is open in Rd [9, section 5.22]; suppose we have a set of points x1, · · · , xN , sampled
possibly with noise from the manifold M,

xi = f(τi) + εi, i = 1, . . . , N,(1.1)

where the {εi} represent noise; we are interested in recovering the {τi} and/or the
mapping f(·) from the noisy data {xi}. This problem is generally known as manifold
learning or nonlinear dimension reduction, and has generated much research interest
in the machine learning and statistics communities [10, 12]. A class of local methods
for manifold learning starts with estimating a collection of local structures around each
sample point xi and then aligns (either implicitly or explicitly) those local structures to
obtain estimates for {τi} by computing a partial eigendecomposition of an alignment
matrix. Examples of local methods include LLE (Locally Linear Embedding) [10],
manifold charting [2], geodesic null space analysis [3], Hessian LLE [5], LTSA (Local
Tangent Space Alignment) [17], and the modified LLE (MLLE) [13]. Those methods
have been applied to analyzing high-dimensional data arising from application areas
such as computer vision, speech analysis as well as molecular dynamics simulations.

In contrast to the ever-increasing use of manifold learning methods and the fre-
quent appearance of new algorithms, little has been done to assess the performance of
those methods, even though manifold learning methods in general tend to be rather
sensitive to the selection of several tuning parameters [3, 4, 17]. Usually one applies
a manifold learning algorithm to a high-dimensional data set, sometimes one recovers
satisfactory parameter vectors, sometimes one obtains catastrophic folds in the com-
puted parameterization and one needs to tune the parameters and try again. This
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1The precise definition of the size of the overlap is given in section 6.
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is a rather unsatisfactory situation which calls for more research into the robustness
issues and the performance issues of manifold learning algorithms.

One source of the catastrophic folds in the computed parameterization is the
variety of errors involved in manifold learning including the noise in the data, the
approximation errors in learning the local structures, and the numerical errors in
computing the eigenspace of the alignment matrix. It is not surprising that these
errors will degrade the accuracy of the computed parameter vectors. However, in
addition to those issues, there is another important question that has been largely
ignored in the past: assuming, in the ideal noise-free case, that the local structures are
exactly known and the eigenvector space is exactly computed, will the local manifold
learning algorithms produce the true parameter vectors? The answer may actually be
negative: it very much depends on how the local structures overlap with one another.
If we cannot obtain the true parameter vectors in the noise-free case with all the
computations done without error, then we cannot expect to do something reasonable
when the data as well as the computations are subject to error.

The objective of this paper is to gain a better understanding of the key alignment
procedure used in local manifold learning methods by analyzing the eigen-structure
of the alignment matrix. We focus on the representative alignment matrix used in
LTSA, and we address two questions in particular: 1) under what conditions wa can
recover the parameter vectors {τi} from the null space of the alignment matrix if
the alignment matrix is computed exactly, and 2) how stable this null space is if the
computation of the alignment matrix is subject to error. We motivate the importance
of addressing the two problems using a simple example in section 3 after a brief review
of LTSA in section 2. We then approach the two problems as follows: in section 4, we
address the issue of how errors in computing the local parameterizations will affect the
null space of the alignment matrix. This allows us to focus on the spectral properties
of the ideal alignment matrices and separate the local error issues from the rest of the
discussions; section 5 is the main part of the paper, where we propose the concept of
affine rigidity to precisely address the first question above. We then establish a variety
of conditions to characterize when an alignment matrix is affinely rigid. Along the way
we also prove some properties of the alignment matrix that will have computational
significance; in section 6, we address the second question by proving a lower bound
for the smallest nonzero eigenvalue of the alignment matrix.

Remark. Though only the alignment matrices of LTSA are discussed in detail, we
believe that similar approaches can be applied to the analysis of other local methods
such as LLE, Hessian LLE, or even Laplacian eigenmap [1]. (See Appendix A for a
brief discussion of the alignment matrices used in LLE and Laplacian eigenmap.)

Notation. We use e to denote a column vector of all 1’s the dimension of which
should be clear from the context. N (·) and span(·) denote the null space and the range
space of a matrix, respectively. For an index set Ii = {i1, . . . , ik}, A(:, Ii) denotes
the submatrix of A consisting of columns of A with indices in Ii. A similar definition
A(Ii, :) is for the rows. We also represent the submatrix consisting of vectors xj , j ∈ Ii
by Xi = [. . . , xj , . . .] with j ∈ Ii (in the increasing order of the index j). For a set of
submatrices Ti = T (:, Ii), i ∈ Jj , we denote by TJj the submatrix T (:,∪i∈JjIi). ‖ · ‖2
is the spectrum norm and ‖ · ‖F is the Frobenius norm of a matrix. The superscript
T denotes matrix transpose. A† denotes the Moore-Penrose generalized inverse of A.
For an Hermitian matrix A of order n, λ1(A) ≤ · · · ≤ λn(A) denote the eigenvalues
of A in nondecreasing order. The identity matrix is denoted by I or I(d) if its order
d is indicated. Finally, λ+

min(A) denotes the smallest nonzero eigenvalue of a positive
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semi-definite matrix.

2. Alignment Matrices of LTSA. We first review how the LTSA alignment
matrices are constructed [17]. For a given set of sample points {xi}, we begin with
building a connectivity graph on top of those sample points which specifies, for each
sample point, which subset of the sample points constitutes its neighborhood [10].
Let the set of neighbors for the sample point xi be Xi = [xi1 , . . . , xiki

], including xi
itself. We approximate those neighbors using a d-dimensional (affine) linear subspace,

xij ≈ x̄i +Qiθ
(i)
j , Qi = [q(i)

1 , . . . , q
(i)
d ], j = 1, . . . , ki.

Here d is the dimension of the manifold,2 x̄i ∈ Rm, Qi ∈ Rm×d is orthonormal, and
θ

(i)
j ∈ Rd are the local coordinates of xij ’s associated with the basis matrix Qj . The

optimal least-square-fitting is determined by solving the following problem

min
c,Q,{θj}:QTQ=I(d)

ki∑
j=1

‖xij − (c+Qθj)‖22.

That is, x̄i is the mean of the xij ’s and θ
(i)
j = QTi (xj − x̄i). Using the singular value

decomposition of the centered matrix Xi− x̄ieT , Qi can be computed as the matrix of
the right singular vectors corresponding to the d largest singular values of Xi − x̄ieT
[6]. We postulate that in each neighborhood, the corresponding global parameter
vectors Ti = [τi1 , . . . , τiki

] of T ∈ Rd×N differ from the local ones Θi = [θ(i)
1 , . . . , θ

(i)
ki

]
by a local affine transformation. The errors of the optimal affine transformation are
then given by

min
ci,Li

ki∑
j=1

‖τij − (ci + Liθ
(i)
j )‖22 = min

ci,Li

‖Ti − (cieT + LiΘi)‖2F = ‖TiΦ̃i‖2F ,(2.1)

where Φ̃i is the orthogonal projection whose null space is spanned by the columns
of [e,ΘT

i ].3 Note that if Θi is affinely equal to Ti, i.e., span([e,ΘT
i ]) = span([e, TTi ]),

then TiΦ̃i = 0. In general, TiΦ̃i 6= 0, and we seek to compute the parameter vectors
{τi} by minimizing the following objective function,

N∑
i

(
min
ci,Li

ki∑
j=1

‖τij − (ci + Liθ
(i)
j )‖22

)
=

N∑
i

‖TiΦ̃i‖2F = tr(T Φ̃TT )(2.2)

over T = [τ1, . . . , τN ]. Here

Φ̃ =
N∑
i=1

SiΦ̃iSTi(2.3)

is the alignment matrix with Si ∈ RN×ki , the 0-1 selection matrix, such that Ti = TSi.
Imposing certain normalization conditions on T such as TTT = I(d) and Te = 0, the
corresponding optimization problem,

min
TTT =I(d), Te=0

tr(T Φ̃TT )(2.4)

2We assume d is known which can be estimated using a number of of existing methods [8, 15].
3Φ̃i can be represented as Φ̃i = I − [e, ΘT

i ][e, ΘT
i ]† ∈ Rki×ki .
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Fig. 3.1. The spiral data points (left column) and the second eigenvector u of Φ̃ when Φ̃ has
two small eigenvalues (middle column) or more than two small eigenvalues (right column) close to
zero.

is solved by computing the eigenvectors corresponding to λ2, · · · , λd+1 of Φ̃, here the
eigenvalues are arranged in nondecreasing order, i.e., λ1 = 0 ≤ λ2 ≤ · · · ≤ λd+1 ≤
· · · ≤ λN . We remark that if T is a solution to the problem (2.4), then QT is also a
solution for any orthogonal matrix Q of order d.

3. An Illustrative Example. In the ideal case when we have span([e,ΘT
i ]) =

span([e, TTi ]), it is not difficult to see that TT belongs to the null space of the align-
ment matrix (cf. section 4), and it looks like we can just use the (approximate) null
space of the alignment matrix to compute the parameter vectors as suggested be-
fore. Unfortunately, the null space may contain unwanted information in addition to
span([e, TT ]), depending on how the neighborhoods overlap with each other. In the
following, we present a simple example to illustrate this phenomenon.

In what follows, we call each Xi (or the corresponding Ti) a section. Our analysis
is general enough that the Xi can correspond to an arbitrary subset of the sample
points. So henceforth, the sample points x1, . . . , xN are grouped into s (possibly
overlapping) sections X1, . . . , Xs, and the i-th section Xi is denoted by the points
{xj | j ∈ Ii} with the index subset Ii ⊆ {1, . . . , N}.

Example 1. We generate N = 100 two-dimensional points

xi = [ti cos(ti), ti sin(ti)]T , i = 1, . . . , 100,

sampled from the one-dimensional spiral curve with t1, . . . , tN equally spaced in the
interval [π/5, 2π] with t0 = π/5 and tN = 2π. See the upper-left panel of Figure
3.1 for the set of the two-dimensional sample points. It is well known that a regular
smooth curve is isometric to its arc length. The exact arc length coordinate τi for the

sample point xi on the spiral curve is given by τi =
∫ ti

t0

√
1 + t2dt.

First we choose 19 sections Xi = X(:, Ii), i = 1, . . . , 19, with the index subsets,

Ii = (5(i− 1) + 1) : (5i+ 2), i = 1, . . . , 18, I19 = 91 : 100.
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Thus, each pair of two consecutive sections share exactly two points. We construct the
alignment matrix Φ̃ as defined by (2.3): initially set Φ̃ = 0 and update its principle
submatrix Φ̃(Ii, Ii) one-by-one as follows,

Φ̃(Ii, Ii) := Φ̃(Ii, Ii) + Φ̃i, i = 1, · · · , 19.

The orthogonal projection Φ̃i is given by Φ̃i = I − PiPTi with Pi = [ 1√
ki
e, vi]. Here

vi is the eigenvector of (Xi − x̄ieT )T (Xi − x̄ieT ) corresponding its largest eigenvalue.
The resulting alignment matrix Φ̃ has two smallest eigenvalues 10−16 in magnitude
and the third smallest eigenvalue is about 10−5, distinguishable from the two smallest
eigenvalues. The solution of problem (2.4) with d = 1 is given by the eigenvector
u = [u1, . . . , uN ]T of Φ̃ corresponding to the second smallest eigenvalue, that is an
affine approximation of the arc length coordinates of the sample points. Ideally, u is
affinely equivalent to the arc length τ , i.e., there are a 6= 0 and b such that ui = aτi+b
for all i. In the middle panel of the top row of Figure 3.1, we plot the computed {ui}
against the arc length coordinates {τi}. The plotted points are approximately on a
straight line, indicating an accurate recovery of {τi} within an affine transformation.

If the minimal number of the shared points among some of the consecutive sections
is reduced to one, Φ̃ may have more than two small eigenvalues close to zero. The
corresponding eigenvectors contain not only e and τ = [τ1, . . . , τN ]T but also other
unwanted vectors. For example, if we delete the last columns in the two sections X6

and X13, respectively, then the two consecutive sections X6 and X7 share one point
only. So do X13 and X14. This weakens the overlap between X6 and X7, as well as
that between X13 and X14. As a result, Φ̃ has four eigenvalues close to zero (there are
four computed smallest eigenvalues of magnitude 10−16) and four linearly independent
eigenvectors which include e, τ and two other vectors. Since the computed eigenvector
of the second smallest eigenvalue is a linear combination of the four eigenvectors, it
generally will not give the correct approximation to τ . In the top right panel of Figure
3.1, we plot such a computed eigenvector u against τ , showing that it is no longer
proportional to τ . Similar phenomenon occurs for noisy data as well, see the bottom
row of Figure 3.1 where we added noise to the spiral curve data.

This example clearly shows the importance of the null space structure of the
alignment matrix in recovering the parameter vectors. In particular, lack of overlap
among the sections will result in a null space producing incorrect parameter vectors.

4. Perturbation Analysis of the Alignment Matrix. Affine errors intro-
duced in the local coordinates will produce an inaccurate alignment matrix which
determines if the resulting parameter vectors acceptable or not. In this section, we
consider the effects of local approximation errors on the alignment matrix and its null
space. We will make use of matrix perturbation analysis on the alignment matrix. Our
approach consists of the following two parts: 1) error estimation of the approximation
of alignment matrix in terms of the local errors and 2) perturbation analysis of null
space of the alignment matrix resulted by the approximation error. In particular, we
will show that the local errors are magnified by the condition numbers of the centered
sections T̂i = Ti − t̄ieT , where t̄i is the mean of columns in Ti. In addition to the
error in the alignment matrix due to the local approximations, the nonzero smallest
eigenvalue of the exact alignment matrix Φ is also crucial to the determination of the
accuracy of the computed parameter vectors.

To this end, let X1, . . . , Xs be s sections of the sample points x1, . . . , xN given in
(1.1) and T1, . . . , Ts the corresponding sections of the parameter vectors τ1, . . . , τN .
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Denote by Ii the index subset of the section i with size ki = |Ii|, i.e.,

Xi = {xj | j ∈ Ii}, Ti = {τj | j ∈ Ii}.

The local coordinates, denoted by Θi, of points in section Xi are generally not equal
to Ti within an affine transformation. The optimal affine error is

‖Ei‖2 = min
c,L
‖Ti − (ceT + LΘi)‖2.(4.1)

As shown in (2.1), ‖Ei‖2 = ‖TiΦ̃i‖2. We now consider how the local errors affect the
alignment matrix.

Denote by Φ the alignment matrix constructed by the exact parameter vector
sections T1, . . . , Ts, and Φ̃ the alignment matrix constructed by the sections of local
coordinates Θ1, . . . ,Θs, as in (2.3),

Φ̃ =
s∑
i=1

SiΦ̃iSTi , Φ =
s∑
i=1

SiΦiSTi ,

where, Φ̃i and Φi are the orthogonal projections with null spaces

N (Φ̃i) = span([e,ΘT
i ]), N (Φi) = span([e, TTi ]),

respectively. We assume that both [e,ΘT
i ] and [e, TTi ] are of full-column rank, and

ki ≥ d+2 for all i to insure that Φ̃i and Φi are not identically zero. It is easy to verify
that [e, TTi ] is of full column rank if and only if the centered matrix T̂i = Ti − t̄ieT
is of full row rank. In that case, T̂i has a finite condition number defined by κ(T̂i) =
‖T̂i‖2‖T̂ †i ‖2, which will appear in our error bound below.

Theorem 4.1. Let ‖Ei‖2 denote the local error defined in (4.1) and κ(T̂i) the
condition number of T̂i. Then

‖Φ̃− Φ‖2 ≤
s∑
i=1

‖Ei‖2
‖T̂i‖2

κ(T̂i).(4.2)

Proof. The error matrix Φ̃− Φ is clearly given by Φ̃− Φ =
∑s
i=1 Si(Φ̃i − Φi)STi ,

and hence, ‖Φ̃ − Φ‖2 ≤
∑
i ‖Φ̃i − Φi‖2. What we need to do is to bound the errors

‖Φ̃i −Φi‖2. Since both Φ̃i and Φi are orthogonal projections with the same rank, by
Theorem 2.6.1 of [6] we have that

‖Φ̃i − Φi‖2 = ‖(I − Φi)Φ̃i‖2.

We can write I−Φi = 1
ki
eeT + T̂ †i T̂i, because I−Φi is the orthogonal projection onto

span([e, TTi ]). It follows from eT Φ̃i = 0 that

‖Φ̃i − Φi‖2 = ‖T̂ †i T̂iΦ̃i‖2 ≤ ‖T̂
†
i ‖2‖T̂iΦ̃i‖2 =

‖Ei‖2
‖T̂i‖2

κ(T̂i).

The error bound in (4.2) follows immediately by summing the above error bounds.
It is gratifying to see that the local errors affect the alignment matrix in a linear

fashion, albeit by a factor which is the condition number of T̂i. We remark that these
condition numbers may be made smaller if we increase the size of the neighborhoods.
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Now we consider the perturbation analysis of the null space of the alignment
matrix. The following theorem gives an error bound for this approximation (related
to Theorem 4.1 in [18]) in terms of the the smallest nonzero eigenvalue λ+

min(Φ) of Φ
and the approximation error ‖Φ̃− Φ‖2.

Theorem 4.2. Let r = dim(N (Φ)) and let U be an eigenvector matrix of Φ̃
corresponding to the r smallest eigenvalues. Denote λ+

min = λ+
min(Φ), ε = ‖Φ̃ − Φ‖2.

If ε < 1
4λ

+
min and 4ε2(1− λ+

min + 2ε) < (λ+
min − 2ε)3, then there exists an orthonormal

basis matrix G of N (Φ) such that

‖U −G‖2 ≤
2ε

λ+
min − 2ε

.(4.3)

Proof. Let G0 be an orthonormal basis matrix of N (Φ) and G1 the orthogonal
complement of G0, i.e., [G0, G1] is an orthogonal matrix. By the standard perturba-
tion theory [11, Theorem V.2.7] for invariant subspaces, there is a matrix P satisfying

‖P‖2 ≤
2ε

λ+
min − 2ε

(4.4)

such that Ũ = (G0 +G1P )(I+PTP )−1/2 is an orthogonal basis matrix of an invariant
subspace of Φ̃. By simple calculation, we have that

‖Ũ −G0‖2 =
∥∥∥∥[ (I + PTP )−1/2 − I

P (I + PTP )−1/2

]∥∥∥∥
2

=

∥∥∥∥∥
[

(I + PTP )−1/2 − I
P (I + PTP )−1/2

]T [
(I + PTP )−1/2 − I
P (I + PTP )−1/2

]∥∥∥∥∥
1/2

2

= ‖2(I − (I + PTP )−1/2)‖1/22

≤ ‖P‖2.

The error bound (4.3) follows from the above bound and (4.4) if we can prove that
U = ŨQT holds with an orthogonal matrix Q of order r and we also set G = G0Q

T .
This is equivalent to proving that the invariant subspace span(Ũ) of Φ̃ is associated
with the r smallest eigenvalues of Φ̃. We just need to show that ‖Φ̃Ũ‖2 < λr+1(Φ̃).

We first estimate λr+1(Φ̃). By eigenvalue perturbation theory of symmetric ma-
trices [11], |λi(Φ̃)− λi(Φ)| ≤ ‖Φ̃− Φ‖2. It follows that

λr+1(Φ̃) ≥ λ+
min − ε,

since Φ is positive semidefinite and λr+1(Φ) = λ+
min. On the other hand, by (4.4),

‖Φ̃Ũ‖2 = ‖ŨT Φ̃Ũ‖2 ≤ ‖ŨT (Φ̃− Φ)Ũ‖2 + ‖ŨT Φ̃Ũ‖2

< ‖Φ̃− Φ‖2 +
‖P‖22

1 + ‖P‖22

≤ ε+
4ε2

4ε2 + (λ+
min − 2ε)2

< λ+
min − ε,

because 4ε2(1− λ+
min + 2ε) < (λ+

min − 2ε)3. Thus ‖Φ̃Ũ‖2 < λr+1(Φ̃).
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We now explain why Theorem 4.2 illustrates the importance of N (Φ) and λ+
min(Φ)

in understanding the alignment procedure in manifold learning. As we will show in
the next section, it is always true that span([e, TT ]) ⊆ N (Φ). Theorem 4.2 shows
that the true parameter vectors can be obtained, up to the error bound in (4.3),
from the invariant subspace of the computed alignment matrix Φ̃ corresponding to
its smallest eigenvalues, provided the errors introduced to the alignment matrix are
relatively small. The smallest positive eigenvalue λ+

min(Φ) of the true alignment matrix
determines how much error is allowed in the computed alignment matrix for a reliable
recovery of the parameter vectors by LTSA. Specifically, if N (Φ) = span([e, TT ]),
good approximation in the local coordinate matrices Θi and a not too small λ+

min(Φ)
will guarantee that the eigenvector matrix of Φ̃ corresponding to the d + 1 smallest
eigenvalues will give a good approximation of the parameter vectors T up to an affine
transformation.

5. The Null Space of the Alignment Matrix. This section focuses on the
null space of the ideal alignment matrix Φ. We will establish conditions under which
the equality N (Φ) = span([e, TT ]) holds. The section is divided into the following
five parts: 1) we first establish some general properties about the null space of the
alignment matrix; 2) we then present a necessary and sufficient condition for N (Φ) =
span([e, TT ]) in the special case when we have two sections, i.e., s = 2; 3) we give
necessary conditions for the general case s ≥ 3; 4) we also present sufficient conditions
for the general case s ≥ 3, and 5) finally we establish an interesting contraction
property of N (Φ) when some sections are merged into super-sections.

5.1. General properties of N (Φ). It follows from the definition of Φ that

Φ[e, TT ] =
∑
i

SiΦiSTi [e, TT ] =
∑
i

SiΦi[e, TTi ] = 0,

which implies that

span([e, TT ]) ⊆ N (Φ).(5.1)

Consider a null vector v ∈ N (Φ). Denote by vi = Siv the restriction of v to
the section Ti, i = 1, . . . , s. Since each term SiΦiSTi in Φ is positive semidefinite,
Φv = 0 implies SiΦiSTi v = 0, hence the restriction vi must be a null vector of Φi. So
vi ∈ span([e, TTi ]) by the definition of Φi, and therefore, it can be represented as

vi = [e, TTi ]wi, wi ∈ Rd+1.(5.2)

The vector wi defines an affine transformation from Rd to R, wi : τ → [1, τT ]wi ≡
wi(τ). Notice that the common part of each pair vi and vj should be equal, i.e.,

[e, TTij ]wi = [e, TTij ]wj ,(5.3)

where Tij is the intersection of Ti and Tj .
Definition 5.1. Let w = {w1, . . . , ws} be a set of (d + 1)-dimensional vectors.

We call w a certificate for the collection {T1, . . . , Ts} if the conditions (5.3) hold for
all i 6= j. In particular, w is a trivial certificate if all wi’s are equal to each other.

As we mentioned above, each certificate w = {w1, . . . , ws} defines a collection of
s linear affine maps from Rd to R: τ → [1, τT ]wi. If we restrict the i-th map wi on
the columns of Ti, then w defines a function on the N columns of T to R:

w : τ ∈ Ti → [1, τT ]wi, i = 1, · · · , s,
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where τ ∈ Ti means that τ is a column of Ti. There is no ambiguity for vectors
belonging to the intersection of two sections, say Ti and Tj , since the conditions (5.3)
hold. Thus, w maps T ∈ Rd×N to a vector v ∈ RN whose j-th component is defined
by w(τj) = [1, τTj ]wi if the j-th column τj ∈ Ti, i.e.,

v = w(T ) ≡ [w(τ1), · · · , w(τN )]T .

What we are interested is the setW =W{Ti} of all certificates of a fixed collection
{Ti} of T . It is easy to verify that W is a linear space with the usual addition and
scalar multiplication operations. For the fixed collection {Ti} of T , let us denote by
φ the mapping from W to RN determined by w(T ):

φ : w → v = w(T ),(5.4)

and denote it as v = φ(w). It is easy to verify that φ is a linear map.
There is a close relation between N (Φ) and the certificate space W through the

linear map φ for the considered collection {T1, . . . , Ts}: for a given w ∈ W, consider
the restriction vi of vector v = φ(w) to Ti. By definition, vi is given by (5.2) for
i = 1, · · · , s. It follows that v is a null vector of Φ. On the other hand, we have
shown that for each v ∈ N (Φ), there is a certificate w = {w1, . . . , ws} satisfying (5.2).
This implies v = φ(w). Therefore, φ is an onto-map from W to N (Φ). Since we
always assume that each [e, TTi ] is of full column rank, φ is also one-to-one and hence
isomorphic. Specially, φ maps a trivial certificate to a vector in span([e, TT ]) ⊂ N (Φ).

Theorem 5.2. 1) The null space N (Φ) and the certificate space W are isomor-
phic to each other and the linear transformation φ defined above is an isomorphism
between the two linear spaces. Moreover, the subspace of all trivial certificates is
isomorphic to the subspace span([e, TT ]) of N (Φ).

2) The equality N (Φ) = span([e, TT ]) holds if and only if {T1, . . . , Ts} has only
trivial certificates.

We single out those collections that have only trivial certificates.
Definition 5.3. We call a collection {T1, . . . , Ts} affinely rigid if it has only

trivial certificates.
Geometrically, those are the collections the overlaps among their sections are

strong and exhibit certain rigidity reminiscent of graph rigidity discussed in [7]. In
particular, part 2) of Theorem 5.2 can be restated as

N (Φ) = span([e, TT ]) if and only if {T1, . . . , Ts} is affinely rigid.

5.2. Necessary and sufficient conditions of affine rigidity for s = 2.
Consider the case when s = 2, i.e., Φ = S1Φ1S

T
1 + S2Φ2S

T
2 for two sections T1 and

T2. In this case, we can characterize affine rigidity using an intuitive geometric notion
defined below.

Definition 5.4. We say two sections Ti and Tj are fully overlapped if the
intersection Tij = Ti ∩ Tj is not empty and [e, TTij ] is of full column-rank.

Clearly, Ti and Tj are fully overlapped if they share at least two distinct points
in the one-dimensional case d = 1, or if they share at least three points that are
not co-linear in the two-dimensional case. Using this concept, we can establish the
following result.

Theorem 5.5. {T1, T2} is affinely rigid if and only if T1 and T2 are fully over-
lapped.
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(a) (b)

Fig. 5.1. Two possible layouts for the global coordinates.

Proof. We only show the necessity. Let us assume that T1 and T2 are not fully
overlapped. Since [e, TT12] is not of full column rank, we can find distinct w1 and w2

such that T12w1 = T12w2. Thus w = {w1, w2} is a non-trivial certificate for {T1, T2}.
Hence, {T1, T2} is not affinely rigid by Theorem 5.2.

We now illustrate the case when a pair of sections are not fully overlapped by a
simple example with d = 1.

Example 2. Consider the situation depicted in Figure 5.1. The data set has
five points marked by short vertical bars. Two sections are considered as shown in
panel (a) of Figure 5.1 with a thick line segment and a thin line segment connecting
the points in each section. The first section consists of the left three points, and the
second one consists of the right three points. The two sections share a single point
denoted by a circle. We can fold the second section around the point marked by circle,
while keeping the first section unchanged, see the resulting layout shown in the panel
(b). This example clearly shows that the collection of the two sections is not affinely
rigid.

The algebraic picture of the above is also clear. Let τ1, . . . , τ5 be real numbers
denoting the five different points. T = [τ1, . . . , τ5], T1 = [τ1, τ2, τ3] and T2 = [τ3, τ4, τ5],
giving T12 = τ3. It is easy to verify that [e, TT1 ] and [e, TT2 ] are of full rank. However
[e, TT12] has a nonzero null vector w0 = [τ3,−1]T . Thus, for each certificate w =
{w1, w2} of {T1, T2}, w′ = {w1, w2 + w0} is a different certificate of {T1, T2}. One of
w and w′ must be non-trivial, and hence the collection of sections is not affinely rigid.

5.3. Necessary conditions of affine rigidity for s ≥ 3. For the case when a
collection has three or more sections, we can partition the sections into two subsets,
say {Ti1 , . . . , Tik} and {Tik+1 , . . . , Tis}, and consider the union of the sections in each
subset,

T1:k = Ti1 ∪ . . . ∪ Tik , Tk+1:s = Tik+1 ∪ . . . ∪ Tis .

The following theorem shows that affine rigidity of T implies that T1:k and Tk+1:s are
fully overlapped.

Theorem 5.6. If the collection {T1, . . . , Ts} is affinely rigid, then for any parti-
tions {Ti1 , . . . , Tik} and {Tik+1 , . . . , Tis} with 1 ≤ k < s, ∪kj=1Tij and ∪sj=k+1Tij are
fully overlapped.

Proof. We prove this theorem by reduction to absurdity. If there is a partition,
without loss of generality we denote the partition as, {T1, · · · , Tk} and {Tk+1, . . . , Ts}
(k < s) such that the two super-sections T1:k = ∪kj=1Tj and Tk+1:s = ∪sj=k+1Tj are
not fully overlapped, then there are (d+ 1)-dimensional vectors w′ 6= w′′ such that

[e, TT1:k,k+1:s]w
′ = [e, TT1:k,k+1:s]w

′′,

where T1:k,k+1:s is the intersection of T1:k and Tk+1:s. Define w = {w1, . . . , ws} with

w1 = · · · = wk = w′, wk+1 = · · · = ws = w′′,
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section 1 section 2 section 3 

section 4 

Fig. 5.2. Overlapping patterns of four sections.

It is obvious that w = {w1, . . . , ws} is a non-trivial certificate for {T1, . . . , Ts}. By
Definition 5.3, {T1, . . . , Ts} is not an affinely rigid, a contradiction to the assumption
of the theorem.

The necessary condition shown above is, however, not sufficient if s > 2. Below
is a counterexample for s = 4 and an arbitrary k with 1 ≤ k < s.

Example 3. Consider a data set of seven one-dimensional points

{−3,−2,−1, 0, 1, 2, 3}

and an associated collection of four sections (s = 4),

T1 = [−3,−2,−1], T2 = [−1, 0, 1], T3 = [1, 2, 3], T4 = [−2, 0, 2].

See Figure 5.2 for each section denoted by arrows emitting from a single point. Clearly
each section Ti and the union of the rest are fully overlapped. Let k = 1, 2 or
3. Consider any partitions {Ti1 , . . . , Tik} and {Tik+1 , . . . , Ti4}. It is easy to verify
that the union ∪kj=1Tij and ∪4

j=k+1Tij are always fully overlapped, since they share
two or more distinct points in the line. We show, however, that {T1, · · · , T4} is not

affinely rigid. To this end, we represent each Φi explicitly as follows: Φi =
1
6
qqT

with q = [1,−2, 1]T , due to each [e, TTi ]T has the same null space span(q). Let
z = [0, 0, 0, 1, 2, 2, 2]T . The restrictions zi = STi z of z corresponding to Ti are

ST1 z =

 0
0
0

 , ST2 z =

 0
1
2

 , ST3 z =

 2
2
2

 , ST4 z =

 0
1
2

 ,
respectively. Since zTi q = 0 for i = 1, · · · , 4, we conclude that z is a null vector of Φ.
However, z /∈ span([e, TT ]). So N (Φ) 6= span([e, TT ]), or equivalently, {T1, · · · , T4} is
not affinely rigid.

In the above example, any pair of sections are not fully overlapped. However, it
is also possible that a collection is affinely rigid even if any pair of its sections are not
fully overlapped. Here is a simple example: Let T be the matrix of three vertices of
a regular triangle and T1, T2, T3 be three sections each consists of two vertices. The
resulting collection is affinely rigid but Ti and Tj are not fully overlapped for i 6= j.

5.4. Sufficient conditions of affine rigidity for s ≥ 3. We associate a col-
lection of sections {T1, . . . , Ts} with a graph G constructed as follows: its s vertices
represent the s sections, where there is an edge between vertices i and j if sections
Ti and Tj are fully overlapped. The following theorem gives a sufficient condition for
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affine rigidity of a collection of sections based on the connectedness of its associated
graph G.

Theorem 5.7. The collection {T1, . . . , Ts} is affinely rigid if its associated graph
G is connected.

Proof. We need to show if w = {w1, . . . , ws} is a certificate of T , then G is
connected implies that w is a trivial certificate.

Consider any pair of wi and wj . Because G is connected, there is a path, say
i1 = i, · · · , ir = j, connecting vertices i and j. The adjacency between ik and ik+1

implies that Tik and Tik+1 are fully overlapped, i.e., N ([e, TTik,ik+1
]) = {0}. It follows

from (5.3) with i = ik and j = ik+1 that wik = wik+1 for k = 1, · · · , r − 1. Hence
wi ≡ wi1 = wi2 = . . . = wir ≡ wj .

Now we consider the case when the graph G of {T1, . . . , Ts} is not connected. Let
the connected components of G be {G1, · · · , Gr}, i.e., each Gj is a connected subgraph
of G and there are no edges between vertices in different subgraphs. We denote by Jj
the index set of the vertices in subgraph Gj , and merge the sections Tk, k ∈ Jj into
a super-section

TJj = ∪k∈JjTk,

i.e., the matrix consisting of column vectors in {Tk, k ∈ Jj}. This collection of super-
sections {TJ1 , . . . , TJr

} produces an alignment matrix Φ̂. We show that both Φ and Φ̂
share a common null space.

Theorem 5.8. Let {TJ1 , · · · , TJr} be the super-sections obtained by merging con-
nected components of {T1, · · · , Ts}. Then N (Φ̂) = N (Φ).

Proof. Consider a null vector v of Φ, v = φ(w) with a certificate w = {w1, . . . , ws}
of {T1, . . . , Ts}. Due to the connectedness of subgraphs Gj , the sub-collection {Tk, k ∈
Jj} is affinely rigid by Theorem 5.7, and hence, each subset {wk, k ∈ Jj} is a trivial
certificate for the sub-collection {Tk, k ∈ Jj}, i.e., all wk, k ∈ Jj are equal to each
other. We simply denote them by wJj

, i.e., wk = wJj
for k ∈ Jj , j = 1, · · · , r. The

set ŵ = {wJ1 , . . . , wJr
} is clearly a certificate of {TJ1 , . . . , TJr

}. It is easy to verify
that φ(w) = φ̂(ŵ), where φ̂ is the isomorphic mapping from the certificate space of
{TJ1 , . . . , TJr

} to the null space of the alignment matrix Φ̂. Thus v = φ(w) = φ̂(ŵ) ∈
N (Φ̂). On the other hand, any null vector of Φ̂ also belongs to N (Φ).

The above theorem says that merging sections with connected associated graphs
does not change the null space of the alignment matrix. Equivalently, the affine
rigidity of the original sections can be detected from the affine rigidity of the resulting
super-sections. This fact motivates us to consider the connectedness of the associated
graph Ĝ for the collection of the super-sections {TJ1 , · · · , TJr

}, where there is an edge
between two vertices if the associated super sections are fully overlapped. We call Ĝ
a coarsening of G. By Theorem 5.7 and Theorem 5.8, {T1, . . . , Ts} is affinely rigid
if Ĝ is connected. This coarsening procedure can be repeated, i.e., by finding the
connected components of Ĝ and so on. This coarsening procedure terminates, if

1) the current graph has only one vertex, or
2) the current graph has two or more vertices and all vertices are isolated.

We call the graph obtained in the last step of the above coarsening procedure the
coarsest graph and denote it by G∗. We also use |G| to denote the number of vertices
in a graph G. One can easily prove the following result by Theorems 5.5 and 5.7.

Theorem 5.9. Let G∗ be the coarsest graph of the collection {T1, . . . , Ts}. Then
(1) {T1, . . . , Ts} is affinely rigid if |G∗| = 1, and
(2) {T1, . . . , Ts} is not affinely rigid if |G∗| = 2, or if |G∗| = 3 and d = 1.



13

Proof. We just prove that if d = 1 and |G∗| = 3, then {T1, T2, T3} is not affinely
rigid. We show this by constructing a non-trivial certificate for T .

Without loss of generality, we assume that the intersection Tij between Ti and
Tj is not empty for i 6= j. Since Ti and Tj are not fully overlapped for i 6= j,
rank([e, TTij ]) < d+ 1 = 2 and hence rank([e, TTij ]) = 1.

Now for the construction of a non-trivial certificate w = {w1, w2, w3}, we can
assume w3 = 0 without loss of generality. Thus, w = {w1, w2, w3} is non-trivial if and
only if either w1 or w2 is not zero. The conditions given in (5.3) now state

[e, TT12]w1 = [e, TT12]w2, [e, TT23]w2 = 0, [e, TT31]w1 = 0.

We rewrite the equations in the following matrix form: [e, TT12] [e, TT12]
0 [e, TT23]

[e, TT13] 0

[ w1

−w2

]
= 0.(5.5)

Because the rank of the coefficient matrix is less than or equal to three and its column
number is no less than four, the above linear equations have a nonzero solution

[
w1
−w2

]
.

Therefore, a non-trivial certificate exists for the collection {T1, T2, T3}. By Theorem
5.2, {T1, T2, T3} is not affinely rigid.

Unfortunately, we still cannot conclude that the original collection is not affinely
rigid for the more general case |G∗| > 3. Here is a counterexample with d = 1 from
Example 3.

Example 4. We change the first section in Example 3 by adding the last point
to it, and keep other sections unchanged,

T1 = [−3,−2,−1, 3], T2 = [−1, 0, 1], T3 = [1, 2, 3], T4 = [−2, 0, 2].

Any two sections in the collection are not fully overlapped since the size of each
intersection Tij is one and [e, TTij ] is a 1× 2 matrix that is not of full collum rank. So
there are no edges in the associated graph, i.e., G∗ = G and |G∗| = 4. However, the
collection is still affinely rigid.

Appendix B shows the existence of an affinely rigid collection with |G∗| = s for
any s and d satisfying 3 ≤ s ≤ d + 1. Of course, one can also construct a collection
with |G∗| = s that is not affinely rigid. Appendix C gives geometric conditions for
affinely rigid collections with |G∗| = 3 and d = 2.

5.5. Merging sections. In the last subsection, we discuss a coarsening pro-
cedure that involves merging connected components, i.e., merging the sections in a
connected component into a super-section. This kind of coarsening procedure pre-
serves the null space (cf. Theorem 5.8). In this subsection, we further discuss the
merging process with regard to: 1) merging components that are not necessarily con-
nected; and 2) merging sections that do not form a connected component but the
corresponding sub-collection is affinely rigid. We will show that for 1) the size of null
space does not increase while for 2) the null space remains unchanged.

Theorem 5.10. Let Φ and Φ̂ be the two alignment matrices of {T1, . . . , Ts} and
{TJ1 , . . . , TJt

}, respectively, where TJj
is the super-section merging sections {Ti, i ∈

Jj}, j = 1, . . . , t. Then N (Φ̂) ⊆ N (Φ).
Proof. Given a certificate ŵ = {wJ1 , . . . , wJt

} for the collection {TJ1 , . . . , TJt
}.

It can be split to a certificate w = {w1, . . . , ws} of {T1, . . . , Ts} with wk = wJj , for
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k ∈ Jj , j = 1, . . . , t. By definition, φ(w) = φ̂(ŵ) with the isomorphic mappings φ and
φ̂ as defined in (5.4). So each null vector φ(ŵ) of Φ̂ is also a null vector of Φ, i.e.,
N (Φ̂) ⊆ N (Φ).

Theorem 5.10 suggests that one can modify the alignment matrix Φ by merging
the sections in order to push the null space to the desired subspace span([e, TT ]). For
example, if merge any two sections given in Example 3, the graph of the resulting
sections can be recursively coarsened to a connected graph and hence for the modified
Φ̂, N (Φ̂) = span([e, TT ]) holds by Theorem 5.9.

The following theorem shows that merging affinely rigid sub-collections cannot
change the null space of the alignment matrix. It generalizes Theorem 5.8 slightly
and has a similar proof which will not be repeated here.

Theorem 5.11. Let Φ and Φ̂ be the two alignment matrices of {T1, . . . , Ts} and
{TJ1 , . . . , TJt

}, respectively. If each sub-collection {Ti, i ∈ Jj} is affinely rigid for
j = 1, . . . , t, then N (Φ̂) = N (Φ).

6. The Smallest Nonzero Eigenvalue(s) of the Alignment Matrix. How
well N (Φ) can be determined numerically depends on the magnitude of its smallest
nonzero eigenvalue(s). This has significant ramifications when we need to use eigen-
vectors of an approximation of Φ corresponding to small eigenvalues to recover the
parameter vectors {τi}. Theorem 4.2 gives further elaboration in this regard. The
objective of this section is to establish bounds for the smallest nonzero eigenvalue.
We first give a characterization of the smallest nonzero eigenvalue λ+

min(Φ) of Φ.
Theorem 6.1. Let Φi = QiQ

T
i be the orthogonal projections such that N (Φi) =

span([e, TTi ]) and Qi orthonormal. Let H = (Hij) be a block matrix with blocks
Hij = (SiQi)T (SjQj), Si is the selection matrix for Ti. Then λ+

min(Φ) = λ+
min(H).

Furthermore, if s = 2, then

λ+
min(Φ) = 1−max{σ : σ ∈ σ(H12), σ < 1 },

where σ(·) denotes the set of singular values of a matrix.
Proof. Let R = [S1Q1, · · · , SsQs]. By definition, Φ = RRT and H = RTR. It is

well known that Φ and H have the same nonzero eigenvalues, since 1) the eigenvalue
equation RRTx = λx implies RTRy = λy with y = RTx 6= 0, while RTRy = λy
yields RRT z = λz with z = Ry, and 2) the condition λ 6= 0 guarantees that x, y, and
z are nonzero simultaneously. So λ+

min(Φ) = λ+
min(H).

For the case when s = 2, H = I +
[

0 H12

HT
12 0

]
. Notice that the eigenvalues of[

0 H12

HT
12 0

]
are given by {σ1, . . . , σd+1,−σ1, . . . ,−σd+1}, where σ1 ≥ . . . ≥ σd+1

are the singular values of H12 [6]. Assume that 1 = σ1 = . . . = σ` > σ`+1 ≥ · · · ≥
σd+1, then λ+

min(H) = 1− σ`+1.

6.1. Submatrices Hij of H. Now we focus on the matrix H, and proceed to
derive an expression of its submatrices Hij = (SiQi)T (SjQj) = QTi S

T
i SjQj . Denote

by T cij the remainder of Ti by deleting Tij . Without loss of generality, we write
Ti = [T cij , Tij ].

We first derive an expression for Qi which will allow us to relate the centered
matrix T cij − tijeT to Hij , here tij is the mean of the columns in Tij . To this end, we
partition

[e, (Ti − tijeT )T ] =
[

(e, (T cij − tijeT )T )
(e, (Tij − tijeT )T )

]
≡
[
Bcij
Bij

]



15

and split it as [e, (Ti − tijeT )T ] = A1 +A2, where

A1 = [e, (Ti − tijeT )T ]B†ijBij =
[
BcijB

†
ijBij

Bij

]
,

A2 = [e, (Ti − tijeT )T ]
(
I −B†ijBij

)
=
[
Bcij
(
I −B†ijBij

)
0

]
.

It is known that Qi is orthogonal to [e, TTi ] if and only if Qi is orthogonal to [e, (Ti−
tije

T )T ], or equivalently, Qi is orthogonal to both A1 and A2 since span([e, (Ti −
tije

T )T ]) = span(A1) ∪ span(A2). Because of the structures of A1 and A2, one can
construct such a Qi as follows: Let Vij be an orthogonal basis matrix of the orthogonal
complement space of Bij , and Vi an orthogonal basis matrix of the subspace orthogonal
to Bcij

(
I −B†ijBij

)
. Then the two matrices

C1 =
[

0
Vij

]
and C2 =

[
−Vi

(BcijB
†
ij)TVi

]
are orthogonal to both A1 and A2. Note that C1 and C2 are orthogonal to each other
since the columns of (B†ij)

T are still in the range space of Bij . C1 is also orthonormal
and C2 can be normalized by multiplying it withDi = (I+V Ti (BcijB

†
ij)(B

c
ijB
†
ij)
TVi)−1/2

from the right. So we can set Qi to be the following orthonormal matrix,

Qi = [C1, C2Di] =

[
0
Vij

−ViDi

(BcijB
†
ij)TViDi

]
,

It follows that Qij = [Vij , (BcijB
†
ij)
TViDi]. Similarly, Qji = [Vij , (BcjiB

†
ij)
TVjDj ], where

Bcji = [e, (T cji − tijeT )T ], Vj is the basis matrix of the subspace orthogonal to Bcji(I −
B†ijBij), and Dj = (I + V Tj (BcjiB

†
ij)(B

c
jiB
†
ij)
TVj)−1/2. Now we can represent Hij =

QTijQji as

Hij =
[

(ViDi)TBcijB
†
ij(B

c
jiB
†
ij)
TVjDj

Iij

]
≡
[
Pij

Iij

]
.

Note that

‖Pij‖22 ≤
‖BcijB

†
ij‖22‖BcjiB

†
ij‖22

(1 + ‖BcijB
†
ij‖22)(1 + ‖BcjiB

†
ij‖22)

< 1.(6.1)

Therefore, the singular values of Hij less than one consist of the singular values of Pij .

6.2. Estimation of the singular values of Pij. The matrix B†ij is given by

B†ij =
[

e†

(Tij − tijeT )T†

]
,

since the first column of Bij = [e, (Tij− tijeT )T ] is orthogonal to the other columns. It
follows that BcijB

†
ij = ee†+

(
(Tij − tijeT )†(T cij − tijeT )

)T
. Define ηij = σmin(Tij − tijeT ),

the smallest nonzero singular value of Tij − tijeT . We obtain

‖BcijB
†
ij‖

2
2 ≤ 1 + ‖(Tij − tijeT )†(T cij − tijeT )‖22
≤ 1 + ‖(Tij − tijeT )†‖22‖T cij − tijeT ‖22
= 1 + ‖T cij − tijeT ‖22/η2

ij .
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Similarly, ‖BcjiB
†
ij‖22 ≤ 1 + ‖T cji − tijeT ‖22/η2

ij . Substituting this bound into (6.1), we
obtain that

‖Pij‖22 ≤
(η2
ij + ‖T cij − tijeT ‖22)(η2

ij + ‖T cji − tijeT ‖22)
(2η2

ij + ‖T cij − tijeT ‖22)(2η2
ij + ‖T cji − tijeT ‖22)

≤
(

1−
η2
ij

2η2
ij + δ2

ij

)2

,

where δij = max{‖T cij − tijeT ‖2, ‖T cji − tijeT ‖2}. We have

‖Pij‖2 ≤ 1−
η2
ij

2η2
ij + δ2

ij

.

For the case s = 2, we have

λ+
min ≥ 1− ‖P12‖2 ≥

η2
ij

2η2
ij + δ2

ij

Therefore we have proved the following quantitative result giving a lower bound on
the smallest nonzero eigenvalue of the alignment matrix for s = 2.

Theorem 6.2. Assume s = 2 and let δ12 = max{‖T c12− t12e
T ‖2, ‖T c21− t12e

T ‖2}.
Then

λ+
min(Φ) ≥ σ2

min(T12 − t12e
T )

2σ2
min(T12 − t12eT ) + δ2

12

≈
(σmin(T12 − t12e

T )
δ12

)2

.

Recall from Definition 5.4 that T1 and T2 are fully overlapped if [e, TT12] is of
full column rank. This condition is equivalent to σmin(T12 − t12e

T ) > 0. Therefore,
σmin(T12 − t12e

T ) can be considered as a quantitative measure of the size of the
overlap between T1 and T2. The above theorem states that the null space can be well
determined if T1 and T2 have a reasonably large overlap.

Remark. For s > 2 case, it is still not clear how to formulate the concept of the
size of overlaps and derive a similar bound.

6.3. Merging sections improves spectral gap. In section 5.5, we showed
that merging sections to super-sections may reduce the null space of the alignment
matrix. A natural question to ask is what effects merging sections will have on the
smallest nonzero eigenvalue of the alignment matrix. To address this issue we look at
a slightly more general notion of alignment matrix, we consider weighted alignment
matrix defined as

Φ(α) =
s∑
i=1

αiSiΦiSTi , αi > 0, i = 1, . . . , s.

Obviously, N (Φ(α)) = N (Φ), but λ+
min(Φ(α)) and λ+

min(Φ) may be different. We
remark that the results in the previous sections also hold for the weighted alignment
matrices with trivial modifications.

Theorem 6.3. Let Φ(α) be a weighted alignment matrix of {T1, . . . , Ts} defined
above, and TJj

the super-section merging {Tk, k ∈ Jj}, j = 1, . . . , r. Let

Φ̂(α̂) =
r∑
j=1

α̂jŜjΦ̂jŜTj , α̂j =
∑
k∈Jj

αk, j = 1, . . . , r
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be the weighted alignment matrix of {TJ1 , . . . , TJr
}. If each sub-collection {Tk, k ∈ Jj}

is affinely rigid, j = 1, . . . , r, then

λ+
min

(
Φ̂(α̂)

)
≥ λ+

min

(
Φ(α)

)
.

Proof. Let k ∈ Jj , Sjk = ŜTj Sk and Φjk = SjkΦkSTjk. We show Φ̂j ≥ Φjk, i.e.,
Φ̂j − Φjk is positive semidefinite. It is known that N (Φ̂j) ⊆ N (Φjk). So R(Φjk) ⊆
R(Φ̂j).4 We see that Φ̂j − Φjk is the orthogonal projection onto the orthogonal
complement R(Φjk)⊥ of R(Φjk) restricted to R(Φ̂j). So Φ̂j ≥ Φjk.

Applying the above result and using ŜjSjk = Sk, we see that

Φ̂(α̂) =
r∑
j=1

∑
k∈Jj

αkŜjΦ̂jŜTj ≥
r∑
j=1

∑
k∈Jj

αkŜjΦjkŜTj =
r∑
j=1

∑
k∈Jj

αkSkΦkSTk = Φ(α).

It yields that λi
(
Φ̂(α̂)

)
≥ λ+

i

(
Φ(α)

)
for all i. The result of the theorem follows

immediately since by Theorem 5.11, N (Φ̂(α̂)) = N (Φ̂) = N (Φ) = N (Φ(α)).

7. Concluding Remarks. The spectral properties of the alignment matrix play
an essential role in using local methods for manifold learning. The results proved in
this paper represent the first step towards a better understanding of those spectral
properties and their interplay with the geometric properties of the set of the local
neighborhoods. There are still several issues that deserve further investigation. One
of the issues is how to derive a set of conditions which are both necessary and sufficient
for the null space of the alignment matrix to recover the parameter vectors. In a sense,
the problem is akin to the graph rigidity problem [7]. The other issue is how to improve
the quantitative results proved in section 6 under more general conditions, i.e., for
cases s > 2.

Several algorithmic implications of our analysis can be further explored. Larger
overlaps among the local neighborhoods tend to give better conditioned null spaces of
the alignment matrices and thus larger sections are favored. However, the accuracy
of the local linear fitting methods used in LLE or LTSA generally will suffer on large
sections, especially in high curvature regions. One possibility is to use Isomap [12] or
a high-order local fitting for larger sections. The alignment matrix framework used in
this paper is quite versatile and can serve as the basis for incorporating several kinds
of prior information in manifold learning, for example, we may know a priori, the low
dimensional parameters {τi} for a subset of the sample points [14]. Those possibilities
will be further investigated in future research.
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Appendix A. Alignment matrices in LLE and Laplacian eigenmap. The
algorithm LLE [10] solves the following optimization problem

min
Y Y T =Id

∑
i

‖yi −
∑
j

yjwji‖22,(1.1)

where Y = [y1, . . . , yN ] ∈ Rd×N and {wji} are the local weights determined by the
optimal linear combination of xi using its neighbors (not including xi itself) with the
constraint

∑
j wji = 1. Using the notation for the index set Ji = {i1, . . . , ik} of the

neighbors including xi itself, we can write

yi −
∑
j

yjwji = Y Siwi, wi ∈ Rk,

where the t-th component of wi, t = 1, . . . , k, is 1 if i = it, or −wji if j = it 6= i. So

‖yi −
∑
j

yjwji‖22 = tr(Y SiwiwTi S
T
i Y

T ) = tr(Y SiΦLLEi STi Y
T )

with ΦLLEi = wiw
T
i , a rank-one semidefinite matrix. So LLE minimizes the trace of

Y ΦLLEY T under the normalization constraint Y Y T = Id with the alignment matrix

ΦLLE =
∑
i

SiΦLLEi STi .
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Obviously, ΦLLEi has null vector e.
In Laplacian eigenmap [1], the optimal problem solved is

min
Y∆Y T =Id

∑
i

∑
j∈Ji

‖yi − yj‖22wji,(1.2)

where wji are also local positive weights and ∆ = diag(δ1, . . . , δN ) with δi =
∑
j∈Ji

wj,i.

We have with Yi = [yi1 , . . . , yik ]∑
j∈Ji

‖yi − yj‖22wji = ‖[(yi − yi1)
√
wi1,i, . . . , (yi − yik)

√
wik,i]‖2F

= ‖Yi(eteT − I)D1/2
i ‖

2
F

= tr(Y Si(eteT − I)Di(eteT − I)TSTi Y
T ),

where, as before, t the index such that i = it and Di = diag(wi1,i, . . . , wik,i), Thus we
can represent the problem (1.2) as

min
Y DY T =Id

tr
(
Y
(∑

i

Si(eteT − I)Di(eteT − I)TSTi
)
Y T
)
.

Denoting Z = Y∆1/2, the above problem is equivalent to

min
ZZT =Id

tr
(
Z
(∑

i

∆−1/2Si(eteT − I)Di(eteT − I)TSTi ∆−1/2
)
ZT
)
.

We can write ∆−1/2Si = Si∆
−1/2
i with ∆i = diag(δi1 , . . . , δik). The optimization

problem now reads

min
ZZT =Id

tr(ZΦLapZT ), ΦLap =
∑
i

SiΦ
Lap
i STi

is the alignment matrix with the local ones

ΦLapi = ∆−1/2
i (eteT − I)Di(eteT − I)T∆−1/2

i .

Note that is the normalization constraint Y∆Y T = Id is replaced by the orthogonal
normalization Y Y T = Id, then ΦLapi = (eteT − I)Di(eteT − I)T and ΦLapi has a null
vector e as ΦLLEi .

Appendix B. Existence of Affinely Rigid Collections. The following propo-
sition shows the existence of an affinely rigid collection with |G∗| = s for any s and d
satisfying 3 ≤ s ≤ d+ 1.

Proposition B.1. Let s and d satisfy 3 ≤ s ≤ d + 1. Then there is an affinely
rigid collection in d-dimensional space such that |G∗| = s.

Proof. We construct the required collection with sd points in the d-dimensional
space Rd, explicitly. Let a1, · · · , ad−1 ∈ Rd be d − 1 linearly independent vectors
orthogonal to e ∈ Rd, and let b1, · · · , bs ∈ Rd be s vectors such that b2−b1, · · · , bs−b1
are linearly independent and each bi − bj has no zero components for i 6= j. Now we
have sd different points

[ai1, ai2, · · · , ai,d−1, bij ]T , i = 1, · · · , d, j = 1, · · · , s,
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that form T , where ak = [a1k, · · · , ad,k]T and bk = [b1k, · · · , bd,k]T . Denoting A =

[a1, · · · , ad−1], we see that T =
[[

AT

bT
1

]
,
[
AT

bT
2

]
, · · · ,

[
AT

bT
s

]]
. We consider the collection

of the s sections

Ti =
[[

AT

bTi−1

]
,

[
AT

bTi

]]
, i = 1, . . . , s,

with b0 = bs, each has 2d points. This collection has the overlapping Ti,i+1 =
[
AT

bT
i

]
,

i = 1, . . . , s− 1, Ts,1 =
[
AT

bT
s

]
, and other Tij ’s, i 6= j, are empty. Denoting B = [e,A],

a nonsingular matrix of order d, we see that [e, TTi ] =
[
B
B

bi−1
bi

]
are of full column

rank. However, for nonempty intersections Ti,j of the sections, none of the matrices

[e, TTi,i+1] = [B, bi], i = 1, . . . , s− 1, [e, TTs,1] = [B, bs](2.1)

has full column rank since the column number is larger than the row number. Hence
the associated graph G = G∗ and |G∗| = s.

Now we consider the collection rigidness. Let w = {w1, . . . , ws} be a certificate
of the collection. The overlap conditions (5.3) now become

[e, TTi,i+1](wi − wi+1) = 0, i = 1, . . . , s− 1, [e, TTs,1](ws − w1) = 0.(2.2)

We partition

wi − wi+1 =
[
δi
ηi

]
, i = 1, . . . , s− 1, ws − w1 =

[
δs
ηs

]
with δi ∈ Rd, ηi ∈ R, conforming to the column partition in (2.1). Substituting them
and (2.1) into (2.2), we obtain

Bδi = −ηibi, i = 1, . . . , s.(2.3)

It follows from
∑
i δi = 0 and

∑
ηi = 0 that∑

i

ηi(bi − b1) = −B
∑
i

δi = 0,

which implies that η2 = . . . = ηs = 0 since b2−b1, . . . , bs−b1 are linearly independent,
giving η1 = 0 since

∑
ηi = 0. By (2.3), δi = 0, i = 1, . . . , s, because B is nonsingular.

It follows that w must be trivial. Therefore, the collection is affinely rigid.

Appendix C. Geometric conditions for affinely rigid collections. We
now give geometric conditions characterizing affinely rigid collections with |D∗| = 3
and d = 2. Consider a collection of three sections {T1, T2, T3} in R2 such that the
associated graph G is already the coarsest, i.e., each [e, TTi ] is of full column rank
while [e, TTij ] is not of full column rank for i 6= j.

If there is a Tij such that it is empty or contains only one point, then the coefficient
matrix in (5.5) will be of column rank less than 6; additionally, there is nonzero
[wT1 ,−wT2 ]T satisfying the equation in (5.5). Thus w = {w1, w2, w3} with w3 = 0 is
a nontrivial certificate of the collection and hence the collection is not affinely rigid.
So in the following discussion, we can assume that each intersection Tij contains at
least two different points. In fact, all the points in Tij must be on a line segment
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(f)(d) (e)

(a) (b) (c)

Fig. C.1. Illustrations of the geometry analysis of the rigidity of collections with |G∗| = 3 and
d = 2.

`ij , because [e, TTij ] is not of full column rank. Whether the collection is affinely rigid
depends on the geometric positions of these line segments as illustrated in Figure C.1
with the following three situations: 1) the line segments are parallel to each others,
2) the line segments are not parallel and they do not meet at a point, and 3) the line
segments are not parallel but they meet at a point. We discuss these cases below.

Let w = {w1, w2, w3} be a certificate of the collection {T1, T2, T3}. Because all
the points in Tij must be on the line segment `ij , the certificate conditions (5.3)
[1, τT ]wi = [1, τT ]wj for τ ∈ Tij are equivalent to

[1, uTij ](wi − wj) = 0, [0, vTij ](wi − wj) = 0

with a point uij ∈ Tij and vij , a vector gives the direction of `ij . Writing the equations
above in terms of z1 = w1 − w3 and z2 = w2 − w3 (w1 − w2 = z1 − z2), we have six
equations with respect to z1 and z2 for determining the certificate w = {w1, w2, w3}.

[1, uT12](z1 − z2) = 0, [1, uT13]z1 = 0, [1, uT23]z2 = 0,(3.1)
[0, vT12](z1 − z2) = 0, [0, vT13]z1 = 0, [0, vT23]z2 = 0.(3.2)

Obviously, w is trivial if and only if [z1, z2] is zero.
For case 1) `12, `13, `23 are parallel to each others, then v12 = v13 = v23 and the

three equations in (3.2) reduce to the two equations [0, vT ]z1 = 0 and [0, vT ]z2 = 0 (v
is the common direction for the three line segments). So (3.1-3.2) give at most five
equations for the six variables in the two vectors z1 and z2. For case 2) `12, `13, `23

are not parallel but meet at a point u, we can set u12 = u13 = u23 = u. The three
equations with respect to uij in (3.1) reduce to the two equations [1, uT ]z1 = 0 and
[1, uT ]z2 = 0. Thus, (3.1-3.2) also give at most five equations for six variables. There-
fore, in both the cases, (3.1-3.2) must be underdetermined and have a nonzero solution
on (z1, z2). Thus, we have a nontrivial certificate and the collection {T1, T2, T3} is not
affinely rigid.
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For case 3) `12, `13, `23 are not parallel and they do not meet at a common point.
Without loss of generality, assume that `13 and `23 are not parallel and they meet at
τ0. Of course, τ0 /∈ `12. Consider a certificate w = {w1, w2, w3}. We denote wi(τ) =
[1, τT ]wi and use the equality wi(X) = wj(X) which means that wi(x) = wj(x) for
all x ∈ X. By (5.3),

w1(`12) = w2(`12), w1(`13) = w3(`13), w2(`23) = w3(`23).(3.3)

The last two equalities imply that

w1(τ0) τ0∈`13= w3(τ0) τ0∈`23= w2(τ0).

Together with w1(`12) = w2(`12), we see that w1(τ) = w2(τ) holds for at least three
points which are not co-linear. We conclude that w1 = w2. It follows that w1(`13 ∪
`23) = w3(`13 ∪ `23). Since `13 6= `23, we also have that w1 = w3. Therefore, w must
be trivial and the collection is affinely rigid.

We summarize the above discussions in the following result.
Theorem C.1. The collection with |G∗| = 3 and d = 2 is affinely rigid if and

only if the three line segments `12, `13, `23 corresponding to the super sections of the
associated coarsest graph are not parallel to each other and they do not meet at one
point.


