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ABSTRACT

In many applications in social network analysis, it is important to
model the interactions and infer the influence between pairs of
actors, leading to the problem of dyadic event modeling which
has attracted increasing interests recently. In this paper we focus
on the problem of dyadic event attribution, an important missing
data problem in dyadic event modeling where one needs to infer
the missing actor-pairs of a subset of dyadic events based on their
observed timestamps. Existing works either use fixed model pa-
rameters and heuristic rules for event attribution, or assume the
dyadic events across actor-pairs are independent. To address those
shortcomings we propose a probabilistic model based on mixtures
of Hawkes processes that simultaneously tackles event attribution
and network parameter inference, taking into consideration the de-
pendency among dyadic events that share at least one actor. We
also investigate using additive models to incorporate regularization
to avoid overfitting. Our experiments on both synthetic and real-
world data sets on international armed conflicts suggest that the
proposed new method is capable of significantly improve accuracy
when compared with the state-of-the-art for dyadic event attribu-
tion.

Categories and Subject Descriptors

I.2.6 [Artificial Intelligence]: Learning; J.4 [Computer Applica-

tions]: Social and Behavioral Sciences

General Terms

Algorithms, Experimentation, Performance

Keywords

Dyadic event, missing data problem, Hawkes process, variational
inference, international armed conflicts

1. INTRODUCTION
Analyzing dyadic event data using temporal point processes has

attracted much of recent research interests in the context of infor-
mation diffusion and prediction for social networks [6, 17]. Dyadic
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Figure 1: Illustration of the Dyadic Event Attribution Problem

events refer to the timestamped interactions involving pairs of ac-
tors, e.g., one user sending an email message to another, one user
retweeting a post of a particular celebrity, or the Taliban force at-
tacking civilian. Dyadic event data arise in a wide range of social
network applications, such as communication studies, social media,
crime prevention, and health care. The analysis of dyadic events is
generally much more complicated than the analysis of events with
single actors [9]: particular consideration needs to be given to the
interdependency among events and to the relationship among actor-
pairs [10]. For instance, an attack on the Afghanistan army by the
Taliban may incur counter-attacks from Afghanistan army’s allies,
resulting in conflicts between U.S. army and Taliban or those be-
tween British army and Taliban. Such interdependency resulting
from the underlying reciprocity or mutuality makes dyadic event
data modeling particularly useful and challenging.

The focus of this paper is an important missing data problem in
dyadic event data modeling: Because of the difficulty and uncer-
tainty in data collection, the dyadic data collected are usually in-
complete, and it is generally the case that we have the timestamps
of the events but we do not observe the actors of the events [16]. For
example, we may observed an event with civilian casualty but we
did not observe who carried out the act. Given a set of dyadic events
with some of the events missing one or two actors, we call the in-
ference problem of estimating the missing actors the dyadic event

attribution problem (DEAP). In this paper, we will develop tempo-
ral point process models to tackle DEAP and the key to its solution
is the exploration of the clustering and self- and mutual-excitation
properties of the events. The solution of DEAP will enhance our
understanding of dyadic event dynamics and it is also useful for
down-stream applications such as dyadic event classification and
visualization.

Before we proceed to technical discussions, we use a real-world
application, the Armed Conflict Location and Event Data (ACLED),



to illustrate DEAP. ACLED is a very comprehensive public col-
lection of political violence data for developing countries [1, 15].
ACLED contains several data sets categorized by geographic re-
gions, such as Africa and several Asian states. In the Afghanistan
data set, for example, 36.3% of the events are without the actor-
pair information which will be called unidentified events, while for
the African dateset, unidentified events account for 16.9%. DEAP
is then a problem of attributing the actor-pairs to those unidentified
events (Figure 1), i.e., inferring the actor-pairs of those unidenti-
fied events based on their timestamps as well as the timestamps
and actor-pairs of those identified events.
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(b) Conflicts between Taliban & Civilans, Taliban & Police
Force, Taliban & Afghan Government

Figure 2: Sequence of dyadic events recoding conflicts dur-

ing the period 2007-2011: Blue line denotes the conflicts be-

tween Tibalan and civilians, and red line denotes other conflicts

Tibalan involved in

Next we show that the clustering and self- and mutual-excitation
properties of the events can play a key role for solving DEAP. Fig-
ure 2(a) shows the sequence of 149 dyadic events of conflicts be-
tween Taliban and civilians during the years 2007-2011. In this
sequence, 70% conflicts happened within 5 days of the previous
conflict, i.e., the sequence shows chain reactions where the occur-
rence of one conflict tends to increase the probability of conflicts
in the near future. For instance, Taliban’s attack against civilians
can result in civilians’ protest against Taliban. We also find that
one conflict not only will trigger future conflicts happen between
the same actor-pair, but also future conflicts that share at least one
actor. For instance, in a large-scale terrorist attack, Taliban may
attack U.S army, Afghanistan army, and civilians in sequence. Tal-
iban’s attack against civilians may cause Afghanistan army to re-
venge. Figure 2(b) shows the sequence of conflicts happen between
Taliban & civilians, Taliban & Afghan Government, Taliban & Po-
lice Force. We find that over 93% conflicts between Taliban and
civilians happened within 5 days of the previous conflicts that Tal-
iban involved in, i.e. any conflicts Taliban participated in probably
caused conflicts between Taliban and civilians in the near future.

Our main contribution is to propose principled probabilistic mod-
els based on mixtures of Hawkes processes that simultaneously
addresses DEAP and network parameter inference underlying the
probabilistic models. We model the interactions between each actor-
pair using a Hawkes process. These Hawkes processes mutually

affect each other as we consider the interdependency among the
dyadic events shared by at least one actor. In addition, we discuss
an additive model to incorporate regularization considerations on
model parameters to avoid overfitting.

We conduct experiments on both synthetic and the ACLED data
set to evaluate the performance of our proposed methods, and com-
pare them with the state-of-the-art methods. We find that the pro-
posed methods are capable of significantly improve accuracy in
DEAP. Results on ACLED provide us a clear view of the trigger
and influence of conflict events under different factors like time,
regions, and actors.

2. RELATED WORK
Recent works usually modeled social networks that vary with

time by self-exciting point processes. One important self-exciting
process is the Hawkes process, which was first used to analyze
earthquakes [13], and later applied to a wide range of tasks such
as market modeling [5, 2], crime modeling [16], terrorist [14], con-
flict [18], and viral videos on the Web [4]. An EM framework was
proposed to estimate the maximum likelihood of Hawkes processes
[11]. However, most existing works focused on modeling the be-
haviors of a single user.

Our research is inspired by a recent work on DEAP targeting Los
Angeles gang network. Gang activities are successfully modeled
using Hawkes processes [16, 8]. However, these existing works
employed substantial approximation schemes and failed to opti-
mize the data likelihood. Another recent work on DEAP proposed a
spatial-temporal latent point process that independently modeled a
number of distinct event-cascades [3], which ignored the influence
among dyadic events that share at least one actor.

3. HAWKES PROCESSES
Before proposing our model for DEAP, we briefly describe a

powerful statistical tool, Hawkes processes, for modeling and ana-
lyzing event sequence data. A univariate Hawkes process {Nt} is
defined by

λ
∗(t) = µ(t) +

∫ t

−∞

κ(t − s)dN(s),

where µ : R → R+ is a deterministic base intensity (i.e. how likely
an event will occur when no other event triggers it), κ : R+ → R+

is a kernel function expressing the postive influence of past events
on the current value of the intensity process [7]. The process is
well known for its self-exciting property, which refers to a common
social phenomenon that the occurrence of one event increases the
probability of related events (events of the same type or share at
least one actor) in the near future.

The multivariate Hawkes process {Nm(t)|m = 1, . . . , M}, a
multi-dimensional extension to the univariate case, describes the
occurrences of M coupling point series [7, 12]. The intensity func-
tion λ∗ = [λ∗

1, . . . , λ
∗
M ]> is defined by

λ
∗
m(t) = µm(t) +

M
∑

m′=1

∫ t

−∞

κm′m(t − s)dNm′(s),

where κm′m is a triggering kernel between a pair of dimensions
m′ and m. This process is also known as linear mutually exciting
process since the occurrence of an event in one dimension increases
the likelihood of future events in all dimensions. Hence the Hawkes
process is suitable for DEAP as it ties unidentified events and iden-
tified events together through multiple dependencies.
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Figure 3: Illustration of the dependency among dyadic event

in our mixture model. Existing works only model the dependency

shown by red line, while our work models the dependency shown by

both red and blue line. A-B, A-C, C-D are actor-pairs.

4. MIXTURES OF HAWKES PROCESSES
This section introduces a novel probabilistic model based on

mixtures of Hawkes processes (MHP) that simultaneously addresses
DEAP and network parameter inference. DEAP can be formu-
lated as follows: our observation is a sequence of N dyadic events,
tn, n = 1, . . . , N , where tn is the time-stamp of the n-th event.
These N dyadic events belong to M actor-pairs, for each n, we as-
sociate a M -dimensional binary vector Zn = [Zn,1, . . . , Zn,M ]T ,
and Zn,m = 1 if and only if the n-th event happens on actor-pair
m. Here only part of actor-pair Zn’s are observed, while other Zn’s
are unknown. Based on tn’s and observed Zn’s, DEAP predicts un-
known Zn’s, in order to maximize the likelihood on the complete
data (Z, t) = {(Zn, tn)}N

n=1.
We predict unknown Zn’s of dyadic events based on their inter-

actions with related events that share at least one actor with them.
And we take such interactions as exciting processes where each
event will raise the probability of all the related events in the near
future. We turn to the Hawkes process to model such interactions.

We model the interactions between the two actors in each actor-
pair as a Hawkes process. That is to say, for each m, m = 1, . . . , M ,
the intensity of the model on actor-pair m is defined as:

λ
∗
m(t) = µm(t) +

∑

tl<t

κm′m(t − tl)
∑

m′∈Sm

Zl,m′ ,

where Sm is the set of actor-pairs that share at least one actor with
actor-pair m. The above definition illustrates that the probability of
a dyadic event at timestamp t is influenced by all dyadic events that
share at least one actor with it1. Figure 3 compares the dependency
among dyadic events modeled in our work with that modeled in
state-of-the-art methods.

In DEAP for conflict data, the baseline intensity µm(t) cap-
tures how often actor-pair m starts a conflict spontaneously (i.e.,
not triggered by any other conflicts). For simplicity, we assume
this cascade-birth process is a homogeneous Possion process with
µm(t) = µm. Kernel κm′m(t− tl) captures the influence between
sequential conflicts. We propose to decompose this pairwise trig-
gering kernel into

κm′m(t − tl) = α̂m′mκ(t − tl) = αmκ(t − tl),

here for simplicity, we assume the degrees of influence from all
historical events to the current event from actor-pair m are similar
and enforce that ∀m′, α̂m′m = αm. Thus αm models the degree of

1For each event that shares at least one actor with actor-pair m,
obviously we have

∑

m′∈Sm
Zl,m′ = 1.

influence from any historical event to the current event from actor-
pair m. And κ(t − tl)

2 captures the time-decay effect only.
Suppose we have observations (Z, t) = {(Zn, tn)}N

n=1 over the
observation window [0, T ], the likelihood for the complete data is

L(Z, t) =
M
∏

m=1





∏

n:Zn,m=1

λm(tn) exp

(

−

∫ T

0

λm(s)ds

)





=

N
∏

n=1

M
∏

m=1

λm(tn)Zn,m exp

(

−

M
∑

m=1

∫ T

0

λm(s)ds

)

.

5. VARIATIONAL INFERENCE
In this section, we derive a mean-field variational Bayesian in-

ference algorithm for our proposed MHP model.
For the likelihood L(Z, t) discussed above, the latent variables

Z’s are inter-dependent, i.e., the actor assignment at current step
Zn depends on all the past actor assignments {Z1, . . . , Zn−1} as
well as all the future ones {Zn+1, . . .}. Marginalizing over such
inter-connected series is intractable. We use mean-field variational
inference by assuming a fully-factorizable variational distribution
q for Z’s, which is parametrized by free variables φ’s as

q({Zn}}) =

N
∏

n=1

Multinomial(Zn|φn).

With the help of q, we lower-bound the log-likelihood:

L(t) = log(

∫

{Z}

L(Z, t)d{Z}) ≥ Eq[L(Z, t)] + E [q], (1)

where L(Z, t) = log(L(Z, t)), and E [q] denotes the Shannon en-
tropy of Z’s under q. L denotes the right-hand side of Eqn (1),
known as the evidence lower-bound (ELBO), which is the alter-
native of the true log-likelihood we are to optimize. We have

L =
N
∑

n=1

M
∑

m=1

φnm (Eq [log λm(tn)]) −
M
∑

m=1

∫ T

0
Eq [λm(s)]ds + E[q],

where the second term reduces to

T

M
∑

m=1

µm +
M
∑

m=1

N
∑

n=1

K(T − tn)
∑

m′∈Sm

φnm′αm,

where K(t) =
∫ t

0
κ(s)ds.

To break down the log-sum in Eq[log(λm(tn))], we again apply
Jensen’s inequality

Eq [log(λm(tn))] ≥

n−1
∑

l=1

∑

m′∈Sm

φlm′η
(m)
ln

log(αmκ(tn − tl))

−

n−1
∑

l=1

∑

m′∈Sm

φlm′η
(m)
ln

log(η
(m)
ln

) + η
(m)
nn log(µm) − η

(m)
nn log(η

(m)
nn ),

where we introduce a set of branching variables {η(m)}M
m=1. Each

η(m) is a N × N lower-triangular matrix with n-th row η
(m)
·n =

2Our paper uses the exponential kernel in experiments, i.e.,

κ(∆t) = ωe−ω∆t if ∆t ≥ 0 or 0 otherwise. However, the
model development and inference is independent of kernel choice
and extensions to other kernels such as power-law, Rayleigh, non-
parametric kernels are straightforward.
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Figure 4: Graphical model representation of MHP and the

variational distribution that approximates the likelihood

[η
(m)
1,n , . . . , η

(m)
n,n ]T satisfying two set of constraints list in the fol-

lowing:

η
(m)
ln

≥ 0, l = 1, . . . , n

η
(m)
nn +

n−1
∑

l=1

η
(m)
ln

∑

m′∈Sm

φl,m′ = 1, ∀n, m. (2)

Figure 4 concludes the graphical model representation of our
MHP model and the variational distribution used to approximate
the data likelihood.

Optimizing the Lagrangian of L
′, we have the following infer-

ence rule for φ’s:

φnm ∝ (µm)η
(m)
nn : self triggering

×

n−1
∏

l=1

(

αmκ(tn − tl)

η
(m)
ln

)η
(m)
ln

∑

m′∈Sm
φlm′

: influences from past

×

N
∏

l=n+1

(αmκ(tl − tn))ηm
nl

∑

m′∈Sm
φlm′ : influences to future

× e
−K(T−tn)

∑

m′∈Sm
αm′ : time-decay effect.

Notice that the above inference rule only applies to those φnm’s
whose corresponding Zn,m’s are unknown. For those φnm’s whose
corresponding Zn,m’s are already known, we just set φnm = Zn,m.
In a similar way, we obtain the following update rules for η:

η
(m)
nn =

µm

µm +
∑n−1

l=1

∑

m′∈Sm
φlm′αmκ(tn − tl)

,

η
(m)
ln =

αmκ(tn − tl)

µm +
∑n−1

l=1

∑

m′∈Sm
φlm′αmκ(tn − tl)

.

Next we derive maximum likelihood estimation of our proposed
MHP model. This model involves two parameters, i.e., the self-
instantaneous rate µ ∈ R

M
+ and the infectivity vector α ∈ R

M
+ ,

where R+ denotes the nonnegative real domain. Setting the deriva-
tive of L

′ with respect to αm and µm to zero, we can obtain:

αm =

∑N

n=1 φnm

∑n−1
l=1

∑

m′∈Sm
φlm′η

(m)
ln

∑N

n=1 φnmK(T − tn)
,

µm =
1

T

N
∑

n=1

φnmη
(m)
nn .

Based on above discussions, we obtain a mean-field variation
inference algorithm, named MHP, iteratively updates φ’s, and η’s
to attribute unidenfied dyadic events, and updates µ’s, and α’s to
infer the network diffusion. The computation complexity of MHP
is O(M ∗ N̂2), where N̂ is the average number of events one actor
involved in. Thus MHP is particularly efficient if all events happen
between limited actor-pairs.

6. ADDITIVE MODEL
This section describes an additive model that regularizes model

parameters µ and α to avoid overfitting. Instead of modeling each
actor-pair m with parameters µm and αm, we model each actor
i with parameters µ′

i and α′
i. These new parameters {µ′

i}, {α′
i},

i = 1, · · · , I (I is the number of actors) replace µm’s and αm’s
through the following rules:

µm = µ
′
m1 + µ

′
m2, αm = α

′
m1 + α

′
m2, (3)

where m1 and m2 are the two actors in the actor-pair m. Eqn
(3) emphasizes that 1) each actor has his/her own behavior pattern
(µ′

i, α′
i) in conflicts; 2) the behavior pattern of one actor-pair (µm,

αm) depends on the behavior patterns of both actors. We named
the new algorithm solving this additive model Additive Mixture
Hawkes Process (AMHP) algorithm.

7. EXPERIMENTS
We conducted experiments on synthetic and real-world data sets,

and compared the performance of our MHP/AMHP algorithm with
state-of-the-art DEAP methods including: Parameter-Fixed Hawkes
Process (PFHP) proposed in [16], Estimate & Score Algorithm
(ESA) proposed in [8] and Latent Point Process Model (LPPM)
proposed in [3].

7.1 Data set
We also test our methods on Synthetic data and its varia-

tions listed as bellow:

Synthetic data: Under a setting (n, N, I, M, µ̂, α̂), the syn-
thetic data is generated by Hawkes processes using a group of
fixed parameters {µm} and {αm}, where each µm and αm

are randomly generated in [0.5µ̂, 1.5µ̂] and [0.5α̂, 1.5α̂] re-
spectively before simulations. Notice that for different com-
pared approaches, the intensity function employed for sim-
ulation can be different from each other, which depends on
each approach’s assumption on the dependency among dyadic
events from different actor-pairs. Among the generated se-
quence of events, we randomly select some events for pre-
diction, i.e. the corresponding Zn’s are unknown. Here n

refers to the number of events with actors unknown.

Structured data: To test the effectiveness of AMHP, we sim-
ulate with a group of µm’s and αm’s that satisfy the regular-
ization considerations defined in Eqn (3).

Event Noisy: We generate additional 10% ∗ N dyadic events
randomly in the time window [0, T ], and add them to the
original event sequence. These events are assigned to all
actor-pairs with equal probability.

Intensity Noisy: Instead of using λ∗(t) to simulate the dyadic
event generation at time t, we use a noisy value λ′(t), which
is obtained by adding a Guassian noise on λ∗(t):

λ′(t) = max(0.1 ∗ e + 1, 0) ∗ λ∗(t), e ∼ N (0, σ). (4)

The default value of σ is set to be 1.

Our experiments also used two real-world data sets both com-
ing from the ACLED data set [1]: Afghanistan Conflict,
which contains N = 3,384 dyadic events and 68 actors. M =
1,010 actor-pairs are involved in these events; Africa Conflict,
which contains N = 52,605 dyadic events and 3,537 actors. M =
1,007 actor-pairs are involved in these events. We randomly select
10% events from each data set as unidentified events, and make
prediction using our proposed methods.



7.2 Performance on synthetic data
This series of experiments is to test the accuracy of DEAP for

unidentified dyadic events on synthetic data. Table 1 shows our
test on a relatively small system with N = 120, n = 8, I = 4,
M = 6, µ̂ = 0.01, α̂ = 0.5, where simulations were run 10,000
times using the pre-generated parameters {µm}, {αm}. Table 2
shows results on a larger system with N = 10000, n = 1000,
I = 50, M = 200, µ̂ = 0.01, α̂ = 0.5, where simulations
were run 20 times. The accuracy of DEAP is measured by the
percentage of unknown events whose ground-truth actor-pairs ap-
pear in the predicted top k most likely actor-pairs. Results in Ta-
ble 1 and 2 show that LPPM, MHP and AMHP are much more
accurate than PFHP and ESA in DEAP on both data sets, which
demonstates the importance of using dynamic Hawkes parameters
in modeling diffusion processes of dyadic events, and reasonably
optimizing the data likelihood. Our proposed MHP and AMHP are
more accurate than LPPM, which shows the importance of model-
ing dependency between dyadic events from different actor-pairs.
At last, AMHP performs better than MHP, which indicates that ap-
propriate constraints on Hawkes paramters can benefit DEAP. On
Structured data, the advantage of AMHP over other meth-
ods becomes greater, which demonstrates the effectiveness of AMHP
on dyadic data where the dependency network of actor-pairs has
special structures like low-rank or sparsity. On both noisy data
sets, the performance of all four compared methods become worse.
However, the degradations of the performance of PFHP and ESA
are greater than those of LPPM, MHP and AMHP, which shows the
robustness of our proposed methods facing noise.

Table 1: Overall Performance on Small-scale Synthetic Data

N = 120, n = 8, I = 4, M = 6, µ̂ = 0.01, α̂ = 0.5.
Data set Method Top 1 Top 2 Top 3 Top 4 Top 5

Synthetic data PFHP 50.4% 69.7% 80.2% 88.9% 95.8%
ESA 52.2% 71.1% 81.6% 90.4% 96.9%

LPPM 55.8% 75.2% 87.0% 93.6% 97.4%
MHP 57.3% 77.9% 88.5% 95.0% 97.9%

AMHP 58.9% 79.3% 89.9% 96.6% 98.3%

Random Guess 16.7% 33.3% 50.0% 66.7% 83.3%

The following series of experiments study how parameter vari-
ation affects the accuracy of DEAP. In experiments, we varies the
parameter chosen to test, with all other experiment settings fixed.
Figure 5(a) shows how the precision of Top 1 inference varies with
respect to the increase of the number of actor-pairs M . We can find
that all compared methods experience significant decreases when
the number of actor-pairs M increases. The degradations of MHP
and AMHP are smaller than other methods, which shows that ap-
propriately modeling the dependency among actor-pairs becomes
more important as the number of actor-pairs increases. Figure 5(b)
shows that the accuracy of Top 1 inference decreases wrt. the
increase of standard variance σ in Eqn (4). The degradations of
LPPM, MHP, and AMHP are smaller than PFHP and ESA, which
from another prospect demonstrates the robustness of our methods
facing noise.

7.3 Performance on real-world data
Next we apply the proposed model to two real-world data sets as

shown in Table 3. On both real-world data sets, our proposed MHP
and AMHP again perform better than LPPM, PFHP and ESA. We
also find that AMHP outperforms MHP, which illustrates that the
underlying dependency network of actor-pairs in real-world data
has some special structures.

Table 2: Overall Performance on Large-Scale Synthetic Data

N = 10000, n = 1000, I = 50, M = 200, µ̂ = 0.01, α̂ = 0.5.
Data set Method Top 1 Top 2 Top 3 Top 4 Top 5

Synthetic data PFHP 10.0% 15.9% 18.5% 21.2% 23.1%
ESA 10.3% 16.3% 19.2% 21.9% 23.7%

LPPM 12.2% 18.7% 21.5% 23.2% 24.4%
MHP 13.8% 20.2% 23.3% 24.9% 26.4%

AMHP 14.7% 21.0% 24.4% 26.2% 27.8%

Structured data PFHP 11.3% 16.6% 19.4% 22.7% 25.4%
ESA 11.8% 17.1% 20.0% 23.2% 25.8%

LPPM 13.3% 19.7% 22.1% 24.8% 26.3%
MHP 17.9% 23.3% 26.9% 28.4% 30.1%

AMHP 19.1% 24.2% 28.0% 29.8% 31.3%

Event Noisy PFHP 6.8% 13.2% 15.4% 18.0% 20.1%
ESA 7.1% 13.5% 15.7% 18.4% 20.4%

LPPM 10.6% 16.4% 18.8% 20.7% 22.2%
MHP 12.9% 18.5% 20.8% 23.0% 24.5%

AMHP 13.7% 19.4% 21.6% 23.9% 25.1%

Intensity Noisy PFHP 6.6% 12.3% 14.9% 17.5% 19.4%
ESA 6.8% 12.6% 15.1% 17.7% 19.8%

LPPM 8.9% 14.7% 16.5% 19.2% 20.6%
MHP 11.4% 16.6% 19.6% 21.1% 22.8%

AMHP 12.1% 17.4% 20.4% 22.0% 23.4%

Random Guess 0.5% 1.0% 1.5% 2.0% 2.5%
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Figure 5: Parameter Variation

Table 3: Overall Performance on Real-world Data
Data set Method Top 1 Top 2 Top 3 Top 4 Top 5

Afghanistan PFHP 11.8% 17.0% 20.2% 21.8% 24.2%
ESA 12.6% 18.1% 21.3% 23.0% 25.5%

LPPM 13.4% 20.9% 23.8% 25.4% 26.5%
MHP 14.6% 23.3% 26.8% 28.6% 30.1%

AMHP 15.5% 24.0% 27.7% 29.3% 30.8%

Random Guess 0.1% 0.2% 0.3% 0.4% 0.5%

Africa PFHP 9.0% 14.6% 18.2% 20.0% 22.3%
ESA 9.9% 15.7% 19.5% 21.3% 23.7%

LPPM 11.2% 18.7% 21.6% 23.2% 24.4%
MHP 12.4% 20.9% 24.7% 26.1% 27.5%

AMHP 13.1% 21.5% 25.4% 26.9% 28.1%

Random Guess 0.1% 0.2% 0.3% 0.4% 0.5%

Figure 6 shows a relational graph among actors in Afghanistan
Conflict data based on learned αm’s. A large αm indicates
that one conflict between actor-pair m is quite likely to be trig-
gered by another conflict sharing at least one actor with m in the
recent past. Most areas in the figure are blank, which illustrates that
most sequential conflicts in Afghanistan happened between limited
actor-pairs. Analyzing shades of color in each grid, we can find
out unique behavior patterns of different actor-pairs. For exam-



ple, comparing αm of pair Taliban–U.S. Army and that of pair
Taliban–Afghan Government, we can tell that one conflict event
involving Taliban or U.S. army will quickly cause a chain reaction
between the Taliban–U.S. Army pair, while it takes much longer
time for a conflict involving Taliban or Afghan government to trig-
ger consequential conflicts. In other words, when suffering an at-
tack or protest, Taliban’s favorite retaliation target is U.S. Army
rather than Afghan government.
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Figure 6: Relational Graph among Actors in Afghanistan

Conflict Based on Learned αm’s. Indice of important actors:

2-U.S. Amry, 4-Civilans, 6-Taliban, 7-Afghanistan Army, 9-Britain

Army, 11-Afghan Government, 16-Police Force, 19-ISAF, 21-Private

Security.
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Figure 7: How Well Our MHP Model Fits Conflict Data. Blue

dot denotes the number of identified events at each timestamp, red star

denotes the number of unidentified event. Both the number of events

and the value of λm(t) are scaled to [0, 1].

Next we study how well our MHP model fits conflict data. On a
certain actor-pair m in Afghanistan Conflict, Figure 7(a)
compares the number of conflict events at each timestamp with the
curve of λm(t) using learned µm and αm, while Figure 7(b) shows
the Q-Q plot of the real conflict sequence versus the sample event
sequence simulated by λm(t). We can find that although the µm

and αm are inferred with part of Zn’s unknown, they fit both iden-
tified conflicts and unidentified conflicts very well.

8. CONCLUSION AND FUTURE WORK
This paper proposed a novel mixture Hawkes model for tack-

ling DEAP and network inference simultaneously. This mixture

Hawkes model captures the dependency among dyadic events from
actor-pairs that share at least one actor. Our fast inference algo-
rithm based on mean-field methods iteratively predicts actor-pairs
and infers network diffusion. Experiments on both synthetic and
real-world data sets on international armed conflicts demonstrated
the effectiveness of the proposed methods.

In the future, we will look for alternative solutions that capture
the dependency among dyadic events from different actor-pairs,
and propose novel mixture Hawkes models. Instead of using a
human-defined regularization for model parameters, we will ex-
plore how to infer structures, such as low-rank or sparsity, from
data. We will also study more efficient algorithms that optimize
our proposed likelihood.
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