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Abstract

The problem of nonlinear dimensionality re-
duction is considered. We focus on problems
where prior information is available, namely,
semi-supervised dimensionality reduction. It
is shown that basic nonlinear dimensionality
reduction algorithms, such as Locally Linear
Embedding (LLE), Isometric feature map-
ping (ISOMAP), and Local Tangent Space
Alignment (LTSA), can be modified by tak-
ing into account prior information on exact
mapping of certain data points. The sensi-
tivity analysis of our algorithms shows that
prior information will improve stability of the
solution. We also give some insight on what
kind of prior information best improves the
solution. We demonstrate the usefulness of
our algorithm by synthetic and real life ex-
amples.

1. INTRODUCTION

With the development of science, more and more ar-
eas of science need to deal with large volumes of
high-dimensional data, such as human gene distribu-
tions, global climate patterns, etc. In many applica-
tion fields, high dimensional data need to be analyzed
and/or visualized. This leads to the research of dimen-
sional reduction: to find a meaningful low-dimensional
manifold from the high-dimensional data. Tradition-
ally, multidimensional scaling (MDS) (Hastie et al.,
2001) and principal component analysis (PCA) (Hastie
et al., 2001) have been used for dimensionality reduc-
tion.MDS and PCA perform well if the input data lie
on or are close to a linear subspace, but are not de-
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signed to discover nonlinear structures, and often fail
to do so.

In many real world applications, data samples lying
in a high dimensional ambient space can be modeled
by very low dimensional nonlinear manifolds. For ex-
ample, in the problem of moving object detection and
tracking, the dimensionality of frames from a video
sequence are usually considered to be the number of
pixels of the frames, which can be very high. How-
ever, if the video sequence shows a moving object, then
the coordinates of the moving object in each frame
bear much of the information in that frame, therefore,
the frames actually lie on a low dimensional nonlinear
manifold. Recently, there have been much research
effort on nonlinear dimensionality reduction. For ex-
ample, the Locally Linear Embedding (LLE) (Roweis
& Saul, 2000),(Saul & Roweis, 2003) algorithm com-
putes a global coordinate system of low dimension by
finding a low-dimensional space that best preserves the
neighborhood of the input data points. The ISOMAP
(Tenebaum et al., 2000) approach seeks to preserve the
geodesic manifold distance rather than the Euclidean
distance between all pairs of data points. The Lo-
cal Tangent Space Alignment (LTSA) (Zhang & Zha,
2004),(Zha & Zhang, 2005) method constructs an ap-
proximation for the tangent space at each data point,
and align these tangent spaces to give the global co-
ordinates of the data points. Weinberger et al (Wein-
berger et al., 2005) proposed using semi-definite pro-
gramming and kernel matrix factorization to maximize
the variance in feature space while preserving the dis-
tance and angles between nearest neighbors.

Classical methods, such as LLE, ISOMAP, and LTSA
are all unsupervised learning algorithms, that is, they
assume no prior information on the input data. Fur-
thermore, these algorithms do not always yield low
dimensional coordinates that bear any physical mean-
ing. Here we extend these algorithms to take into
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account prior information. Prior information can
be obtained from experts on the subject of inter-
est and/or by performing experiments. For exam-
ple, in moving object tracking, the coordinates of the
object in certain frames can be determined manu-
ally, and can be used as prior information. We con-
sider prior information in the form of on-manifold
coordinates of certain data samples. We consider
both exact and inexact prior information. We call
the new algorithms Semi-Supervised LLE (SS-LLE),
Semi-Supervised ISOMAP (SS-ISOMAP), and Semi-
Supervised LTSA (SS-LTSA). Assuming the prior in-
formation has a physical meaning, then our semi-
supervised algorithms yield global low dimensional co-
ordinates that bear the same physical meaning.

The rest of the paper is organized as follows. In §2,
we give a brief description of the LLE, ISOMAP, and
LTSA algorithms. In §3, we show how to extend the
basic LLE, ISOMAP, and LTSA algorithms such that
they can handle exact prior information. In §4, we
present a sensitivity analysis of our algorithms, which
shows that prior information will improve stability of
the solution, and gives insight on what kind of prior
information best improves the solution. We discuss
how to deal with inexact prior information in §5. In
§6, we apply our algorithms to a synthetic dataset and
a real life dataset that was used for motion tracking,
conclusions are made in §7.

2. THE BASIC LLE, LTSA, AND

ISOMAP ALGORITHMS

Let X = {x1,x2, . . . ,xn} be a set of n real-valued
vectors, where each xi ∈ RD is sampled from some
underlying nonlinear manifold given as

xi = f(yi) + ui, i = 1, 2, · · · , n. (1)

Here yi ∈ Rd represents the sought after low dimen-
sional feature vector of xi, and ui represents sampling
noise. In general, d≪ D, that is, the dimension of the
manifold is much smaller than that of the input space.
It is assumed that there is sufficient data such that the
manifold is well-sampled.

One important geometric intuition behind the LLE al-
gorithm is that each data point and its neighbors lie
on or are close to a locally linear patch of the man-
ifold. LLE tries to characterize the geometry of the
local patches by finding the linear coefficients that re-
construct each data point from its neighbors. Let Ni

be the set of k nearest neighbors of xi (not includ-
ing xi itself). Then the reconstruction coefficient can
be computed by minimizing the reconstruction error,

which is measured as

Γ(W ) =

n
∑

i=1

‖xi −
∑

xj∈Ni

wijxj‖22. (2)

The reconstruction error is minimized subject to the
constraint that the rows of the weight matrix sum to
one:

∑

j wij = 1.

Let Y = [y1,y2, . . . ,yn]. Then Y can be computed by
minimizing the embedding cost function

Φ(Y ) =

n
∑

i=1

‖yi −
∑

j

wijyj‖22 = Y MY T , (3)

where M is given by

Mij = δij − wij − wji +
∑

k

wkiwkj . (4)

Here δij is 1 if i = j and 0 otherwise. The mapping
cost, Φ(Y ), is translation and rotation invariant. To
make the problem well-posed, the cost function is min-
imized subject to the constraints that

∑

i yi = 0, and
that

∑

i yiy
T
i = I, where I is the identity matrix. The

resulting problem is equivalent to finding the smallest
d + 1 eigenvectors of the matrix M .

The LTSA algorithm tries to characterize the local ge-
ometry by computing an approximate tangent space
at each data point. Let the Jacobian matrix of f at y

be

Jf (y) =









∂f1

∂y1

· · · ∂f1

∂yd

...
...

...
∂fD

∂y1

· · · ∂fD

∂yd









. (5)

The tangent space Ty of f at y is defined as the sub-
space spanned by the d columns of the Jf (y), that is,
Ty = span(Jf (y)). Without knowing the function f we
cannot compute the Jacobian matrix Jf (y). However,
Ty can be approximated by the subspace spanned by
the first d principal components of a neighbor set of y.

Once the tangent space at each data point has been
computed, the global coordinates are computed by
“aligning” the local tangent spaces together. Let Ni

be the set of k nearest neighbors of yi (including yi

itself). Denote the neighborhood index set of yi as Ii.
Let gi1, gi2, . . ., gid be the d principal components of
Ni. Let Gi = [e/

√
k,gi1,gi2, . . . ,gid]. It was shown

that the global coordinates can be computed by mini-
mizing the alignment cost

Φ(Y ) = Y MY T . (6)

Here M is the alignment matrix computed as follows:

M(Ii, Ii)←M(Ii, Ii) + I −GiG
T
i , i = 1, 2, . . . , n

(7)
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with M initially set to 0. It was shown (Zha & Zhang,
2005) that under certain conditions, M has d + 1
zero eigenvalues, and that the null space of M spans
the low dimensional coordinate space. As in LLE,
the cost function is translation and rotation invariant.
Therefore, it is minimized subject to the constraints
∑

i yi = 0 and
∑

i yiy
T
i = I, and the resulting prob-

lem can be solved by computing the d + 1 smallest
eigenvectors of M .

ISOMAP (Tenebaum et al., 2000) is based on the
classical MDS, but seeks an embedding that pre-
serves the pairwise geodesic manifold distance rather
than the Euclidean distance. The geodesic distances
are approximated by “adding up a sequence of short
hops between neighboring points”, which are com-
puted by finding the shortest paths in a graph with
edges connecting only neighboring data points. Let
∆ be the matrix of squared geodesic distances. Let
P be the n × n projection matrix I − eeT /n, where
e = [1, . . . , 1]T ∈ Rn. Then the low dimensional global
coordinates are computed by finding the d maximum
eigenvectors of

A = −1

2
PT ∆P, (8)

each scaled by the square root of its corresponding
eigenvalue.

3. DERIVATION OF THE SS-LLE,

SS-LTSA, AND SS-ISOMAP

ALGORITHMS

The SS-LLE algorithm inherits the basic idea of LLE,
that is, it tries to characterize the local geometry by
the reconstruction weights, and finds the global low
dimensional coordinates by minimizing the embedding
cost. In the presence of prior information, the recon-
struction weights can be computed the same way as
was done in the basic LLE algorithm, but the em-
bedding cost function is minimized subject to the con-
straint that the low dimensional coordinates obey prior
information. Similarly, the SS-LTSA algorithm cap-
tures the local geometry by computing an approximate
tangent space the same way as the basic LTSA algo-
rithm, but computes an alignment that obeys prior
information.

Suppose the exact mapping of m data points is known.
Note that if m ≤ d+1, then in both the LLE and LTSA
algorithm, the prior information only helps to remove
the freedom of translation and scaling. For the rest
of this paper, unless otherwise specified, it is assumed
that m > d + 1. Without loss of generality, assume
that it is the first m data points whose low dimen-

sional coordinates are known. Partition Y as [Y1 Y2],
where Y1 corresponds to the data points whose low di-
mensional coordinates are known, and Y2 corresponds
to the other data points. Partition M as follows:

M =

[

M11 M12

MT
12 M22

]

, (9)

where M11 is a matrix of size m × m. For both the
SS-LLE and SS-LTSA, since Y1 is known, the mini-
mization problem can be written as

min
Y2

[Y1 Y2]

[

M11 M12

MT
12 M22

] [

Y T
1

Y T
2

]

, (10)

or equivalently

min
Y2

Y2M22Y
T
2 + 2Y1M12Y

T
2 . (11)

By setting the gradient of the above objective function
to zero, we get

M22Y
T
2 = M12Y

T
1 . (12)

We see that the global low dimensional coordinates can
be computed by solving a linear system of equations.

In order to derive the SS-ISOMAP algorithm, we first
restate the basic ISOMAP problem as follows:

max
Y

Y AY T subject to Y Y T = I, (13)

where A is the matrix given in (8). Let A =
QΛQT be the eigen-decomposition of A. Let Q =
[q1,q2, . . . ,qn], let Λ = diag(λ1, λ2, . . . , λn), with
λ1 ≥ λ2 ≥ . . . ≥ λn. Define the matrix M as follows:

M = λ1I −A−
d

∑

i=2

(λ1 − λi)qiq
T
i − λ1ee

T /n. (14)

Then it is easy to check that M has d + 1 zero
eigenvalues, furthermore, its null space is given by
span([q1,q2, . . . ,qd, e]). Therefore (13) can be equiv-
alently stated as

min
Y

Y MY T subject to Y Y T = I,

n
∑

i=0

yi = 0. (15)

It follows that the SS-ISOMAP solution can be ob-
tained by solving a minimization problem that has the
same form as (10), but M is replaced with the matrix
given in (14). This can be solved much the same way
as SS-LLE and SS-LTSA. However, experimental re-
sults indicate that other than being able to map input
data to a properly scaled and translated space, the im-
provement of SS-ISOMAP over the basic ISOMAP is
not significant.
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4. SENSITIVITY ANALYSIS,

CHOOSING PRIOR POINTS

If Y1 is exact, then the error in (12) only exists in M22

and M12. Consider the parameterized system:

(M22 + ǫF )Y2(ǫ)
T = (M12 + ǫG)Y T

1 . (16)

According to a result from (Golub & Van Loan, 1996),

‖Y2(ǫ)− Y2‖2
‖Y2‖2

≤ κ(M22)|ǫ|(ρA + ρB), (17)

where κ(M22) denotes the condition number of M22,
ρA = ‖F‖/‖M22‖ and ρB = ‖F‖/‖M12‖ for some
appropriate matrix norm. That is, relative error in
the computed low dimensional coordinates can be
bounded by κ(M22) times the relative error in M22

and M12. In other words, the sensitivity of the com-
puted solution depends on the condition number of the
matrix M22.

According to the interlacing property theorem (Golub
& Van Loan, 1996, §8.1.2), if M ∈ Rn×n is symmetric
and Mr = M(1 : r, 1 : r), then

λr+1(Mr+1) ≤ λr(Mr), and λ1(Mr) ≤ λ1(Mr+1).
(18)

Here λi(Mj) denotes the i-th eigenvalue of Mj. It
follows that if λr+1(Mr+1) is positive, then the con-
dition number of Mr, which equals λ1(Mr)/λr(Mr),
is smaller than that of Mr+1. Therefore, with the in-
crease of prior points, the condition number of the co-
efficient matrix in (12) gets smaller and smaller, and
the computed solution gets less and less sensitive to
noise in M22 and M12.

Because the sensitivity of the solution depends on the
condition number of the matrix M22, the most help-
ful prior points are those that help reduce the con-
dition number of M22 the most. Consider the sim-
plest case, in which we have a one dimensional mani-
fold, and all the sample data points are evenly spaced.
Without loss of generality, assume that the samples
are ordered as they appear on the manifold. Then the
resulting mapping matrix in LLE or alignment matrix
in LTSA will be banded and exhibit a Toeplitz struc-
ture (Chan & Ng, 1996) except at the first and last
few rows/columns. For example, if k = 3, then the
alignment matrix in the LTSA algorithm is as follows:

M =
1

6























1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1























(19)

For this particular case, assuming that the first two
prior points are the end points, it can be shown that if
n is sufficiently large, the condition number of M22 is
the smallest if additional prior points are chosen such
that the minimum pairwise distance between the prior
points is maximized. Table 1 shows the condition num-
ber of M22 when n = 500 and if the above mentioned
strategy is used to select prior points. As can be seen,
the condition number of M22 can be considerably re-
duced with just a few prior points.

Table 1. κ(M22) when different number of prior points are
used, n = 500.

No. of prior points κ(M22)
2 1.9977e+09
3 2.6291e+08
5 2.9461e+07
9 2.2904e+06

17 1.5307e+05

For most real life problems, d > 1, furthermore, the
data points are sampled irregularly, thus, analyzing
the condition number of the mapping or alignment ma-
trix will be much more complicated. However, the idea
of maximizing minimum pairwise geodesic distance be-
tween the prior points can be generalized to real life
problems. Unfortunately, finding such a combination
of prior points is still a very difficult task. Fortunately,
a near optimal solution can be computed by using a
technique that resembles the one Silva and Tenenbaum
(de Silva & Tenenbaum, 2004) used to select landmark
points for sparse MDS: Prior points are chosen one at
a time, and each new prior point maximizes, over all
unused data points, the minimum geodesic distance to
any of the existing prior points. The first prior point
is chosen arbitrarily. Note that this procedure needs
no information on the underlying low dimensional co-
ordinates.

The analysis of the condition number of the matrix
given in (14) is quite different. Indeed, SS-ISOMAP is
not as effective as SS-LLE and SS-LTSA.

5. INEXACT PRIOR INFORMATION

For inexact prior information, we propose to minimize
an objective function that combines the mapping error
with a regularization term, weighted by a parameter.
Thus

Φ(Y1, Y2) = [Y1 Y2]

[

M11 M12

MT
12 M22

] [

Y T
1

Y T
2

]

+β‖Y1−Ŷ1‖2F .

(20)
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Here Ŷ1 represents prior information, ‖ · ‖F denotes
Frobenius norm, and β is the regularization parame-
ter that reflects our confidence level in prior informa-
tion. If we are fully confident in the provided prior
information, then β → ∞, and the resulting problem
is equivalent to (12). If the prior information is to-
tally not trustworthy, then β = 0, and the problem is
equivalent to an unsupervised problem.

The objective function of (20) is quadratic. Under
weak assumptions, it can be shown that this func-
tion has a symmetric positive definite Hessian matrix,
therefore, its minimizer can be computed by solving
the following linear system of equations:

[

M11 + βI M12

MT
12 M22

] [

Y T
1

Y T
2

]

=

[

βŶ1

T

0

]

(21)

6. EXPERIMENT RESULTS

First, we apply both the semi-supervised and unsu-
pervised algorithms to the data set sampled from the
“incomplete tire” (a tire with a slice and a strip cut
out) shaped manifold shown in Figure 1(a). The data
points are generated by the following MATLAB com-
mands:

t = pi*5*rand(1,N)/3;

s = pi*5*rand(1,N)/3;

X = [(3+cos(s)).*cos(t);

(3+cos(s)).*sin(t);

sin(s)];

A total of n = 2000 data points are sampled. The
generating low dimensional coordinates are shown in
Figure 1(b).

Note that the “incomplete tire” is quite different
from the swiss roll used in (Roweis & Saul, 2000),
(Tenebaum et al., 2000) and the S-curve used in (Saul
& Roweis, 2003), because the swiss roll and S-curve
can both easily be “flattened out”. In other words,
there exists an isometric mapping that maps the swiss
roll or S-curve to a two dimensional linear space, but
there is no mapping that maps the incomplete tire to
a linear space while preserving all manifold distances.
Consequently, the “incomplete tire” poses more chal-
lenges to dimensionality reduction algorithms than the
swiss roll and S-curve. We remark that the “incom-
plete tire” is a better example of real life manifolds,
since it is very unlikely that real life manifolds can
be mapped to a low dimensional linear space by an
isometric mapping.

Figure 2 shows the two dimensional embedding com-
puted by the basic and semi-supervised algorithms us-

ing 50 prior points. It can be seen that the basic algo-
rithms handle the challenges posed by the “incomplete
tire” poorly, but SS-LLE and SS-LTSA yield remark-
ably good results. Furthermore, the semi-supervised
algorithms are less sensitive to the number of neigh-
bors.

−4

−2

0

2

4

−4

−2

0

2

4

−1

0

1

(a) (b)

Figure 1. (a) the “incomplete tire”, (b) the generating co-
ordinates

Figure 3 shows the relative error of the semi-supervised
solutions as compared to the true underlying low di-
mensional coordinates when the number and locations
of the prior points vary. These results confirm the the-
oretical prediction that increasing the number of prior
points decreases the relative error of the solution, and
that carefully chosen prior points better improves the
solution than randomly spaced prior points.

In the following example, we use the dataset from
(Rahimi et al., 2005), which shows a subject mov-
ing his arms, and was used for upper body tracking.
We choose 2000 frames from this video sequence. The
frames are downsampled by the pixel size such that
Matlab can load the data into the main memory. Fig-
ure (5) shows 20 frames, which we use as prior points.
And the locations of the elbows and wrists, which are
marked in blue in the figures, are are manually de-
termined by a human. Here we apply our semisuper-
vised algorithms to find the locations of the elbows
and wrists in other frames. Considering the location
of each elbow/wrist has two dimensions, we preset the
dimensionality of the manifold to be 8.

Figure (4) shows the elbow and wrist locations of cer-
tain frames recovered by out algorithm SSLTSA with
24 nearest neighbors. As can be seen, they coincide
with the real locations very well. In order to test our
algorithm for inexact prior information that was pre-
sented in section 5, we artificially added a 5 % noise
to wrist and elbow locations of the prior frames, and
applyed the algorithm in section 5 with β = 10. The
results are shown in Figure (6), compared with Figure
(4), it can be seen that our algorithm returns good
results even when the prior information is ineact. The
optimal regularization parameter β can be chosen ei-
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LLE, k=8 LLE, k=12 LLE, k=18 LLE, k=24

SS-LLE, k=8 SS-LLE, k=12 SS-LLE, k=18 SS-LLE, k=24

LTSA, k=8 LTSA, k=12 LTSA, k=18 LTSA, k=24

SS-LTSA, k=8 SS-LTSA, k=12 SS-LTSA, k=18 SS-LTSA, k=24

Figure 2. Two dimensional coordinates computed by the basic and semi-supervised algorithms, using different number of
neighbors.

ther by the L-curve method or Cross Validation. In
fact, our experimental results indicate that there is no
need for such sophisticated schemes, since the results
are quite good for a very wide range of β values.

7. CONCLUSIONS

In conclusion, we have proposed semi-supervised algo-
rithms for nonlinear dimensionality reduction. These
algorithms compute a low dimensional embedding that
minimizes mapping cost subject to the condition that
the low dimensional coordinates obey prior informa-
tion. Theoretical analysis and experimental results in-
dicate that prior information helps improve the solu-
tion.
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Figure 5. 20 frames with prior information, which are the locations of the elbows/wrists.

Figure 6. The results of inexact prior informations algorithm.


