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Outline

• Background & Motivation – Rise of Foundation Models

• Robust Finetuning of Foundation Models

• Generalizing to Vision-Language/Multi-modal Models

• Conclusions
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2018-2022

Video Domain 
adaptation
[CVPR 2019, ICCV 2019]

Pairwise 
Similarity for 
Cross-Task 
Object 
Discovery
[ICLRW 2016, ICLR 
2018, 2019]

Complex Data Augmentation
Domain Generalization/SSL
[ECCV 2020]

Closer Look @ Few-Shot (w/ VT)
[ICLR 2019]

RPN

ROIHead

RPN

ROIHead

Teacher

Student

Pseudo-
labeling

Shared Weights

Supervision

Weakly augmented

strongly augmented

Original

Prediction

Out-of-distribution detection, calibration, open-set
[CVPR 2020, NeurIPS 2021]

Unbiased Teacher for Anchor-based, Anchor-
Free Open-Set Object Detection
[ICLR 2020, CVPR 2022, ECCV 2022, w/ Meta]

Continual Learning
[ICCV 2021, Nature 2022]
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Un/Self-
Supervised 
Learning!

https://www.gwern.net/newsletter/2020/05

Foundation Models have changed the landscape
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The past ~2 years

Vision-Language Models
https://x.com/MikelEcheve/

Unification with Transformers

https://x.com/MikelEcheve/
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• Positive View: 
• Bypass distribution shift! 

• Train on as much “in-distribution 
data” as possible

• Nothing is OOD any more

Is Generalization Solved? Are We Done?

?
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• Positive View: 
• Bypass distribution shift! 

• Train on as much “in-
distribution data” as 
possible

• Nothing is OOD any more

Is Generalization Solved? Are We Done?
[Radford et al., Learning Transferable Visual Models From Natural Language Supervision]

?
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• Skeptical View: 
• This is a “brute-force” approach – is it really scalable? 

• Lots of “sub-distributions” without sufficient statistical 
support. 

• This could be the data you care about!

• Practically, clearly still under-performs and biased
• US-centric, not “in-the-wild” distributions, etc. 
• How much do we need to soak up “literally all” the distributions 

we care about?
• Generalist vision models still resist

• Something we might want to do: Finetune to our data!

Is Generalization Solved? Are We Done?
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How to Improve Robustness? 

Unconstrained optimization only encourages fitting to the new data

min
𝑾| 𝑥,𝑦 ∈𝒟𝑡𝑟𝑎𝑖𝑛

ℒ 𝑥, 𝑦; 𝑾

9Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR 2022.

In-Distribution Out-of-Distribution

IN IN-V2 IN-Adversarial IN-Rendition IN-Sketch

CLIP Zero-Shot 67.68 61.41 30.60 56.77 45.33

Vanilla FT 83.66 73.82 21.40 43.06 45.22

Zero-Shot and fine-tuned classification accuracy of CLIP ViT-B on ImageNet (IN) and its variants. 
The fine-tuning dataset is ImageNet.
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Pre-trained Robustness 

• Pre-trained models do have great generalization capability
• Some OOD-detection and robustness capabilities

• Question: How do we preserve this during finetuning?

10Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.
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Preservation of Pre-trained Robustness

• L2-SP
• Imposes L2 regularization on the difference between the fine-tuned model 

and the pre-trained model. 𝐿 𝜃 = ෨𝐿 𝜃 +
𝜆

2
𝜃 − 𝜃0 2

2

• WiSE-FT
• Linearly interpolate between a fine-tuned model and its pre-trained 

initialization. 

• Works very well for vision-language models

11Xuhong, L. I., Yves Grandvalet, and Franck Davoine. "Explicit inductive bias for transfer learning with convolutional networks.” ICML, 2018.

Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR 2022.

Hypothesis: unconstrained optimization to target leads to worse robustness.  
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Projected Gradient Method

min
𝑾| 𝑥,𝑦 ∈𝒟𝑡𝑟𝑎𝑖𝑛

ℒ 𝑥, 𝑦; 𝑾 𝑠. 𝑡. 𝑾 − 𝑾0 ≤ 𝛾

• Projected Gradient Descent

෪𝑾𝑡 = 𝑆𝐺𝐷 𝑥, 𝑦|𝑾𝑡−1

𝑾𝑡 = Π ෪𝑾𝑡 , 𝑾0; 𝛾

Π defines a (differentiable) projection function and 𝛾 is the projection radius

𝛾

𝑾𝑡

෪𝑾𝑡

1. UGD

2. Projection

𝑾0

12

Unconstrained 
Gradient 
Descent
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Trainable Projected Gradient Method

• Trainable Projected Gradient Method (TPGM) 

Pre-trained 𝑾0

Fine-tuned ෪𝑾𝑡

Projected 𝑾𝑡

…

Param. 0 Param. 𝑁 − 1 Param. 𝑁

𝛾(𝑁)𝛾(𝑁−1)𝛾(0)

13Tian, Junjiao, et al. "Trainable projected gradient method for robust fine-tuning." CVPR 2023.

• Open Questions
• Which layers to 

fine-tune? 

• How much to fine-
tune?

• Not feasible to 
specify a different 
constraint for each 
layer .
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Our Prior Work: TPGM and FTP

14

𝑤0

𝑤1

෥𝑤0

𝛾

TPGM and FTP use outer loop bi-level optimization for robust training

Step 1

Step 1

Step 2

Step 2

Step 3

Step 3

Tian et al., CVPR 2023 / NeurIPS 2023
Can we simplify this to reduce complexity/computation? 
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Selective Projection Decay
Learning the New Without Forgetting the Old Even More Efficiently

15Tian, Junjiao, Chengyue Huang, and Zsolt Kira. ”Selective Projection Decay for Robust Fine-Tuning“, NeurIPS 2024.
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Observations

• TPGM/FTP grows and shrinks the 
projection radius. 

• When the radius grows, it often provides no 
regularization (no projection). 

• The regularization effect mainly comes from 
the shrinkage of the projection radius.

𝑤0

𝑤𝑡

𝑤𝑡−1

𝛾𝑡 ≥ 𝑤𝑡 − 𝑤0 2

𝛾: constraints

𝑤0: Initialization

𝛾𝑡−1

16Tian, Junjiao, Chengyue Huang, and Zsolt Kira. ”Selective Projection Decay for Robust Fine-Tuning“, NeurIPS 2024.
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Hypothesis

• No need to explicitly maintain a set of projection radii.

• No need to know when to grow.

• Just need to know when to shrink/apply regularization.
• Do this per layer/iteration

• When: Alignment between gradient and direction to original weights 

• How much: 𝛾𝑡 = 𝑤𝑡 − 𝑤0 2

17Tian, Junjiao, Chengyue Huang, and Zsolt Kira. ”Selective Projection Decay for Robust Fine-Tuning“, NeurIPS 2024.
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Selective Projection Decay (SPD)

Selecting criterion

• L2-SP: 𝐿 𝜃 = ෨𝐿 𝜃 +
𝜆

2
𝜃 − 𝜃0 2

2

• Hyper-optimize 𝜆: ∇𝜆 =
𝜕𝑓 𝜃𝑡

𝜕𝜆
=

𝜕𝑓 𝜃𝑡

𝜕𝜃

𝑇 𝜃𝑡

𝜕𝜆
= 𝛼 ∗ −𝑔𝑡+1

𝑇 𝜃𝑡 − 𝜃0

• This was the gradient calculation in Fast Trainable Projection ∇𝛾 ∝ 𝑔𝑡
𝑇 𝜃𝑡−1 − 𝜃0

• Selection condition: 𝑐𝑡 = 𝑐𝑡−1 − 𝑔𝑡
𝑇 𝜃𝑡−1 − 𝜃0 < 0 

𝜃0

෨𝜃𝑡

𝜃𝑡−1

𝜃𝑡

𝛾𝑡

𝛾𝑡: constraints

𝜃0: initialization
෨𝜃𝑡: unconstrained update

project
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Selective Projection Decay (SPD)

Selecting criterion

• L2-SP: 𝐿 𝜃 = ෨𝐿 𝜃 +
𝜆

2
𝜃 − 𝜃0 2

2

• Hyper-optimize 𝜆: ∇𝜆 =
𝜕𝑓 𝜃𝑡

𝜕𝜆
=

𝜕𝑓 𝜃𝑡

𝜕𝜃

𝑇 𝜃𝑡

𝜕𝜆
= 𝛼 ∗ −𝑔𝑡+1

𝑇 (𝜃𝑡 − 𝜃0)

• Selection condition: 𝑐𝑡 = 𝑐𝑡−1 − 𝑔𝑡
𝑇 𝜃𝑡−1 − 𝜃0 < 0 

Projection coefficient

• L2-SP is a projection: 𝜃𝑝 = 𝜃𝑡 − 1 −
𝛾

max 𝛾, 𝜃𝑡−𝜃0 2

∗ (𝜃𝑡 − 𝜃0)

• Deviation: 𝛾𝑡 = 𝜃𝑡 − 𝜃0 2

• Deviation ratio: 𝑟𝑡 =
max 0,𝛾𝑡−𝛾t−1

𝛾𝑡

• 𝜃𝑡 ← 𝜃𝑡 − 𝜆
max 0,𝛾𝑡−𝛾𝑡−1

𝛾𝑡
(𝜃𝑡 − 𝜃0)

𝜃0

෨𝜃𝑡

𝜃𝑡−1

𝜃𝑡

𝛾𝑡

𝛾𝑡: constraints

𝜃0: initialization
෨𝜃𝑡: unconstrained update

project
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Selective Projection Decay

Learning rate

20

1, Condition

2, Deviation Ratio
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More intuitive hyper-parameter (𝜆) tuning

• No regularization (𝜆 = 0): the projection radius is 1.

• Weak regularization (1 ≥ 𝜆 > 0): the projection radius lies 
between 𝜃𝑡 − 𝜃0 2

 and 𝜃𝑡−1 − 𝜃0 2
. Within this range, 

layers will expand.

• Strong regularization (𝜆 > 1): the projection radius lies 
between 0 and 𝜃𝑡−1 − 𝜃0 2

. In this range, it’s possible that 

regularized layers can contract.
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Interpretation

• The condition measures the 
alignment between the current 
gradient direction 𝑔𝑡 and the 
overall heading (𝜃𝑡−1 − 𝜃0). 

Prioritizes consistent update 
directions

• Toy example
Adam + SPD panelizes vertical 
traversal and converges to the 
global minimum closer to the 
initialization.  

Optimization on Himmelblau’s function (4 identical global minima)
using Adam with SPD. 

22
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Sensitivity to Hyper-parameter (𝝀) tuning

Comparisons between L2-SP and Adam-SPD on DomainNet

• ID dataset: {clipart}, OOD datasets: {real, sketch, quickdraw, painting}

• Selective regularization can effectively restrain model’s deviation ( 𝜃𝑡 − 𝜃0 2
) and improve OOD robustness 

without significantly impacting ID robustness.
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Experiments

• Selective regularization is on par with predecessors and outperforms 
other methods.

24
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Compatible with Parameter-Efficient Fine-Tuning

• Our method reduces to selective weight decay when working with 
Parameter Efficient Fine-Tuning (PEFT) methods. 

𝜃0  Pre-trained model

𝜃𝑡  Fine-tuned model

“Zero” model

(Δ𝜃𝑡) PEFT model

Full Fine-Tuning

𝜃𝑡 − 𝜃0 2

PEFT Fine-Tuning

Δ𝜃𝑡 2

25
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LLaMA PEFT Fine-Tuning Experiments

Compatibility with PEFT methods
• SPD regularizes 𝜃𝑡 − 𝜃0 2

 for full fine-tuning and ∆𝜃𝑡 2
 for PEFT fine-tuning

• SPD can also improve the performance of PEFT methods (e.g. LoRA, series adapters, parallel adapters)
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What about Vision-Language Models (VLMs)?

• Robustness and distribution shift is much more complicated!

• Many types of shift possible

• Distribution Shifts to Images

• IV-VQA 

• CV-VQA 

• Distribution Shifts to Questions

• VQA-Rephrasings 

• VQA-LOL

• Distribution Shifts to Answers

• VQA-CP 

• Distribution Shifts to Multi-modalities.

• VQA-GEN 

• VQA-CE

• VQA-VS Adversarial Distribution Shifts

• AVQA

• Adversarial

• AdVQA 

• Far OOD: TextVQA, VizWiz, OK-VQAv2
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Visual Question Answering (VQA) Fine-Tuning Experiments

New setting: robust fine-tuning for VQA
• ID dataset: VQAv2
• OOD datasets

• Distribution shifts to images: IV-VQA, CV-VQA
• Distribution shifts to questions: VQA-Rephrasings
• Distribution shifts to multi-modalities: VQA-CE
• Adversarial distribution shifts: AdVQA
• Far OODs: TextVQA, VizWiz, OK-VQAv2

SPD shows competitiveness across ID, near OOD, and far OOD datasets on multimodal tasks.
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Finetuning and Forgetting are common!

We anticipate a number of places for this to be useful!
• Training vision-language-action models for robotics!

• Some can afford to co-finetune with VQA, etc. but difficult!

• Finetuning to large open-vocabulary corpora (e.g. Wikipedia)

• Multi-task finetuning from pre-trained model
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Conclusions

• Distribution shift is still a problem
• Private, in-the-wild data

• One approach: Finetune!
• Question: How to do so robustly? Per-layer/iteration constraint of gradient update 
• Not the only choice: Retrieval/RAG, etc. 

• Lots of other “distributions” of data!
• Reasoning, planning, etc. 
• Current approach (o1): Show it the distribution
• Other approaches?
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