Out-of-Distribution Robustness when Finetuning Foundation Models

Zsolt Kira Associate Professor School of Interactive Computing Georgia Tech

ECCV 2024 - OOD-CV

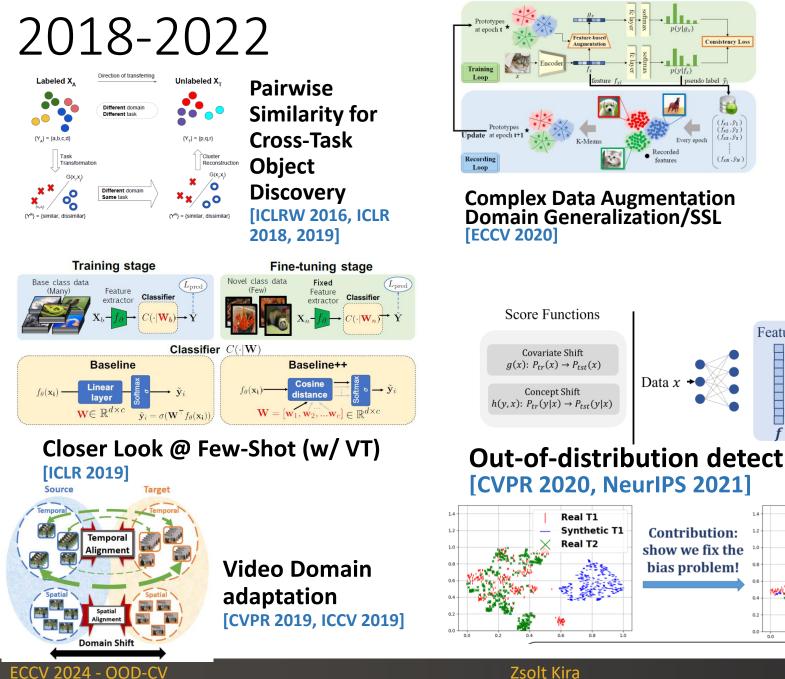
Zsolt Kira

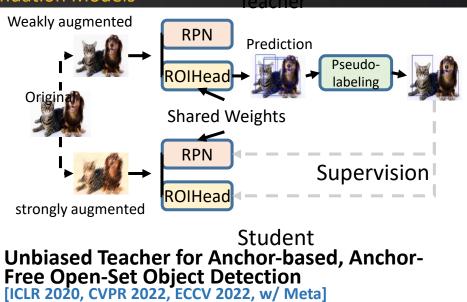
09/30/2024 : 1

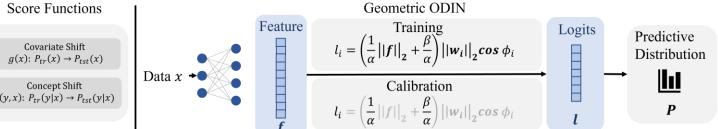
Outline

- Background & Motivation Rise of Foundation Models
- Robust Finetuning of Foundation Models
- Generalizing to Vision-Language/Multi-modal Models
- Conclusions

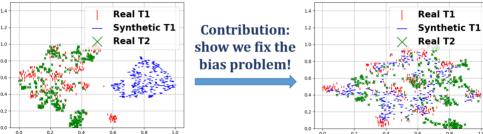
Out-of-Distribution Robustness when Finetuning Foundation Models







Out-of-distribution detection, calibration, open-set

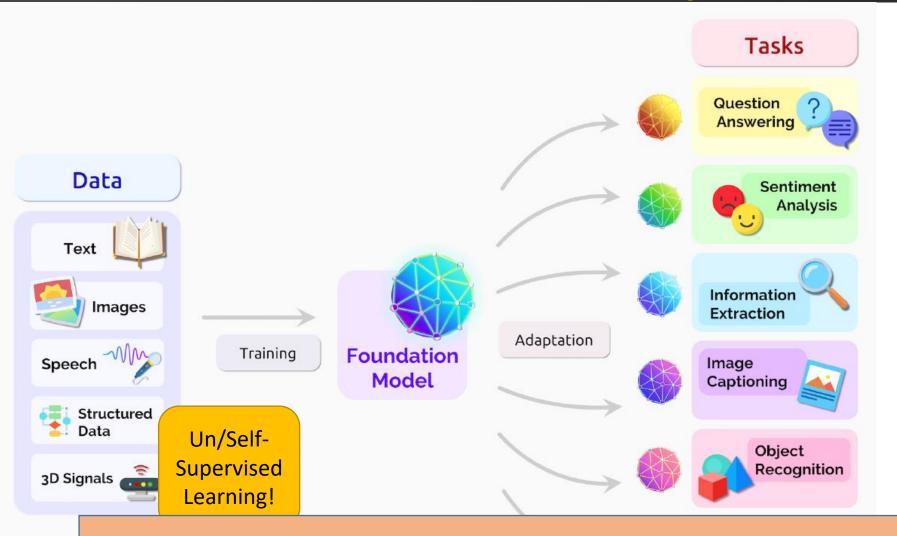


Continual Learning [ICCV 2021, Nature 2022]

SoftMax

Out-of-Distribution Robustness when Finetuning Foundation Models

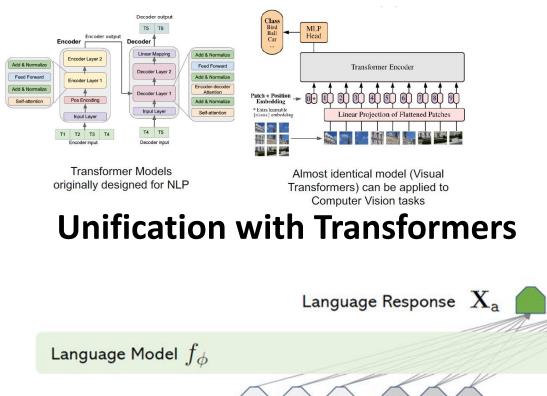
https://www.gwern.net/newsletter/2020/05



Foundation Models have changed the landscape

Georgia | Machine Tech || Learning

The past ~2 years

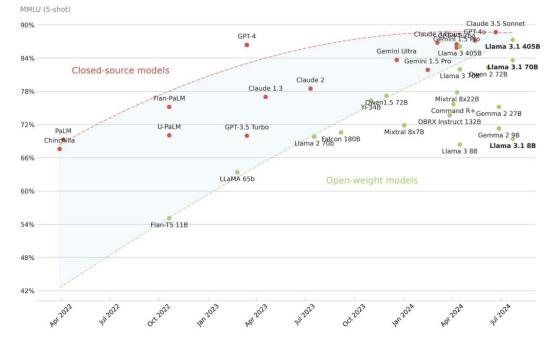


$\begin{array}{c|c} & & & \\ H_v & & \\ H_v & & \\ X_v \text{ Image} & & \\ X_q \text{ Language Instruction} \end{array}$

Closed-source vs. open-weight models

@maximelabonne

Llama 3.1 405B closes the gap with closed-source models for the first time in history



https://x.com/MikelEcheve/

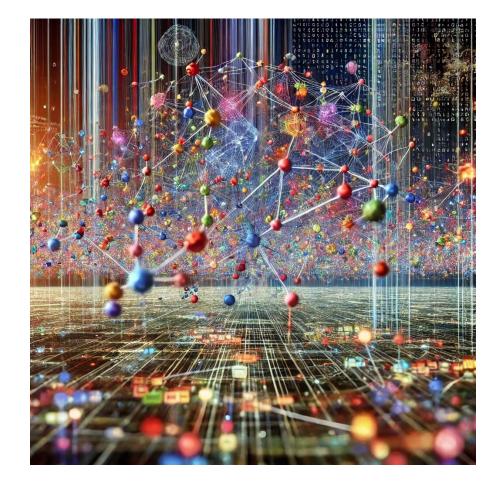
Vision-Language Models

Projection W

Vision Encoder

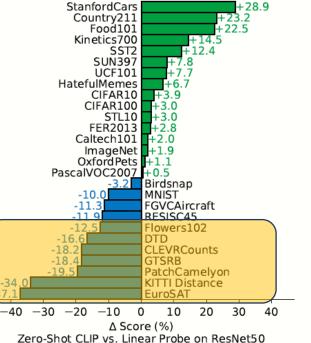
Is Generalization Solved? Are We Done?

- Positive View:
 - Bypass distribution shift!
 - Train on as much "in-distribution data" as possible
 - Nothing is OOD any more

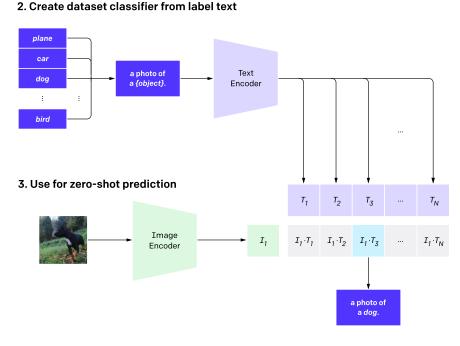


Is Generalization Solved? Are We Done?

- Positive View:
 - Bypass distribution shift!
 - Train on as much "indistribution data" as possible
 - Nothing is OOD any more



[Radford et al., Learning Transferable Visual Models From Natural Language Supervision]



Is Generalization Solved? Are We Done?

- Skeptical View:
 - This is a "brute-force" approach is it really scalable?
 - Lots of "sub-distributions" without sufficient statistical support.
 - This could be the data you care about!
 - Practically, clearly still under-performs and biased
 - US-centric, not "in-the-wild" distributions, etc.
 - How much do we need to soak up "literally all" the distributions we care about?
 - Generalist vision models still resist
 - Something we might want to do: Finetune to our data!

How to Improve Robustness?

	In-Distribution	Out-of-Distribution								
	IN	IN-V2	IN-Adversarial	IN-Rendition	IN-Sketch					
CLIP Zero-Shot	67.68	61.41	30.60	56.77	45.33					
Vanilla FT	83.66	73.82	21.40	43.06	45.22					

Zero-Shot and fine-tuned classification accuracy of CLIP ViT-B on ImageNet (IN) and its variants. The fine-tuning dataset is ImageNet.

Unconstrained optimization only encourages *fitting* to the new data

$$\min_{\boldsymbol{W}|(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}_{train}}\mathcal{L}(\boldsymbol{x},\boldsymbol{y};\boldsymbol{W})$$

Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR 2022.

10

09/30/2024

Pre-trained Robustness

- Pre-trained models do have great generalization capability
 - Some OOD-detection and robustness capabilities
- **Question:** How do we preserve this during finetuning?

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Preservation of Pre-trained Robustness

- L2-SP
 - Imposes L2 regularization on the difference between the fine-tuned model and the pre-trained model. $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2} ||\theta \theta_0||_2^2$
- WiSE-FT
 - Linearly interpolate between a fine-tuned model and its pre-trained initialization.
 - Works very well for vision-language models

Hypothesis: unconstrained optimization to target leads to worse robustness.

Xuhong, L. I., Yves Grandvalet, and Franck Davoine. "Explicit inductive bias for transfer learning with convolutional networks." ICML, 2018.

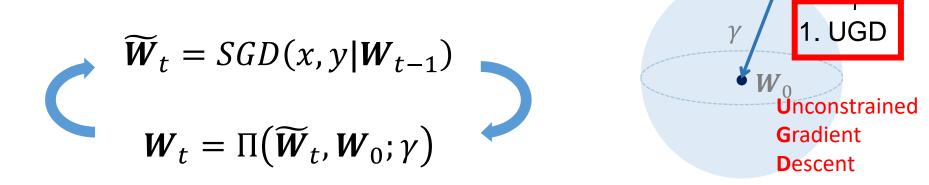
2. Projection

W

Projected Gradient Method

$$\min_{\boldsymbol{W}|(\boldsymbol{x},\boldsymbol{y})\in\mathcal{D}_{train}} \mathcal{L}(\boldsymbol{x},\boldsymbol{y};\boldsymbol{W}) \, \boldsymbol{s}.\, \boldsymbol{t}. \, \left||\boldsymbol{W}-\boldsymbol{W}_{0}|\right| \leq \gamma$$

• Projected Gradient Descent



 Π defines a (**differentiable**) *projection function* and γ is the projection radius

12 09/30/2024

Open Questions

fine-tune?

tune?

layer.

• Which layers to

Not feasible to

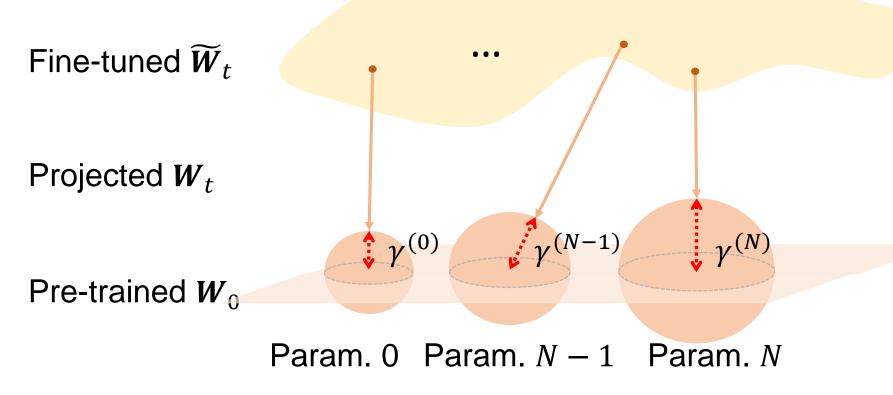
• How much to fine-

specify a different

constraint for each

Trainable Projected Gradient Method

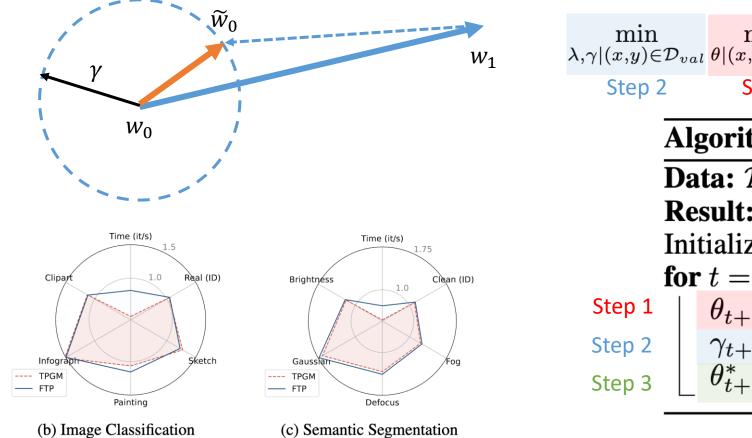
• Trainable Projected Gradient Method (TPGM)

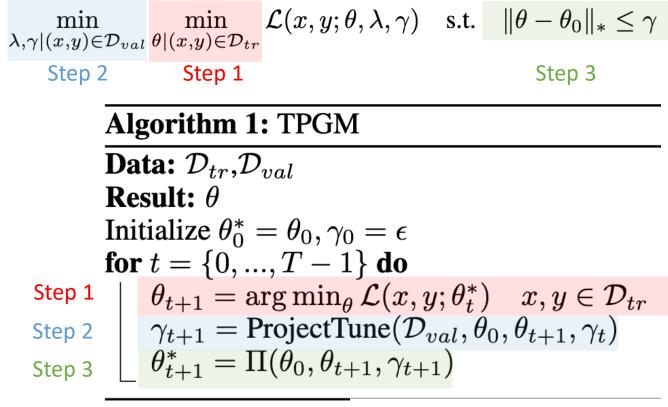


Tian, Junjiao, et al. "Trainable projected gradient method for robust fine-tuning." CVPR 2023.

Our Prior Work: TPGM and FTP

TPGM and FTP use outer loop bi-level optimization for robust training





14

Tian et al., CVPR 2023 / NeurIPS 2023

ECCV 2024 - OOD-CV

Can we simplify this to reduce complexity/computation?

Zsolt Kira

 $\Pi_{l2}(\theta_0,\theta_t,\gamma): \tilde{\theta} = \theta_0 + \frac{1}{\max\left(1, \frac{\|\theta_t - \theta_0\|_2}{\gamma}\right)}(\theta_t - \theta_0).$

Selective Projection Decay

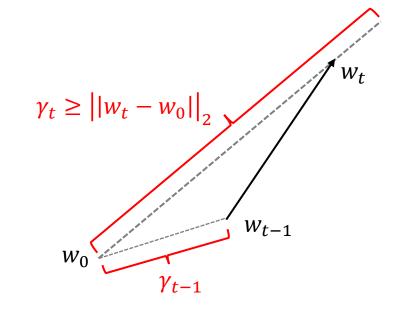
Learning the New Without Forgetting the Old Even More Efficiently

Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning", NeurIPS 2024.

Zsolt Kira

Observations

- TPGM/FTP **grows** and **shrinks** the projection radius.
 - When the radius grows, it often provides no regularization (no projection).
 - The regularization effect mainly comes from the shrinkage of the projection radius.



 γ : constraints w_0 : Initialization

Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning", NeurIPS 2024.

¹⁶ 09/30/2024

Hypothesis

- No need to explicitly maintain a set of projection radii.
- No need to know when to grow.
- Just need to know when to shrink/apply regularization.
 - Do this per layer/iteration
 - When: Alignment between gradient and direction to original weights
 - How much: $\gamma_t = ||w_t w_0||_2$

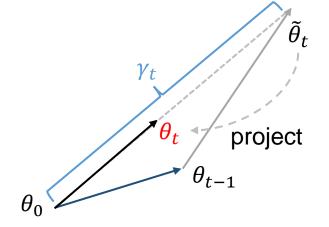
Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning", NeurIPS 2024.

17

Selective Projection Decay (SPD)

Selecting criterion

- L2-SP: $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2} ||\theta \theta_0||_2^2$
- Hyper-optimize $\lambda: \nabla \lambda = \frac{\partial f(\theta_t)}{\partial \lambda} = \frac{\partial f(\theta_t)^T}{\partial \theta} \frac{\theta_t}{\partial \lambda} = \alpha * -g_{t+1}^T(\theta_t \theta_0)$
 - This was the gradient calculation in Fast Trainable Projection $\nabla \gamma \propto g_t^T (\theta_{t-1} \theta_0)$
- Selection condition: $c_t = c_{t-1} g_t^T (\theta_{t-1} \theta_0) < 0$



 γ_t : constraints θ_0 : initialization $\tilde{\theta}_t$: unconstrained update

Selective Projection Decay (SPD)

Selecting criterion

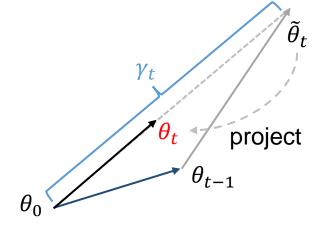
- L2-SP: $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2} ||\theta \theta_0||_2^2$
- Hyper-optimize $\lambda: \nabla \lambda = \frac{\partial f(\theta_t)}{\partial \lambda} = \frac{\partial f(\theta_t)^T}{\partial \theta} \frac{\theta_t}{\partial \lambda} = \alpha * -g_{t+1}^T(\theta_t \theta_0)$
- Selection condition: $c_t = c_{t-1} g_t^T (\theta_{t-1} \theta_0) < 0$

Projection coefficient

• L2-SP is a projection:
$$\theta_p = \theta_t - \left(1 - \frac{\gamma}{\max\{\gamma, ||\theta_t - \theta_0||_2\}}\right) * (\theta_t - \theta_0)$$

- Deviation: $\gamma_t = \left| \left| \theta_t \theta_0 \right| \right|_2$
- Deviation ratio: $r_t = \frac{\max\{0, \gamma_t \gamma_{t-1}\}}{\gamma_t}$

•
$$\theta_t \leftarrow \theta_t - \lambda \frac{\max\{0, \gamma_t - \gamma_{t-1}\}}{\gamma_t} (\theta_t - \theta_0)$$



 γ_t : constraints θ_0 : initialization $\tilde{\theta}_t$: unconstrained update

Selective Projection Decay

Algorithm 1: Adam with L2-Regularization

Initialize $m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$ While θ_t not converged $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) q_t^2$ **Bias Correction** $\widehat{m_t} \leftarrow \frac{m_t}{1 - \beta_t^t}, \widehat{v_t} \leftarrow \frac{v_t}{1 - \beta_t^t}$ Update $\theta_t \leftarrow \theta_{t-1} - \frac{\alpha \overline{m_t}}{\sqrt{\overline{m_t} + \epsilon}}$ $\theta_t \leftarrow \theta_t - \lambda \underline{\alpha}(\theta_t - \theta_0)$ Learning rate

Algorithm 2: Adam with Selective L2-Reg.

```
Initialize m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0, c_0 \leftarrow 0
While \theta_t not converged
            t \leftarrow t + 1
            g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})
            m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t
            v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) q_t^2
             Bias Correction
                       \widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_2^t}
             Update
                        \theta_t \leftarrow \theta_{t-1} - \frac{\alpha m_t}{\sqrt{\hat{v}_t} + \epsilon}
           c_t = c_{t-1} - g_t^\mathsf{T}(\theta_{t-1} - \theta_0)
                                                                                    1. Condition
           If c_t < 0:
                        \theta_t \leftarrow \theta_t - \lambda r_t(\theta_t - \theta_0)
```

2, Deviation Ratio

20

Algorithm 2: Adam with SPD Algorithm 1: Adam with L2-SP **Initialize** $m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0, c_0 \leftarrow 0$ **Initialize** $m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$ While θ_t not converged $t \leftarrow t + 1$ While θ_t not converged $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ $q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ **Bias Correction Bias Correction** $\widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_2^t}$ $\widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_2^t}$ Update Update $\theta_t \leftarrow \theta_{t-1} - \frac{\alpha m_t}{\sqrt{w_t} + \epsilon}$ $\theta_t \leftarrow \theta_{t-1} - \frac{\alpha m_t}{\sqrt{\hat{w_t}} + \epsilon}$ $c_t = c_{t-1} - g_t^{\mathsf{T}}(\theta_{t-1} - \theta_0)$ $\theta_t \leftarrow \theta_t - \lambda \alpha (\theta_t - \theta_0)$ If $c_t < 0$: $\theta_t \leftarrow \theta_t - \lambda r_t(\theta_t - \theta_0)$

More intuitive hyper-parameter (λ) tuning

- No regularization ($\lambda = 0$): the projection radius is 1.
- Weak regularization $(1 \ge \lambda > 0)$: the projection radius lies between $||\theta_t \theta_0||_2$ and $||\theta_{t-1} \theta_0||_2$. Within this range, layers will expand.
- Strong regularization ($\lambda > 1$): the projection radius lies between 0 and $||\theta_{t-1} - \theta_0||_2$. In this range, it's possible that regularized layers can contract.

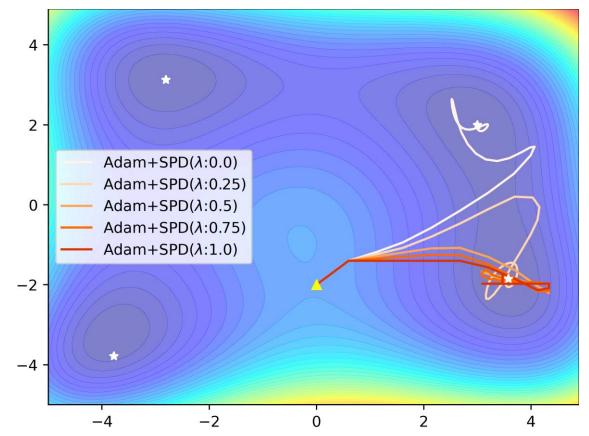
Interpretation

• The condition measures the alignment between the current gradient direction g_t and the overall heading $(\theta_{t-1} - \theta_0)$.

Prioritizes consistent update directions

• Toy example

Adam + SPD **panelizes vertical traversal** and converges to the global minimum closer to the initialization.



Optimization on Himmelblau's function (4 identical global minima) using Adam with SPD.

Zsolt Kira

22 09/30/2024 2

Sensitivity to Hyper-parameter (λ) tuning

Hyper-Parameter λ	1e-1	1e-2	6e-3	3e-3	1e-3	6e-4	3e-4	1e-4	1e-5	1e-6	1e-7	0.0
Deviation	0.03	0.14	0.18	0.24	0.34	0.39	0.46	0.53	0.58	0.58	0.58	0.59
OOD	14.90	37.20	39.43	40.52	41.13	41.76	40.52	41.26	41.35	41.73	40.62	41.34
ID	27.25	69.74	73.76	76.62	78.90	79.30	79.30	79.84	79.80	79.95	79.80	79.91

(a) L2-SP hyper-parameter (λ) sweep. Stronger regularizations (larger values) decrease deviation; however, they do not improve OOD performance and even deteriorate ID performance.

Hyper-Parameter	λ 2.1	1.9	1.7	1.5	1.3	1.1	0.9	0.7	0.5	0.3	0.1	0.0
Deviation	0.31	0.32	0.33	0.34	0.36	0.36	0.42	0.44	0.48	0.51	0.54	0.59
OOD	45.67	45.77	45.23	45.27	44.81	43.99	44.18	42.73	41.84	42.43	41.20	41.34
ID	81.21	80.76	81.25	80.67	81.11	79.89	79.57	80.00	79.92	80.26	80.00	79.91

(b) Adam-SPD hyper-parameter (λ) sweep. Stronger regularizations (larger values) decrease deviation, simultaneously improving OOD performance. The ID performance is not impacted significantly.

Comparisons between L2-SP and Adam-SPD on DomainNet

- ID dataset: {clipart}, OOD datasets: {real, sketch, quickdraw, painting}
- Selective regularization can effectively restrain model's deviation $(||\theta_t \theta_0||_2)$ and improve OOD robustness without significantly impacting ID robustness.

Experiments

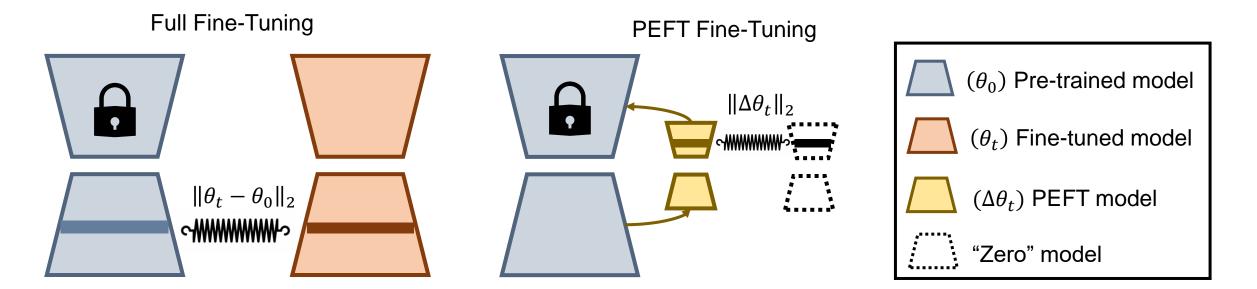
• Selective regularization is on par with predecessors and outperforms other methods.

Table 3: ImageNet Fine-Tuning Result using CLIP ViT-Base. SPD outperforms more complicated algorithms and beats L2-SP by 8.8% by selectively imposing regularization.

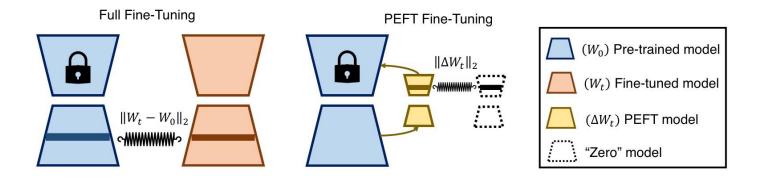
	ID		0	Statistics			
	Im	Im-V2	Im-Adversarial	Im-Rendition	Im-Sketch	OOD Avg.	Avg.
Zero-Shot	67.68	61.41	30.60	56.77	45.53	48.58	52.40
vanilla FT	83.66	73.82	21.40	43.06	45.52	46.98	54.29
Linear Prob.	78.25	67.68	26.54	52.57	48.26	48.76	54.66
LP-FT [19]	82.99	72.96	21.08	44.65	47.56	46.56	53.85
L2-SP [13]	83.44	73.2	20.55	43.89	46.60	46.06	53.54
FTP [11]	84.19	74.64	26.50	47.23	50.23	49.65	56.56
Adam-SPD	84.21	74.83	25.42	49.09	51.18	50.13	56.95

Compatible with Parameter-Efficient Fine-Tuning

• Our method reduces to selective weight decay when working with Parameter Efficient Fine-Tuning (PEFT) methods.



LLaMA PEFT Fine-Tuning Experiments



PEFT	LLM	Optimizer	BoolQ	PIQA	SIQA	HellaSwag	WinoGrande	ARC-e	ARC-c	OBQA	Avg.
Series	LLaMA _{7B}	AdamW Adam-SPD (1.0)	63.0 68.3	79.2 80.4	76.3 77.4	67.9 81.6	75.7 79.7	74.5 79.4	57.1 63.5	72.4 78.4	70.8 76.1
Parallel	LLaMA _{7B}	AdamW Adam-SPD (1.0)	67.9 68.8	76.4 80.9	78.8 78.3	69.8 82.0	78.9 80.8	73.7 80.0	57.3 63.1	75.2 78.0	72.3 76.5
LoRA	LLaMA _{7B}	AdamW Adam-SPD (0.7)	68.9 69.1	80.7 82.8	77.4 78.9	78.1 84.8	78.8 80.7	77.8 80.9	61.3 65.8	74.8 79.2	74.7 77.8
LoRA	LLaMA _{13B}	AdamW Adam-SPD (1.2)	72.1 72.9	83.5 85.6	80.5 80.7	80.5 92.0	83.7 83.7	82.8 85.6	68.3 71.6	82.4 85.6	80.5 82.2

Compatibility with PEFT methods

- SPD regularizes $||\theta_t \theta_0||_2$ for full fine-tuning and $||\Delta \theta_t||_2$ for PEFT fine-tuning
- SPD can also improve the performance of PEFT methods (e.g. LoRA, series adapters, parallel adapters)

09/30/2024 : 27

What about Vision-Language Models (VLMs)?

- Robustness and distribution shift is much more complicated!
 - Distribution Shifts to Images
 - IV-VQA

Many types of shift possible

- CV-VQA
- Distribution Shifts to Questions
 - VQA-Rephrasings
 - VQA-LOL
- Distribution Shifts to Answers
 - VQA-CP
- Distribution Shifts to Multi-modalities.
 - VQA-GEN
 - VQA-CE
 - VQA-VS Adversarial Distribution Shifts
 - AVQA
- Adversarial
 - AdVQA
- Far OOD: TextVQA, VizWiz, OK-VQAv2

Zsolt Kira

Visual Question Answering (VQA) Fine-Tuning Experiments

	ID			Far OOD						
	VQAv2 Vision VQAv2 IV-VQA CV-VQ		sion CV-VQA	Question VQA-Rephrasings	Answer VQA-CP v2	Multimodal VQA-CE	Adversarial AdVQA	TextVQA	VizWiz	OK-VQA
Zero-Shot	54.42	63.95	44.72	50.10	54.29	30.68	30.46	14.86	16.84	28.60
Vanilla FT(LoRA)	86.29	94.43	69.36	78.90	86.21	71.73	49.82	42.08	22.92	48.30
Linear Prob.	78.24	87.83	63.87	69.61	78.48	61.66	42.90	29.61	18.80	42.27
LP-FT(LoRA)	85.97	93.30	65.93	76.49	86.16	72.73	45.68	31.41	19.01	43.27
WiSE-FT(LoRA)	71.36	85.06	64.55	66.42	70.89	48.74	43.95	36.98	22.41	42.35
Adam-SPD(LoRA)	87.39	95.25	68.85	79.48	87.27	73.52	50.90	43.56	23.05	50.11

New setting: robust fine-tuning for VQA

- ID dataset: VQAv2
- OOD datasets
 - Distribution shifts to images: IV-VQA, CV-VQA
 - Distribution shifts to questions: VQA-Rephrasings
 - Distribution shifts to multi-modalities: VQA-CE
 - Adversarial distribution shifts: AdVQA
 - Far OODs: TextVQA, VizWiz, OK-VQAv2

SPD shows competitiveness across ID, near OOD, and far OOD datasets on multimodal tasks.

Finetuning and Forgetting are common!

We anticipate a number of places for this to be useful!

- Training vision-language-action models for robotics!
 - Some can afford to co-finetune with VQA, etc. but difficult!
- Finetuning to large open-vocabulary corpora (e.g. Wikipedia)
- Multi-task finetuning from pre-trained model

Conclusions

- Distribution shift is *still* a problem
 - Private, in-the-wild data
- One approach: Finetune!
 - Question: How to do so robustly? Per-layer/iteration constraint of gradient update
 - Not the only choice: Retrieval/RAG, etc.
- Lots of other "distributions" of data!
 - Reasoning, planning, etc.
 - Current approach (o1): Show it the distribution
 - Other approaches?

Acknowledgement and Questions

Junjiao

Chopra M.S. Student

Brisa

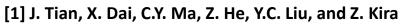
Maneechotesuwan Undergrad

Chengyue

Huang

ML Ph.D.

Student



"Trainable Projected Gradient Method for Robust Fine-tuning", CVPR 2023.

[2] J. Tian, Y. Liu, J. Smith, Z. Kira,

"Fast Trainable Projection for Robust Fine-tuning", NeurIPS 2023.

[3] J. Tian, C. Huang, and Z. Kira

"Rethinking Weight Decay for Robust Fine-Tuning of Foundation Models", NeurIPS 2024.

ECCV 2024 - OOD-CV