
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Data Augmentation

• Recurrent Neural Networks (RNNs)



Administrivia

• Assignment 2

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf 

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf 

• HW2 Tutorial (@176), Conv backward (@181)

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• FB/Meta Office hours TODAY 02/16 3pm EST!
• Pytorch & scalable training

• Module 2, Lesson 8 (M2L8), on dropbox

• GPU resources: PACE-ICE and Google Cloud announced

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0


10 months ago

Video Generation

6-7 second videos



Now

Video Generation https://openai.com/sora



Now

Video Generation https://openai.com/sora



Now

Video Generation https://openai.com/sora



Video Generation – Failure Cases



Adding a Fully Connected Layer

Image
Pooling

Layer

Fully 

Connected 

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss



ResNet Details



Negative Residuals?

https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

• If ReLU is used as non-linearity, 
does that mean we can’t have 
negative residuals?

• Well….



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 

enough data)

Replace last layer with new fully-connected for 

output nodes per new category



Interpretation 1: The model should 

not rely too heavily on particular 

features

⬣ If it does, it has probability 𝟏 − 𝒑 

of losing that feature in an 

iteration

Interpretation 2: Training 𝟐𝒏 

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-

batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Data 

Augmentation



Data augmentation – Performing a range of transformations to 

the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or 

label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation



Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix



Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



We can apply generic affine 

transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations



We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”

mix

Noise
CowMask m Masked 

Image ෤𝑥

Unlabelled 

Image ො𝑥

mix

Mean

Masked 

Image ො𝑥𝑚

CowMask m

Unlabelled 

Image ො𝑥𝑏

Unlabelled 

Image ො𝑥𝑎

Mask proportion p



What do 

CNNs Learn?



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



Module 3 

Introduction



The Space of Architectures

Recurrent Neural 

Networks

Fully Connected

Neural Networks

PredictionsInput

Data

Convolutional Neural

Networks

Input

Image
Predictions

Attention-Based 

Networks 

+

Graph-Based 

Networks 



Recurrent Neural Networks & Transformers

Fully Connected

Neural Networks

PredictionsInput

Data

Convolutional Neural

Networks

Input

Image
Predictions

Same function!

Recurrent Neural 

Networks



New Topic: RNNs

(C) Dhruv Batra 27

Image Credit: Andrej Karpathy



Why model sequences?

Figure Credit: Carlos Guestrin



Sequences are everywhere…

(C) Dhruv Batra 29

Image Credit: Alex Graves and Kevin Gimpel



Sequences in Input or Output?
• It’s a spectrum… 

(C) Dhruv Batra 30

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Image Credit: Andrej Karpathy



Sequences in Input or Output?

(C) Dhruv Batra 31

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

Image Credit: Andrej Karpathy

• It’s a spectrum… 



Sequences in Input or Output?

(C) Dhruv Batra 32

Input: Sequence

Output: No sequence

Example: sentence classification, 

multiple-choice question answering

Image Credit: Andrej Karpathy

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

• It’s a spectrum… 



Sequences in Input or Output?

(C) Dhruv Batra 33

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 

video captioning, open-ended question answering

Image Credit: Andrej Karpathy

Input: Sequence

Output: No sequence

Example: sentence classification, 

multiple-choice question answering

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

• It’s a spectrum… 



What’s wrong with MLPs?

• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs

– No temporal structure

(C) Dhruv Batra 34

Image Credit: Alex Graves, book



What’s wrong with MLPs?

• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs

– No temporal structure

• Problem 2: Pure feed-forward processing

– No “memory”, no feedback

(C) Dhruv Batra 35

Image Credit: Alex Graves, book



3 Key Ideas

• The notion of memory (state)

– We want to propagate information across the sequence

– We will do this with state, represented by a vector 
(embedding/representation)

– Just as a CNN represents an image with the final hidden 
vector/bmedding before the final classifier

(C) Dhruv Batra 36



3 Key Ideas

• The notion of memory (state)

• Parameter Sharing

– in computation graphs = adding gradients

(C) Dhruv Batra 37



Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 

38

Computational Graph



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3 Key Ideas

• The notion of memory (state)

• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”

– in computation graphs with parameter sharing

(C) Dhruv Batra 40



New Words

• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)

(C) Dhruv Batra 41



Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Idea: Input is a sequence and we will process it sequentially though a neural 
network module with state

• For each timestep (element of sequence):

h



Recurrent Neural Network

x

RNN

y
usually want to 

predict a vector at 

some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 

applying a recurrence formula at every time step:

new state old state input vector at 

some time step
some function

with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 

applying a recurrence formula at every time step:

Notice: the same function and the same set 

of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

Many to one: Encode input 

sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 

sequence in a single vector

One to many: Produce output 

sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: MLE / “Teacher Forcing” 



Example: 

Character-level

Language Model

Sampling

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”
Sample

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search



.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level

Language Model

Sampling

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search



.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level

Language Model

Sampling

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search



.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79

Softmax

“e” “l” “l” “o”
SampleExample: 

Character-level

Language Model

Sampling

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

Can also feed in predictions during training (student forcing)



67



Backpropagation through time

Loss

Forward through entire sequence to 

compute loss, then backward through 

entire sequence to compute gradient

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Run forward and backward 

through chunks of the 

sequence instead of whole 

sequence

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Carry hidden states 

forward in time forever, 

but only backpropagate 

for some smaller 

number of steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Truncated Backpropagation through time
Loss

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



x

RNN

y

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



train more

train more

train more

at first:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



The Stacks Project: open source algebraic geometry textbook

Latex source http://stacks.math.columbia.edu/

The stacks project is licensed under the GNU Free Documentation License

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://stacks.math.columbia.edu/
https://github.com/stacks/stacks-project/blob/master/COPYING


Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generated 

C code

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



• RNNs process an ordered sequence of items

– Maintain hidden state

– Transformations are weight-shared across sequence

– Unroll

• Next time:

– Better RNN modules to improve gradient flow

– Just view everything as unordered sequence of items and mix together

Summary


	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: 10 months ago
	Slide 4: Now
	Slide 5: Now
	Slide 6: Now
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: New Topic: RNNs
	Slide 28: Why model sequences?
	Slide 29: Sequences are everywhere…
	Slide 30: Sequences in Input or Output?
	Slide 31: Sequences in Input or Output?
	Slide 32: Sequences in Input or Output?
	Slide 33: Sequences in Input or Output?
	Slide 34: What’s wrong with MLPs?
	Slide 35: What’s wrong with MLPs?
	Slide 36: 3 Key Ideas
	Slide 37: 3 Key Ideas
	Slide 38
	Slide 39: Gradients add at branches
	Slide 40: 3 Key Ideas
	Slide 41: New Words
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

