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Assignment 3
* Due March 9th 11:59pm EST

Projects

* Project proposal due March 15t

Meta office hours today 3pm ET on bias fairness
 Will not be recorded!



L ecture Qutline

 Machine Translation with RNNs
« RNNs with Attention
e From Attention to Transformers

e What can Transformers do?



Sequence Modeling with RNNs

one to one one to many many to one many to many many to many




Machine Translation

we are eating bread » estamos comiendo pan



Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

hg h, » h, h, h,
X X X3 X4
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s; = gy(Yy St1) estamos
Y1
hO h1 > h2 h3 h4 SO T S1
2§ X2 X3 X4 Yo

we are eating  bread [START]

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = gy(Y, Siq) estamos comiendo

Y1 Yo
X1 Xy X3 X4 Yo g
we are eating  bread [START] estamos

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy S.1) estamos comiendo  pan [STOP]
Y1 Yo Y3 Y
X1 Xy X3 Xy Yo g gB %) > Y3
we are eating  bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,,(x, h4)

Decoder: s, = » St
t= Ve Ser) Problem: s; is used to

encode input and
maintain decoder state

‘ 4 ) ) 4
X X X3 X4
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1b C)

Solution: add a
context vectorc = h,
and predict s, from h,

ho " h, * hy " hy " hy "So T 7St T " S22 [ " Ss T | " S4
t t t t
C
X X X3 X4
we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy Si.1, C) estamos comiendo  pan [STOP]

Solution: add a
context vectorc = h, Y Y2 Y3 Y
and predict s, from h, 5 5 5 X

hg > h, * h, > hg > h, »Sog T ST T [ TSy T [ "S3 T " S4
A A A A A A A A A A A A
> C
X1 Xy X3 Xy Yo g gB %) > Y3
we are eating  bread [START] estamos comiendo pan

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy S.1, C)

bottleneck

Problem: Input sequence
hq > h, > h, > h, > h, > Sy — bottlenecked through
fixed-sized vector.

we are eating  bread

Slide credit: Justin Johnson



Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1 C)

bottleneck

ldea: use new context

hO > h1 > h2 > h3 > h4 > Sg — vector at each step of
. decoder!
C T
X X X3 X4
we are eating  bread

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hy * hy " So
X X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

From final hidden state:

e €5 €13 €14 Initial decoder state s,
11 .

h, > h, " hy " hy " So

X1 X2 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

a1 dqp dq3 dqg

t t t t

softmax

f f f I From final hidden state:
€11 €12 €3 €14 Initial decoder state s,
L |

h, " hy " hy * hy " So

X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
S far(Sea, M)

(f. is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos

|

> C,

|

Yo

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

[START]

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos

|

|

Yo

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X, R X
CER CEp) dq3 CEP

From final hidden state:
Initial decoder state s,

t t t t
soffmax
t t t t
€11 €12 €43 €14
el g\
h, > h, > h, > h,
X X5 X3 X4
we are eating bread

a,;=0.45, a,,=0.45, a,3=0.05, a,,=0.05

:SO

Intuition: Context vector

attends to the relevant

part of the input sequence
“estamos” = “we are”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Sey, i) (f.is an MLP)

estamos
Normalize to get
Y1 attention weights
] O<a;<1 2a;=1
S Set context vector ¢ to a linear

|

|

Yo

combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /4 ' compute new

3121 a%z 3%3 3%4 estamos context vector ¢,
soffmax
f | \ t | Y1
€)1 €22 €23 24
| | " }
X X5 Xg X, Cil|Yo| | C2
we are eating bread

[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /4 ' compute new

3121 3%2 3%3 a%4 estamos comiendo  context vector c,
soffmax Usec,to
1 1 1 1 Y1 Y2 compute s, y,
€1 €50 €23 €24 4 T
| | — [
h, h, h, h, S s, L s,
X, X5 X3 X4 Cqi 1| Yo Co | Y1
we are eating bread

[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
a‘ a‘ a‘ a* compute new
121 %2 %3 %4 estamos comiendo  context vector ¢,
soffmax Use ¢, to

! 1 : ! Yi Y2 compute s,, Y,
€21 \ €2 €23 \ €24 | f

3 a A +

— |
‘ ‘ ] ] Intuition: Context vector ‘ ‘ ‘
attends to the relevant part [ Y
X X X3 X4 of the input sequence Cil|Yo| | C2| VY1

“comiendo” = “eating”

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

\

Y2

|

pan

Y3

|

[STOP]

Y4

|

h, " hy " hy * hy " So Sy T S3 " Sa
X1 X5 X3 X4 Cil Yo | Co| Yy C3 || Y2 Csll Y3
we are eating bread

[START] estamos comiendo  pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



e
Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to French 2 SE o . .
translation 2 285885 28 3§
F T o wLwwWw< 2w £ I~ Y
!
Input: “The agreement on accord
. sur
the European Economic a
Area was signed in August . zone
” economique
1992 européenne
a
"y été
Output: “L’'accord sur la signé
zone économique en
’ sy s p aolt
européenne a été signé en 1992

aout 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992

Output: “L’accord sur la
zone économique
européenne a éte signé en
aout 1992

Visualize attention weights a;

agreement
European
Economic

The

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson




Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992

Output: “L’accord sur la

a été signé en
aout 1992

Visualize attention weights a;

agreement

European
Economic
Area

The
the

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson




e
Machine Translation with RNNs and Attention

4 4 4 4

3121 8%2 3%3 a%4 estamos comiendo  pan [STOP]
softmax

1 | | | Y1 Yo Y3 Y

€1 €22 €73 €24 I ‘ ‘ I

h1 > h2 > h3 > h4 > SO S-I _— Sz EE— 83 _' S4

X X, X3 Xy Cil|Yo| |[Co|| Y1 | |C3| Y2 |Ca| VY3

we are eating bread

[START] estamos comiendo  pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson



Attention Layer

M . . a% a;zz a;zs T estamos comiendo  pan [sTOP]
State vector: s; (Shape: D) | s |
Hidden vectors: h. (Shape: Ny x D,)) o el el e no el e
Similarity function: f, E—t ﬁ + N | |
it e 5 E S
iRk BRI
Xq X2 X3 Xa ﬂ Yo C |V E‘ Y2 M Y3
we are eatin bread ! 1 J
° [START] estamos comiendo  pan
Computation:

Similarities: e (Shape: Ny) e, =f_.(s.., h)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.ah. (Shape: Dy)

Slide credit: Justin Johnson



Attention Layer

Inputs: o ol [on
Query vector: ¢ (Shape: D) [ softmax i |
Input vectors: X (Shape: Ny x Dy) o 2 E

Similarity function: T,

estamos comiendo  pan [STOP]

‘)ﬁ ‘Yz ‘Y:-x‘ Y4‘

[ .

Computation:

Similarities: e (Shape: Ny) e, =f_.(q, X,
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)

=

are eating bread

I

t t

T
[START] estamos comiendo  pan

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny

x Do)

Similarity function;dot product

Computation:

Similarities: e (Shape: Ny)

e =0 X

Attention weights: a = softmax(e) (S
Output vector: y = >.aX, (Shape: Dy)

nape:

Nx)

Az dss

t t estamos comiendo  pan [STOP]

softmax

T
t
2

€23 €24

ﬁﬁ% | N||S|4

"

| 4 s
Bk RiEh
X, X3 X4 ﬂyu gHiE‘Yz Mya

t t

1
[START] estamos comiendo  pan

are eating bread

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs:

Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)

Similarity function:|scaled dot product

Computation:
Similarities: e (Shape: Ny)

Az dss

t t estamos comiendo  pan [STOP]

softmax

e;=q-X/sqrt(Dy)

Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)

T
t
2

€23 €24

ﬁﬁ% | N||S|4

"

| 4 s
Bk RiEh
X, X3 X4 ﬂyu gHiE‘Yz Mya

t t

1
[START] estamos comiendo  pan

are eating bread

Changes:
- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer

Inputs: il o Bl

21 22 = estamos comiendo n [sTOP]
Query vectors:|Q (Shape: Ng x Dy) | : I, : | i
Input vectors: X (Shape: Ny x Dg) e ‘y ‘y M g ‘

e e DO AL A

| 4 s
T RiEh
Xq X, X3 X4 ﬂ Yo gk E‘ Y2 M Y3

t t

1
[START] estamos comiendo  pan

we are eating bread

Computation:

Similarities: E = OX" (Shape: No x Ny) E;; = ;- X;/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) Changes:

Output vectors: Y = AX (Shape: No x Dy) Y, = A X, - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson



-
Attention Layer

Inputs: anl (o (e e end
Query vectors: O (Shape: Ny x D) [ sofimax 4 emes comende b PO
Input vectors: X (Shape: Ny x Dy) o Tl gl e o I LI 2 1
Key matrix: W, (Shape: Dy x D) | % % ’_L‘ N | |

H . h h h h s
Value matrix: W,, (Shape: Dy x D,) (O ) i

4| Sg 4
e JH Ill I

t t

T
[START] estamos comiendo  pan

we are eating bread

Computation:
\;(ey vectors: K = XW, (Shape: Ny x D)

Value vectors: V = XW,, (Shape: N, x D)
imilarities: E = OK™ (Shape: Ny xNy) E;; = O, - K;/ sqrt(Dg)

Attention weights: A = softmax(E, dim=1) (Shape' Nq X Ny) Changes:

Output vectors: Y = AV (Shape: Ng x Dy) Y; = A}V, - Use dot product for similarity

- Multiple query vectors
- Separate and value

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X,

Q, Q, Q; Q,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X, — K,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X, — K,

Q, Q, Q; Q,

Slide credit: Justin Johnson



-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, S RS P
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky —  Eq E,. B B

Slide credit: Justin Johnson



-
Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) A, A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Aa Ay Az, A

Value matrix: W,, (Shape: D, x D,))

Softmax( 1)
Computation:
Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, E,, E., E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ngq x Ny) | ' |
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky —  Eq B B B

Ittt 1
Q, Q, Q; Q,

Slide credit: Justin Johnson



Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) "V, — A A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) " Vo = A A Ay Ay

Value matrix: W,, (Shape: D, x D,))

| V3 ] A Aoz | | Azz | Ays
Softmax( 1)

Computation:
Key vectors: K = XW, (Shape: Ny x Dg) - Xy — Ky —  Ey; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, = Ky —1|Eio| |Eyp| |Esn| | Esp
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xs — Ky —  Eqg B B B

Slide credit: Justin Johnson



Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;;

Attention weights: A = softmax(E, dim=1
Output vectors: Y = AV (Shape: Ny x D) Y; =

Y, Y, Y, Y,

| I 1

Product(—), Sum(t )

/ sqrt(Dq)
(Shape: N x Ny)

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW, K,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D) Ky
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson



-
Self-Attention Layer

One per input vector
Inputs: A3 Ags Ags
Input vectors: X (Shape: Ny x Dy) Al A | As
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D) A (A | Ay
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t

Computation:
Query vectors: O = X K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q,;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson



-
Self-Attention Layer

One query per input vector

Inputs: Vs = A1,3 Ays Ags
Input vectors: X (Shape: Ny x Dy) SV, = AL, A, A,
Key matrix: W, (Shape: Dy x D) ' ' '
Value matrix: W,, (Shape: Dy x D,) TV = A Ay A
Query matrix: W, (Shape: Dy x D) t

Softmax(})
t

Computation:
Query vectors: O = XW, K, = E, E,» Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson



Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 =y
t t t
Q, Q, Q,;
t 1 t
X, X, X,

Slide credit: Justin Johnson



-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,)) -
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t
Computation: -
Query vectors: O = XW, —
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D,) -
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson



-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Do) Queries and Keys will
Query matrix: W, (Shape: Dy x D) permuted t
Softmax(})
t
C . | K2 >
omputation:
Query vectors: O = XW, -+ K, T
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) [ Ks [T~
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) + t +
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t 1 t
X, X, X,
-

Slide credit: Justin Johnson



-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D) Similarities will be the
Value matrix: W, (Shape: Dy x D) same, but permuted —
Query matrix: W, (Shape: Dy x D) t

Softmax(})
4

Computation:

Query vectors: O = XW, Ky || Es; E,, E,,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks |7 Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t f

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson



Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Attention weights will
Value matrix: W,, (Shape: Dy x D,) be the same, but
Query matrix: W, (Shape: Dy x D) permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

i\ t t

Product(—), Sum(])
)

Q; Q, Q,
t t t

Slide credit: Justin Johnson



-
Self-Attention Layer (ETETETERET,

t
Consider permuting J v, |4
Inputs: the input vectors: . Aoz | [Aiz| [Aa
Input vectors: X (Shape: Ny x Dy) VA, A, A,
Key matrix: W, (Shape: Dy x D) Values will be the ‘ ' ' '
Value matrix: W,, (Shape: Dy x D) same, but permuted TVa |7 Ags (A Ags
Query matrix: W, (Shape: Dy x D) t

Computation:

Query vectors: O = XW, K: = Es, E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks 1= Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson



Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Outputs will be the
Value matrix: W,, (Shape: Dy x D,) same, but permuted

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, Ez,z
E3,1 Eq - E2,1
E3,3 E, 3 E2,3
t t t
Q,; Q, Q,
t 1 t
X, X, X,

Slide credit: Justin Johnson



Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

L)

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, E2,2
E3,1 Eq - E2,1
E3,3 E, 3 E2,3
t t t
Q,; Q, Q,
t 1 t
X, X, X,
—

Slide credit: Justin Johnson



Self-Attention Layer

Self attention doesn’t “know”

Inputs: N0
Input vectors: X (Shape: Ny x Dy) the orde.r 01: the vectorsiitis
processing!

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 =y
t t t
Q Q, Qs
t 1 t
X, X, X,

Slide credit: Justin Johnson



Self-Attention Layer ot 1 )

, Self attention doesn't “know” V, (= A A A
Inputs: , , the order of the vectors it is S &3 >
Input vectors: X (Shape: Ny x Dy) - V, = A A A

. , processing! 12 22 32
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,) Vi |7 A Az Az

In order to make processing
position-aware, concatenate Softmax(7)
input with positional encoding

Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW
Key vectors: K = XW, (Shape: Ny x Dg)

E can be learned lookup table,
or fixed function

Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

E) [EQ@ [EQ)

Slide credit: Justin Johnson



N
Big cat [END]

¢ 4 t
Masked Self-Attention Layer ——
Inputs: Va =1 0 0 Az
Input v rs: X (Shape: Ny, xD —
K:yu:n::it; » (é?,a?,z:e Dx);( DQi( ) Don't Ie’F vectors “look V2 L Aga| [Asz
Value matrix: W, (Shape: Dy x D) ahead” in the sequence Vi = A Ay Agy
Query matrix: W, (Shape: Dy x D) t
Used for language Softrax(])
modeling (predict next
Computation: word) 9 (p Ke ||| -] |- Ess
Query vectors: O = X K, |[—=| -o0 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dy) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

[START] Big cat

Slide credit: Justin Johnson



Multihead Self-Attention Layer L]

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Value matrix: W,, (Shape: Dy x D,) , L

Query matrix: W, (Shape: Dy x D) Use H independent CE e TR Rk
Attention Heads" in == = =
parallel cletE IEEaE |rEEE

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg) "

Value vectors: V = XW,, (Shape: Ny x D) Split

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network

Y. T Yo T/ Y3 T/ Vs

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Y. T Yo " Y35 T/ Y,

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

IXIXIX]

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Slide credit: Justin Johnson



Three Ways of

Recurrent Neural Network

Y. T Yo " Y35 T/ Y,

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

IXIXIX]

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Processing Sequences

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need
one RNN layer, h; "sees” the to stack many conv layers for
whole sequence outputs to “see” the whole

(-) Not parallelizable: need to sequence

compute hidden states (+) Highly parallel: Each output
sequentially can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson



The Transformer

X X X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



Y1 Yo V! Yy

The Transformer A el .
MLP independently MtP le_P MtP MtP

on each vector f ¥ § 5

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Y

t t t t

t t t t
MLP MLP MLP MLP

t t t t

4
Self-Attention

t t t t

1 1 1 1
X X X3 X,

Slide credit: Justin Johnson



The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)

scale: y (Shape: D) .

shift: B (Shape: D) MLP independently

w = (1/D)3; h;, (scalar) on each vector

g, = (3 (hy;- w)»)'"? (scalar)

zi=(hi-w) / o

=v * 7.

imyrath Residual connection
All vectors interact

Baetal, 2016 with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
t t t t
t
I I I I
MLP MLP MLP MLP
I
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson



The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Y
t t t t
t
I I I I
MLP MLP MLP MLP
I
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson



The Transformer

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
I I I I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 X X3 X4

Slide credit: Justin Johnson



The Transformer yt yt ﬁ yT

Layer Normalization
Transformer Block: 3})

Input: Set of vectors x

Output: Set of vectors y [ [ [ I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :@:9
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable 1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



1 ! ! i

The Transformer

M| (mep | [me | wmiee |

I

t t t
Transformer Block: L“”E”“"‘: alration
Input: Set of vectors x i
Output: Set of vectors 'y e

! ! ! 1

Layer@Normalization

Self-attention is the only A Transformer is a ¢ i
interaction between vectors! seguence of transformer Em=—==Tms
blocks B——
Layer norm and MLP work | T
independently per vector R R

LayertNormalization

I

Highly scalable, highly
parallelizable

M| (mep | [me | e |

LayertNormalization

i

Self-Attention
t f 1 t

Sttt

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson



Output
Probabilities
'he Transformer
o)
A
g N
l Add & Norm |<ﬂ
Feed
Forward
7 ~\ Add & Norm
_ .
Add & Norm Multi-Head
Feed Attention
Forward S Nx
N—
N
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
LIEE BEE L EEI=E
— J [===—
Positional D Positional
Encodin & i
Ing Encoding
Input Output
Embedding Embedding
Inputs OQutputs
(shifted right)

Encoder-Decoder

Vaswani et al, “Attention is all you need”, NeurlPS 2017



e
Benchmark

GLUE

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1  HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2  Alibaba DAMO NLP StructBERT + TAPT C)Jl 90.6 75.3 97.3 093.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)J 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 914 91.0 96.6 90.9 94.5 91.7
5 T5Team- Google T5 C)Jl 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 92.8 94.5 53.1
6  Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7  Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 914 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C}Jl 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9  Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
+ 10  Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J| 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facebook Al RoBERTa C)J 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C)Jl 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428
14 GLUE Human Baselines GLUE Human Baselines C}J. 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 928 91.2 93.6 859 -
15 Stanford Hazy Research Snorkel MeTaL C/J‘ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard



e
Benchmark

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2  Alibaba DAMO NLP StructBERT + TAPT C’J 90.6 75.3 97.3 093.9/91.9 03.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)Jl 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 C’J 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 91.9 96.9 92.8 94.5 53.1
6  Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C)J' 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7  Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C)Jl 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
<+ 8  ELECTRA Team ELECTRA-Large + Standard Tricks C)Jl 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9  Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa C)J' 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13  Microsoft D365 Al & MSR Al MT-DNN-ensemble C’J 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
GLUE Human Baselines GLUE Human Baselines . Y .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTaL CJ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 399

source: https://gluebenchmark.com/leaderboard



SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
scilence.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon 1s finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
SNnow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/



Can Attention/Transformers be used
from more than text processing?



VILBERT: A Visolinguistic Transformer

ettylma&\ | zg-’\

Paula Bronstein

pop artist performs at the a worker helps to clear
festival in a city. the debris.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

blue sofa in the living
room.




VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer

RPNH HEENEN

E > PROOJI Vision > Language

~— HEENEN
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." Neur/PS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.



VILBERT Demo:

https://demo.allennlp.org/visual-guestion-answering


https://demo.allennlp.org/visual-question-answering
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