Topics:
e Attention and Transformers

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 3
* Due March 9th 11:59pm EST

Projects

* Project proposal due March 15t

Meta office hours today 3pm ET on bias fairness
 Will not be recorded!

L ecture Qutline

 Machine Translation with RNNs
« RNNs with Attention
e From Attention to Transformers

e What can Transformers do?

Sequence Modeling with RNNs

one to one one to many many to one many to many many to many

Machine Translation

we are eating bread » estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

hg h, » h, h, h,
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s; = gy(Yy St1) estamos
Y1
hO h1 > h2 h3 h4 SO T S1
2§ X2 X3 X4 Yo

we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = gy(Y, Siq) estamos comiendo

Y1 Yo
X1 Xy X3 X4 Yo g
we are eating bread [START] estamos

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy S.1) estamos comiendo pan [STOP]
Y1 Yo Y3 Y
X1 Xy X3 Xy Yo g gB %) > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,,(x, h4)

Decoder: s, = » St
t= Ve Ser) Problem: s; is used to

encode input and
maintain decoder state

‘ 4)) 4
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1b C)

Solution: add a
context vectorc = h,
and predict s, from h,

ho " h, * hy " hy " hy "So T 7St T " S22 [" Ss T | " S4
t t t t
C
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy Si.1, C) estamos comiendo pan [STOP]

Solution: add a
context vectorc = h, Y Y2 Y3 Y
and predict s, from h, 5 5 5 X

hg > h, * h, > hg > h, »Sog T ST T [TSy T ["S3 T " S4
A A A A A A A A A A A A
> C
X1 Xy X3 Xy Yo g gB %) > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy S.1, C)

bottleneck

Problem: Input sequence
hq > h, > h, > h, > h, > Sy — bottlenecked through
fixed-sized vector.

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1 C)

bottleneck

ldea: use new context

hO > h1 > h2 > h3 > h4 > Sg — vector at each step of
. decoder!
C T
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hy * hy " So
X X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

From final hidden state:

e €5 €13 €14 Initial decoder state s,
11 .

h, > h, " hy " hy " So

X1 X2 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

a1 dqp dq3 dqg

t t t t

softmax

f f f I From final hidden state:
€11 €12 €3 €14 Initial decoder state s,
L |

h, " hy " hy * hy " So

X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
S far(Sea, M)

(f. is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos

|

> C,

|

Yo

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

[START]

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

a1 CEP) dq3 dig
t t t t
soffmax
f f f I From final hidden state:
€11 \ €12 €3 \ €14 Initial decoder state s,
el g\ |
h1 g h2 g h3 g h4 > SO
X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos

|

|

Yo

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X, R X
CER CEp) dq3 CEP

From final hidden state:
Initial decoder state s,

t t t t
soffmax
t t t t
€11 €12 €43 €14
el g\
h, > h, > h, > h,
X X5 X3 X4
we are eating bread

a,;=0.45, a,,=0.45, a,3=0.05, a,,=0.05

:SO

Intuition: Context vector

attends to the relevant

part of the input sequence
“estamos” = “we are”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Sey, i) (f.is an MLP)

estamos
Normalize to get
Y1 attention weights
] O<a;<1 2a;=1
S Set context vector ¢ to a linear

|

|

Yo

combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /4 ' compute new

3121 a%z 3%3 3%4 estamos context vector ¢,
soffmax
f | \ t | Y1
€)1 €22 €23 24
| | " }
X X5 Xg X, Cil|Yo| | C2
we are eating bread

[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /4 ' compute new

3121 3%2 3%3 a%4 estamos comiendo context vector c,
soffmax Usec,to
1 1 1 1 Y1 Y2 compute s, y,
€1 €50 €23 €24 4 T
| | — [
h, h, h, h, S s, L s,
X, X5 X3 X4 Cqi 1| Yo Co | Y1
we are eating bread

[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
a‘ a‘ a‘ a* compute new
121 %2 %3 %4 estamos comiendo context vector ¢,
soffmax Use ¢, to

! 1 : ! Yi Y2 compute s,, Y,
€21 \ €2 €23 \ €24 | f

3 a A +

— |
‘ ‘]] Intuition: Context vector ‘ ‘ ‘
attends to the relevant part [Y
X X X3 X4 of the input sequence Cil|Yo| | C2| VY1

“comiendo” = “eating”

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

\

Y2

|

pan

Y3

|

[STOP]

Y4

|

h, " hy " hy * hy " So Sy T S3 " Sa
X1 X5 X3 X4 Cil Yo | Co| Yy C3 || Y2 Csll Y3
we are eating bread

[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to French 2 SE o . .
translation 2 285885 28 3§
F T o wLwwWw< 2w £ I~ Y
!
Input: “The agreement on accord
. sur
the European Economic a
Area was signed in August . zone
” economique
1992 européenne
a
"y été
Output: “L’'accord sur la signé
zone économique en
’ sy s p aolt
européenne a été signé en 1992

aout 1992

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992

Output: “L’accord sur la
zone économique
européenne a éte signé en
aout 1992

Visualize attention weights a;

agreement
European
Economic

The

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992

Output: “L’accord sur la

a été signé en
aout 1992

Visualize attention weights a;

agreement

European
Economic
Area

The
the

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

4 4 4 4

3121 8%2 3%3 a%4 estamos comiendo pan [STOP]
softmax

1 | | | Y1 Yo Y3 Y

€1 €22 €73 €24 I ‘ ‘ I

h1 > h2 > h3 > h4 > SO S-I _— Sz EE— 83 _' S4

X X, X3 Xy Cil|Yo| |[Co|| Y1 | |C3| Y2 |Ca| VY3

we are eating bread

[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Attention Layer

M . . a% a;zz a;zs T estamos comiendo pan [sTOP]
State vector: s; (Shape: D) | s |
Hidden vectors: h. (Shape: Ny x D,)) o el el e no el e
Similarity function: f, E—t ﬁ + N | |
it e 5 E S
iRk BRI
Xq X2 X3 Xa ﬂ Yo C |V E‘ Y2 M Y3
we are eatin bread ! 1 J
° [START] estamos comiendo pan
Computation:

Similarities: e (Shape: Ny) e, =f_.(s.., h)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.ah. (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs: o ol [on
Query vector: ¢ (Shape: D) [softmax i |
Input vectors: X (Shape: Ny x Dy) o 2 E

Similarity function: T,

estamos comiendo pan [STOP]

‘)ﬁ ‘Yz ‘Y:-x‘ Y4‘

[.

Computation:

Similarities: e (Shape: Ny) e, =f_.(q, X,
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)

=

are eating bread

I

t t

T
[START] estamos comiendo pan

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny

x Do)

Similarity function;dot product

Computation:

Similarities: e (Shape: Ny)

e =0 X

Attention weights: a = softmax(e) (S
Output vector: y = >.aX, (Shape: Dy)

nape:

Nx)

Az dss

t t estamos comiendo pan [STOP]

softmax

T
t
2

€23 €24

ﬁﬁ% | N||S|4

"

| 4 s
Bk RiEh
X, X3 X4 ﬂyu gHiE‘Yz Mya

t t

1
[START] estamos comiendo pan

are eating bread

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:

Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)

Similarity function:|scaled dot product

Computation:
Similarities: e (Shape: Ny)

Az dss

t t estamos comiendo pan [STOP]

softmax

e;=q-X/sqrt(Dy)

Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)

T
t
2

€23 €24

ﬁﬁ% | N||S|4

"

| 4 s
Bk RiEh
X, X3 X4 ﬂyu gHiE‘Yz Mya

t t

1
[START] estamos comiendo pan

are eating bread

Changes:
- Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs: il o Bl

21 22 = estamos comiendo n [sTOP]
Query vectors:|Q (Shape: Ng x Dy) | : I, : | i
Input vectors: X (Shape: Ny x Dg) e ‘y ‘y M g ‘

e e DO AL A

| 4 s
T RiEh
Xq X, X3 X4 ﬂ Yo gk E‘ Y2 M Y3

t t

1
[START] estamos comiendo pan

we are eating bread

Computation:

Similarities: E = OX" (Shape: No x Ny) E;; = ;- X;/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) Changes:

Output vectors: Y = AX (Shape: No x Dy) Y, = A X, - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson

-
Attention Layer

Inputs: anl (o (e e end
Query vectors: O (Shape: Ny x D) [sofimax 4 emes comende b PO
Input vectors: X (Shape: Ny x Dy) o Tl gl e o I LI 2 1
Key matrix: W, (Shape: Dy x D) | % % ’_L‘ N | |

H . h h h h s
Value matrix: W,, (Shape: Dy x D,) (O) i

4| Sg 4
e JH Ill I

t t

T
[START] estamos comiendo pan

we are eating bread

Computation:
\;(ey vectors: K = XW, (Shape: Ny x D)

Value vectors: V = XW,, (Shape: N, x D)
imilarities: E = OK™ (Shape: Ny xNy) E;; = O, - K;/ sqrt(Dg)

Attention weights: A = softmax(E, dim=1) (Shape' Nq X Ny) Changes:

Output vectors: Y = AV (Shape: Ng x Dy) Y; = A}V, - Use dot product for similarity

- Multiple query vectors
- Separate and value

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X,

Q, Q, Q; Q,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X, — K,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X, — K,

Q, Q, Q; Q,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, S RS P
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky — Eq E,. B B

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) A, A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Aa Ay Az, A

Value matrix: W,, (Shape: D, x D,))

Softmax(1)
Computation:
Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — | Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, E,, E., E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ngq x Ny) | ' |
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky — Eq B B B

Ittt 1
Q, Q, Q; Q,

Slide credit: Justin Johnson

Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) "V, — A A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) " Vo = A A Ay Ay

Value matrix: W,, (Shape: D, x D,))

| V3] A Aoz | | Azz | Ays
Softmax(1)

Computation:
Key vectors: K = XW, (Shape: Ny x Dg) - Xy — Ky — Ey; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, = Ky —1|Eio| |Eyp| |Esn| | Esp
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xs — Ky — Eqg B B B

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;;

Attention weights: A = softmax(E, dim=1
Output vectors: Y = AV (Shape: Ny x D) Y; =

Y, Y, Y, Y,

| I 1

Product(—), Sum(t)

/ sqrt(Dq)
(Shape: N x Ny)

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW, K,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D) Ky
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson

-
Self-Attention Layer

One per input vector
Inputs: A3 Ags Ags
Input vectors: X (Shape: Ny x Dy) Al A | As
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D) A (A | Ay
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t

Computation:
Query vectors: O = X K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q,;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs: Vs = A1,3 Ays Ags
Input vectors: X (Shape: Ny x Dy) SV, = AL, A, A,
Key matrix: W, (Shape: Dy x D) ' ' '
Value matrix: W,, (Shape: Dy x D,) TV = A Ay A
Query matrix: W, (Shape: Dy x D) t

Softmax(})
t

Computation:
Query vectors: O = XW, K, = E, E,» Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson

Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 =y
t t t
Q, Q, Q,;
t 1 t
X, X, X,

Slide credit: Justin Johnson

-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,)) -
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t
Computation: -
Query vectors: O = XW, —
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D,) -
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Do) Queries and Keys will
Query matrix: W, (Shape: Dy x D) permuted t
Softmax(})
t
C . | K2 >
omputation:
Query vectors: O = XW, -+ K, T
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) [Ks [T~
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) + t +
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t 1 t
X, X, X,
-

Slide credit: Justin Johnson

-
Self-Attention Layer ot 1 o)

Consider permuting . -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D) Similarities will be the
Value matrix: W, (Shape: Dy x D) same, but permuted —
Query matrix: W, (Shape: Dy x D) t

Softmax(})
4

Computation:

Query vectors: O = XW, Ky || Es; E,, E,,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks |7 Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t f

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Attention weights will
Value matrix: W,, (Shape: Dy x D,) be the same, but
Query matrix: W, (Shape: Dy x D) permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

i\ t t

Product(—), Sum(])
)

Q; Q, Q,
t t t

Slide credit: Justin Johnson

-
Self-Attention Layer (ETETETERET,

t
Consider permuting J v, |4
Inputs: the input vectors: . Aoz | [Aiz| [Aa
Input vectors: X (Shape: Ny x Dy) VA, A, A,
Key matrix: W, (Shape: Dy x D) Values will be the ‘ ' ' '
Value matrix: W,, (Shape: Dy x D) same, but permuted TVa |7 Ags (A Ags
Query matrix: W, (Shape: Dy x D) t

Computation:

Query vectors: O = XW, K: = Es, E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks 1= Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Outputs will be the
Value matrix: W,, (Shape: Dy x D,) same, but permuted

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, Ez,z
E3,1 Eq - E2,1
E3,3 E, 3 E2,3
t t t
Q,; Q, Q,
t 1 t
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

L)

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, E2,2
E3,1 Eq - E2,1
E3,3 E, 3 E2,3
t t t
Q,; Q, Q,
t 1 t
X, X, X,
—

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”

Inputs: N0
Input vectors: X (Shape: Ny x Dy) the orde.r 01: the vectorsiitis
processing!

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 =y
t t t
Q Q, Qs
t 1 t
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer ot 1)

, Self attention doesn't “know” V, (= A A A
Inputs: , , the order of the vectors it is S &3 >
Input vectors: X (Shape: Ny x Dy) - V, = A A A

. , processing! 12 22 32
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,) Vi |7 A Az Az

In order to make processing
position-aware, concatenate Softmax(7)
input with positional encoding

Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW
Key vectors: K = XW, (Shape: Ny x Dg)

E can be learned lookup table,
or fixed function

Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

E) [EQ@ [EQ)

Slide credit: Justin Johnson

N
Big cat [END]

¢ 4 t
Masked Self-Attention Layer ——
Inputs: Va =1 0 0 Az
Input v rs: X (Shape: Ny, xD —
K:yu:n::it; » (é?,a?,z:e Dx);(DQi() Don't Ie’F vectors “look V2 L Aga| [Asz
Value matrix: W, (Shape: Dy x D) ahead” in the sequence Vi = A Ay Agy
Query matrix: W, (Shape: Dy x D) t
Used for language Softrax(])
modeling (predict next
Computation: word) 9 (p Ke ||| -] |- Ess
Query vectors: O = X K, |[—=| -o0 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dy) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

[START] Big cat

Slide credit: Justin Johnson

Multihead Self-Attention Layer L]

Inputs: Concat
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Value matrix: W,, (Shape: Dy x D,) , L

Query matrix: W, (Shape: Dy x D) Use H independent CE e TR Rk
Attention Heads" in == = =
parallel cletE IEEaE |rEEE

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg) "

Value vectors: V = XW,, (Shape: Ny x D) Split

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

Y. T Yo T/ Y3 T/ Vs

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Y. T Yo " Y35 T/ Y,

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

IXIXIX]

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Slide credit: Justin Johnson

Three Ways of

Recurrent Neural Network

Y. T Yo " Y35 T/ Y,

IR

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

IXIXIX]

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Processing Sequences

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network 1D Convolution

Self-Attention

Attention is all you need

Vaswani et al, NeurlPS 2017

Works on Ordered Sequences Works on Multidimensional Grids
(+) Good at long sequences: After (-) Bad at long sequences: Need
one RNN layer, h; "sees” the to stack many conv layers for
whole sequence outputs to “see” the whole

(-) Not parallelizable: need to sequence

compute hidden states (+) Highly parallel: Each output
sequentially can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

The Transformer

X X X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

Y1 Yo V! Yy

The Transformer A el .
MLP independently MtP le_P MtP MtP

on each vector f ¥ § 5

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Y

t t t t

t t t t
MLP MLP MLP MLP

t t t t

4
Self-Attention

t t t t

1 1 1 1
X X X3 X,

Slide credit: Justin Johnson

The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)

scale: y (Shape: D) .

shift: B (Shape: D) MLP independently

w = (1/D)3; h;, (scalar) on each vector

g, = (3 (hy;- w)»)'"? (scalar)

zi=(hi-w) / o

=v * 7.

imyrath Residual connection
All vectors interact

Baetal, 2016 with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
t t t t
t
I I I I
MLP MLP MLP MLP
I
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Y
t t t t
t
I I I I
MLP MLP MLP MLP
I
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson

The Transformer

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
I I I I
Layer Normalization
:

I I I I
MLP MLP MLP MLP
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 X X3 X4

Slide credit: Justin Johnson

The Transformer yt yt ﬁ yT

Layer Normalization
Transformer Block: 3})

Input: Set of vectors x

Output: Set of vectors y [[[I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :@:9
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable 1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

1 ! ! i

The Transformer

M| (mep | [me | wmiee |

I

t t t
Transformer Block: L“”E”“"‘: alration
Input: Set of vectors x i
Output: Set of vectors 'y e

! ! ! 1

Layer@Normalization

Self-attention is the only A Transformer is a ¢ i
interaction between vectors! seguence of transformer Em=—==Tms
blocks B——
Layer norm and MLP work | T
independently per vector R R

LayertNormalization

I

Highly scalable, highly
parallelizable

M| (mep | [me | e |

LayertNormalization

i

Self-Attention
t f 1 t

Sttt

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

Output
Probabilities
'he Transformer
o)
A
g N
l Add & Norm |<ﬂ
Feed
Forward
7 ~\ Add & Norm
_ .
Add & Norm Multi-Head
Feed Attention
Forward S Nx
N—
N
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
LIEE BEE L EEI=E
— J [===—
Positional D Positional
Encodin & i
Ing Encoding
Input Output
Embedding Embedding
Inputs OQutputs
(shifted right)

Encoder-Decoder

Vaswani et al, “Attention is all you need”, NeurlPS 2017

e
Benchmark

GLUE

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C)Jl 90.6 75.3 97.3 093.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)J 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 914 91.0 96.6 90.9 94.5 91.7
5 T5Team- Google T5 C)Jl 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 92.8 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 914 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C}Jl 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J| 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facebook Al RoBERTa C)J 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C)Jl 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428
14 GLUE Human Baselines GLUE Human Baselines C}J. 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 928 91.2 93.6 859 -
15 Stanford Hazy Research Snorkel MeTaL C/J‘ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

e
Benchmark

Rank Name CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C’J 90.6 75.3 97.3 093.9/91.9 03.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)Jl 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 C’J 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 91.9 96.9 92.8 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C)J' 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C)Jl 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
<+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C)Jl 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 493
12 Facebook Al RoBERTa C)J' 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C’J 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
GLUE Human Baselines GLUE Human Baselines . Y .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTaL CJ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 399

source: https://gluebenchmark.com/leaderboard

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley,
in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke
perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
scilence.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon 1s finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had what
appeared to be a natural fountain, surrounded by two peaks of rock and silver
SNnow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on top,”

said Pérez.
Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Can Attention/Transformers be used
from more than text processing?

VILBERT: A Visolinguistic Transformer

ettylma&\ | zg-’\

Paula Bronstein

pop artist performs at the a worker helps to clear
festival in a city. the debris.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

blue sofa in the living
room.

VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer

RPNH HEENEN

E > PROOJI Vision > Language

~— HEENEN
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." Neur/PS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

VILBERT Demo:

https://demo.allennlp.org/visual-guestion-answering

https://demo.allennlp.org/visual-question-answering

-
Summary

Self-Attention Transformer Model ViLBERT

Qutput
Probabilities
Softmax
Nl M2 (Y
| Product(—), Sum(t) }
f
—"Lf" Az | Ay Azs Feed
Forward
_' A Ayl Asp
-) e EEEEN
1 Multi-Head
| Softmax(1) | Feed Attention
T Forward D) Nx ..
Ko |~|[Exa| [Eza] [Ess S SEEE £ Vision PN Language
Nx 3 orm
K2 - E'\,2 E2'2 E3‘2 f‘»[M('NOi] Masked
m £ E E Multi-Head Multi-Head - - - - -
1 = Eq 2'1 0 Attention Attention C1T 1010170]
t t t At 4 1
Q, Q, Qs] J |
I Positional D Positional
‘)(1‘ ‘)(2‘ ‘)(3‘ Encoding & Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Lecture Outline
	Slide 4: Sequence Modeling with RNNs
	Slide 5: Machine Translation
	Slide 6: Machine Translation
	Slide 7: Machine Translation with RNNs
	Slide 8: Machine Translation with RNNs
	Slide 9: Machine Translation with RNNs
	Slide 10: Machine Translation with RNNs
	Slide 11: Machine Translation with RNNs
	Slide 12: Machine Translation with RNNs
	Slide 13: Machine Translation with RNNs
	Slide 14: Machine Translation with RNNs
	Slide 15: Machine Translation with RNNs
	Slide 16: Machine Translation with RNNs
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Attention Layer
	Slide 33: Attention Layer
	Slide 34: Attention Layer
	Slide 35: Attention Layer
	Slide 36: Attention Layer
	Slide 37: Attention Layer
	Slide 38: Attention Layer
	Slide 39: Attention Layer
	Slide 40: Attention Layer
	Slide 41: Attention Layer
	Slide 42: Attention Layer
	Slide 43: Attention Layer
	Slide 44: Self-Attention Layer
	Slide 45: Self-Attention Layer
	Slide 46: Self-Attention Layer
	Slide 47: Self-Attention Layer
	Slide 48: Self-Attention Layer
	Slide 49: Self-Attention Layer
	Slide 50: Self-Attention Layer
	Slide 51: Self-Attention Layer
	Slide 52: Self-Attention Layer
	Slide 53: Self-Attention Layer
	Slide 54: Self-Attention Layer
	Slide 55: Self-Attention Layer
	Slide 56: Self-Attention Layer
	Slide 57: Self-Attention Layer
	Slide 58: Self-Attention Layer
	Slide 59: Self-Attention Layer
	Slide 60: Masked Self-Attention Layer
	Slide 61: Multihead Self-Attention Layer
	Slide 62: Three Ways of Processing Sequences
	Slide 63: Three Ways of Processing Sequences
	Slide 64: Three Ways of Processing Sequences
	Slide 65: Three Ways of Processing Sequences
	Slide 66: The Transformer
	Slide 67: The Transformer
	Slide 68: The Transformer
	Slide 69: The Transformer
	Slide 70: The Transformer
	Slide 71: The Transformer
	Slide 72: The Transformer
	Slide 73: The Transformer
	Slide 74: The Transformer
	Slide 75: The Transformer
	Slide 76: GLUE Benchmark
	Slide 77: GLUE Benchmark
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

