Topics:
* Image Segmentation and Decoders
* Generative Adversarial Networks

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 3
* Due March 9th 11:59pm EST
* Oops. Diffusion models accidentally included. No need to do it by Mar 9t @258

Projects
* Project proposal due March 15t 17th
* Proposal description out on canvas @256

Meta office hours today 3pm ET on language models
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Slide credit; Justin Johnson



 How do we
do
classification?

Y1 Y, Y3 Yy

Transformer Encoder

* Extra learnable
[class] embedding Lmear PrOJectlon of Flattened Patches
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) Patches as input to Self-Attention Ge%gciﬁﬁ




segmentation _ _
classification  detection ... classification
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(a) Swin Transformer (ours)

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ideas:
* Use smaller patches (4x4x3)
* Project them to lower
dimension (4)
* Merge tokens at deeper
levels
* Full attention => Window
attention
e => Shifted window
attention

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

) Swin Transformers


https://paperswithcode.com/sota/instance-segmentation-on-coco

Image

Segmentation
Networks

Georgia
groia |



I
- ::)_- —

— Car Coffee Cup Bird

Classification
(Class distribution per image)

Object Detection

(List of bounding boxes with class distribution per box)

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Computer Vision Tasks Gegrala |
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Given an image, output another image

Each output contains class distribution per pixel

More generally an image-to-image problem

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Segmentation Tasks Gegrala |
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3 Classes

) Input & Output

Probability distribution over
classes for this one pixel

i
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Convolutional Neural Network (CNN)

Image

i
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Encoder
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We can develop learnable
Useful, lower-
dimensional or non-learnable

f .
eatures upsampling layers!
Decoder
(De)Convolution (De)Convolution
+ (Un)Pooling + “Image”
Non-Linear Layer Non-Linear
Layer Layer
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Idea: “De”’Convolution and UnPooling Ge°r9-a@



Example : Max pooling
Stride window across image but perform per-patch max operation

X(0:1,0:1) = Hgg ;(5)8] =) max(0:1,0:1) =200

Copy value to position chosen as max
in encoder, fill reset of this window
with zeros

10 = q
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EEEEE

w=s5 =

L 5 SE |

Pooling UnPooling EaEsE -

ldea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

) Max Unpooling Gegqraia
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120 150 120
150 150
X=1100 50 110 |:> Y=[100110
25 25 10 2x2 max pool
Encoder
Decoder
2x2 max unpool
0 300 -—
300450
= Y = _
X=[lo0z30 ~EP Y=[0 © l

) Max Unpooling Example (one window) Gegrola |
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- 120 150 120:> v _[150150 Contributions from
Xenc =100 50 110 ¢ 11001101 multiple windows

25 25 102
are summed

max pool

Encoder
Decoder
2x2 max unpool 0 300+450 O
X, = 300450 |:> Y;:..=1100 0 250
dec ~ (100 250] dee 0 0 0

) Max Unpooling Example Gograla |



Convolutional Neural Network (CNN)

Image

s

We pull max indices from
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Symmetry in Encoder/Decoder Georg-aﬁ



How can we upsample using convolutions and learnable kernel?

Normal Convolution

. BRET 5 «
| AR o
= PAETS <
ky =3
W=5 Wk, +1

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

“De”’Convolution (Transposed Convolution) Ge%%'ﬁ&




120 150 120 : :
— Contributions from
X= (100 50 110] K=, ] multiple windows
25 25 10 P
are summed
[ 120 —120 0 O 120 —-120+ 150 — 150 O |
240 — 240 0 O 240 — 240+ 300 —300 O
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
Incorporate Incorporate
X(0,0) X(1,0)

) Transposed Convolution Example Gogratn |



Convolutional Neural Network (CNN) )
, | We can either learn the kernels,
ﬂ or take corresponding encoder

Useful, lower-

| |
| | |
: : : dimensional kernel and rotate 180 degrees
| | | =<, e (no decoder learning)
| | | ’ |
| | C Y
| _ | | _ [
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| Layer (Un)Pooling Layer
Encoder : Layer
I
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Input
Image

/

CNN

CNN

—» Predictions

We can start with a
pre-trained
trunk/backbone (e.qg.
network pretrained on
ImageNet)!

Transfer Learning

Georgla [&



input
image
tile

output
| segmentation
g map

\4

390 x 390 \4

392 x 392

) |

388x388

You can
have skip
connections
to bypass
bottleneck!

M3
al
-
- ;-'
1967 !

=» CONv 3x3, RelLU
copy and crop
§ max pool 2x2
4 up-conv 2x2
= conv 1x1

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015 Ge%';gciﬁ I&




Summary

Various ways to get image-like outputs, for
example to predict segmentations of input
images

We can have various upsampling layers that
actually increase the size

Encoder/decoder architectures are popular
ways to leverage these to perform general
image-to-image tasks

Other methods exist:

Fully convolutional neural networks

Tech

Georgia I&



Generative

Models:
Introduction

4 'o
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Unsupervised

Supervised
Learning Learning
Train Input: {X,Y} I Less Labels Input: {X}
Learning

Learning output:

f:X =Y, P(ylx) output: P(x)

Example: Clustering,
density estimation, etc.

e.g. classification
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Spectrum of Low-Labeled Learning




Supervised Learning

Unsupervised Learning

» Unsupervised Learning



Traditional unsupervised learning methods:

o N[ y
w
Density : _ ’ﬁ*" . Clusteri . Principal
estimation S gt HStering 1 e | szﬁongnt
'lhﬂl";q’ 3 | nalysis
e
Modeling P(x) Comparing/ Representation
Grouping Learning

Deep Generative Models Metric learning & clustering Almost all deep learning!

\L J J

Similar in deep learning, but from neural network/learning perspective

) . What to Learn?




Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw, arks

) Generative Models Ge‘%




Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

We can parameterize our model as P(x, 8) and use maximum likelihood to optimize the
parameters given an unlabeled dataset: " _
0" =arg ma)(H Pmodel (217(1)1 9)
C

m
= arg max log H Pmodel (m(f); 9)
e .
i=1

= arg max log pmodel (m(i): 9) .
g Do
They are called generative because they can orten generate samples

Example: Multivariate Gaussian with estimated parameters u, o
Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw arks

) Generative Models Ge‘%




i .
Maximum Likelihood ‘ /ﬁ‘
/ \ Diffusion Models

Explicit density ‘ Implicit density ‘

<N\ o

. : . Markov Cha.in‘
Tractable denslty‘ Approximate density

-Fully visible belief nets GSN
-NADE / \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




Generative
Adversarial

Networks
(GANS)
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Maximum le@llhOOd‘ / GAN
N

Explicit density ‘ Implicit density ‘

<N\ o

: : . Markov Chain‘
Tractable denﬂlty‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




Implicit generative models do not actually learn an explicit model for p(x)

Instead, learn to generate samples from p(x)
Learn good feature representations
Perform data augmentation

Learn world models (a simulator!) for reinforcement learning

How?
Learn to sample from a neural network output

Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

Lots of tricks to make the optimization more stable

) Implicit Models Geo S




We would like to sample from p(x) using a neural network
ldea:
Sample from a simple distribution (Gaussian)
Transform the sample to p(x)

Samples I I Samples M

N(u, o) Neural Network p(x)

) Learning to Sample eeo S




Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator

Vector of
Random
Numbers

N(u,o) Neural Network

) Generating Images



Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

Idea: Have another network try to distinguish a real image from a generated
(fake) image

Why? Signal can be used to determine how well it's doing at generation

Generator Discriminator

Vector of
Random
Numbers

Adversarial Networks



Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANS)



Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

mén mSX V(D G) — Emdiata(m) [log D(wﬂ —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The discriminator wants to maximize this:
D(x) is pushed up (to 1) because x is a real image
1—D(G(2)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)

In other words, discriminator wants to classify real images as real (1) and
fake images as fake (0)

) Discriminator Perspective




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The generator wants to minimize this:
1—D(G(2)) is pushed down to 0 (so that D(G(z)) is pushed up to 1)

This means that the generator is fooling the discriminator, i.e. succeeding
at generating images that the discriminator can’t discriminate from real

) Generator Perspective Ge‘%



Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:
Sample from fake

mén mB,X V(D G) — Emdiata(m) [log D(wﬂ —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Generator minimizes How well discriminator
does (0 for fake)
where D(x) is the discriminator outputs probability ([0,1]) of real image

x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

Sample from real Sample from fake
Discriminator maximizes How well discriminator How well discriminator
does (1 for real) does (0 for fake)

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Generator

Vector of
Random
Numbers

Vo, 2ok (120 (6 (7))

Generator Loss

)

Discriminator
Mini-batch of Cross-entropy
real & fake data . (Real or Fake?)
We know the

answer (self-
supervised)




The generator part of the objective does not have good gradient properties

minmax V (D, G) = Epvppn (@) l0g D()] + EL oy (2 [log(1 — D(G(2)))]

G D

High gradient when D(G(z)) is high (that is, discriminator is wrong)

We want it to improve when samples are bad (discriminator is right)

Alternative objective, maximize:

n:éa:.x Ezwp(z) log(Dy, (GGQ (2)))

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game

DiG(=)




Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
experiments.
for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(l}, e ._z(m}} from noise prior py(z).

e Sample minibatch of m examples {z™) ... (™} from data generating distribution

pdata(az)‘

e Update the discriminator by ascending its stochastic gradient:

Vi3 [loe D («0) + 1og (1- D (¢ (=)))].

1=

end for
e Sample minibatch of 1 noise samples {z(1) ..., z(™)} from noise prior py(z).

e Update the generator by descending its stochastic gradient:

Va3t (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

Final Algorithm




Vector of
Random
Numbers

)

Generator

B

At the end, we have:
An implicit generative model!
Features from discriminator

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the

answer (self-
supervised)

Generative Adversarial Networks (GANS)



Low-resolution
images but look
decent!

Last column are
nearest neighbor
matches in dataset




GANs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training




Architecture guidelines for stable Deep Convolutional GAN's

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

1024

m :>4 % | e

Project and reshape

CONV 1
CONV 3 64

conv4 -
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks




Training GANSs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

2
A- ]E:ENPTEG,E:(SNNd(O:CI) [HVXDQ(;T’ +0)[| = k}

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization




Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

)




Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016

Georgia !

Tech)/




Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BIigGAN




(a) 128x 128 (b) 256 x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN



Source Video

Source to Target 1 Result Smmtohvgn?ﬂ‘

» »l o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

) Video Generation



https://www.youtube.com/watch?v=PCBTZh41Ris

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary




Comparison of Methods

GAN: Adversarial /

X X > Z -
training D(x) G(z)

VAE: maximize % Encoder z Decoder N
variational lower bound Q¢(Z|x) po(x|z)
Flow-based models: x Flow . oz . Inlrfrse .
Invertible transform of f(x) f(2)

distributions
Diffusion models:‘ X0 - X1 - Xo .

Gradually add Gaussian - - (-] Tje-------- RE RS - mmmmme
noise and then reverse

Discriminator

Generator
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