
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:

• Variational Autoencoders



• A4 due April 4th (grace until 6th)

• Projects!

• Make sure to contribute equally with your teammates!!!

• We will have optional team peer review, and reduce scores if necessary

• Rest of the semester:

• Open to topic suggestions for 04/17

• Otherwise will cover VLMs



Back to 

Generative 

Models



Spectrum of Low-Labeled Learning

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep
Dog
Cat
Lion
Giraffe

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 

output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, etc.

Less Labels



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Training:

⬣ We can train similar to language models: 

Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides: 

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks



PixelRNN  & 

PixelCNN



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)



Modeling language as a sequence

next

word

history



Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over 

sequences of words.

next

wor

d

history

⬣ RNNs are a family of neural architectures for modeling sequences.



Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 ෑ

𝒊=𝟐

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Oord et al., Pixel Recurrent Neural Networks
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Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Training:

⬣ We can train similar to language models: 

Teacher/student forcing

⬣ Maximum likelihood approach

⬣ Downsides: 

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks



Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution 

as a convolution layer!

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by 

applying a mask, zeroing out “future” 

pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images



Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Variational 

Autoencoders 

(VAEs)



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Comparison



Autoencoders

Encoder Decoder

Low dimensional embedding

Minimize the difference (with MSE)

Linear layers with reduced 

dimension or Conv-2d 

layers with stride

Linear layers with increasing 

dimension or Conv-2d layers 

with bilinear upsampling



Formalizing the Generative Model

What is this?

Hidden/Latent variables

Factors of variation that 

produce an image:

(digit, orientation, scale, etc.)

𝑃 𝑋 = න 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

⬣ We cannot maximize this likelihood due to the integral

⬣ Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

𝑍



Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 

approximate optimization

⬣ Just as before, sample 𝑍 from simpler distribution

⬣ We can also output parameters of a probability 
distribution!

⬣ Example: 𝜇, 𝜎 of Gaussian distribution

⬣ For multi-dimensional version output 

diagonal covariance

⬣ How can we maximize 

𝑃 𝑋 = ׬ 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

𝑍

𝜇𝑥 𝜎𝑥

Decoder
𝑃 𝑋|𝑍; 𝜃



Variational Autoencoder: Encoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 

approximate optimization

⬣ Given an image, estimate 𝑍

⬣ Again, output parameters of a 

distribution

𝜇𝑧 𝜎𝑧

X

Encoder
Q 𝑍|𝑋; 𝜙



Putting Them Together

⬣ We can tie the encoder and decoder together into a probabilistic autoencoder

⬣ Given data (X), estimate 𝜇𝑧 , 𝜎𝑧 and sample from 𝑁(𝜇𝑧 , 𝜎𝑧) 

⬣ Given 𝑍, estimate 𝜇𝑥, 𝜎𝑥 and sample from 𝑁(𝜇𝑥, 𝜎𝑥) 

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥



Maximizing Likelihood

⬣ How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log) 

data likelihood:

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Putting it all together: maximizing the 

likelihood lower bound

Make approximate 

posterior distribution 

close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the 

likelihood lower bound

Sample from 𝑸(𝒁|𝑿)~𝑵(𝝁𝒛, 𝝈𝒛) 

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the 

likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

෠𝑋

Sample from 𝑷(𝑿|𝒁; 𝜽)~𝑵(𝝁𝒙, 𝝈𝒙) 

Maximize likelihood of 

original input being 

reconstructed



Problem

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908 

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 

⬣ Problem with respect to the 

VLB: updating 𝜙 

⬣ 𝑍~𝑄(𝑍|𝑋; 𝜙) : need to 

differentiate through the 

sampling process w.r.t 𝜙 

(encoder is probabilistic)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/


Reparameterization Trick: Solution

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908 

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 

⬣ Solution: make the randomness 

independent of encoder output, 

making the encoder deterministic

⬣ Gaussian distribution example:

⬣ Previously: encoder output = 

random variable 𝑧~𝑁(𝜇, 𝜎)

⬣ Now encoder output = 

distribution parameter [𝜇, 𝜎]

⬣ 𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/


Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes

𝑧1

𝑧2



Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform 

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions) 

⬣ Samples are often not as competitive as diffusion models or GANs 

⬣ Latent features (learned in an unsupervised way!) often good for 

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018



De-noising Auto-encoder

As close as possible

NN
Encoder

NN
Decoder

vecto
r

Vincent, Pascal, et al. "Extracting and composing robust features 
with denoising autoencoders." ICML, 2008.

Add noises

Slide by Hung-yi Lee 



Discrete Representation

• Vector Quantized Variational Auto-encoder (VQVAE)

NN
Encoder

NN
Decoder

vecto
r

vecto
r 1

Codebook
(a set of vectors)

vecto
r 2

vecto
r 3

vecto
r 4

vecto
r 5

vecto
r 3

https://arxiv.org/abs/1711.00937

Compute similarity 

Learn from data
The most similar one 
is the input of decoder.

(c.f. attention)

Slide by Hung-yi Lee 



VQVAE – Vector Quantized VAE

VQ-VAE + Transformers:
• VQ-VAE to build a codebook (dictionary) of features.
• Transformer to predict those codebook vectors 

(features) autoregressively, starting from Layer 0.
• VQVAE sees whole set of features. Decodes it 

into 64* tokens.
• Transformer sees previous tokens, outputs 

probabilities over the next one.

Results used for latent space diffusion!

17 March 2023 Renato Cardoso | Foundation Model 39



Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform 

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions) 

⬣ Samples are often not as competitive as GANs 

⬣ Latent features (learned in an unsupervised way!) often good for 

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018



Overall Summary

⬣ Several ways to learn generative models via deep learning

⬣ PixelRNN/CNN: 

⬣ Simple tractable densities we can model via a NN and optimize

⬣ Slow generation – limited scaling to large complex images

⬣ Generative Adversarial Networks (GANs): 

⬣ Pro: Amazing results across many image modalities

⬣ Con: Unstable/difficult training process, computationally heavy for good results

⬣ Con: Limited success for discrete distributions (language)

⬣ Con: Hard to evaluate (implicit model)

⬣ Variational Autoencoders: 

⬣ Pro: Principled mathematical formulation

⬣ Pro: Results in disentangled latent representations

⬣ Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018



Comparison
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