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A4 due April 4t (grace until 6t")

Projects!

* Make sure to contribute equally with your teammates!!!

 We will have optional team peer review, and reduce scores if necessary

WA12: Mar 27

Rest of the semester:
* Open to topic suggestions for 04/17 "™

WA13: Apr 3

e QOtherwise will cover VLMs

WA13: Apr 5
W14: Apr 10

W14: Apr 12

W15 Apr 17

W15 Apr 19

Variational Autoencoders (VAEs)

Large Language Models (William Held)

RL background.
PS4/HW4 due Apr 2nd (grace period Apr 4th)

RL: RL Part 2 - Q-Learning, DQN, Policy Gradient

RL: Policy Gradients, REINFORCE, Actor-Critic.

Visualization and Interpretability

Final Project Due April 29 11:59pm (grace period May
1st)

« Sutton & Bartow Chapter 1
« Survey paper on Deep RL
« MDP Notes (courtesy Byron Boots)

+ Notes on Q-learning (courtesy Byron Boots)

« Policy iteration notes (courtesy Byron Boots)
» Policy gradient notes (courtesy Byron Boots)

» Understanding Neural Networks Through Deep Visualization
* Grad-CAM: Visual Explanations from Deep Networks via Gradient-

based Localization
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Supervised
Learning

Train Input: {X,Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.
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Maximum le@llhOOd‘ / GAN
N

Explicit density ‘ Implicit density ‘

<N\ o

. : . Markov Cha.in‘
Tractable denslty‘ Approximate density

-Fully visible belief nets GSN
_NADE ./ \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




2

p() = PP )P lxn) | [pGrilxs, - xi0)
i=1

Training:

We can train similar to language models:
Teacher/student forcing

Maximum likelihood approach

Downsides:
Slow sequential generation process
Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images



PixelRNN &

PixelCNN
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Maximum le@llhOOd‘ / GAN
N

Explicit density ‘ Implicit density ‘

<N\ o

: : . Markov Chain‘
Tractable denﬂlty‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




We can use chain rule to decompose the joint distribution

Factorizes joint distribution into a product of conditional distributions
Similar to Bayesian Network (factorizing a joint distribution)
Similar to language models!

n2

p(X) — Hp(xilxll ""xi—l)

i=1

Requires some ordering of variables (edges in a probabilistic graphical model)
We can estimate this conditional distribution as a neural network

) Factorizing P(x)

Oord et al., Pixel Recurrent Neural Networks




= p(Wy) p(W2 | wq) p(W3 | Wy, Wa) (Wn | Wn_1,...,Wy)
— Hp Wi ‘ Wi_ 1, )

next hlstory

word

Modeling language as a sequence



Language modeling involves estimating a probability distribution over
sequences of words.

p(S) = p(Wy,Wo,...,Wy) = H p(W, ‘ Wi_1,..., W1)
i next history

wor
d

RNNs are a family of neural architectures for modeling sequences.

h; ho
fo fo o ——| g hy

XA X2 Xn

) Language Models as an RNN



p(x) — np('xl X1, '"in—l)
p() = plx) r p(xil, . X 1)

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images



2

p() = PP )P lxn) | [pGrilxs, - xi0)
i=1

Training:

We can train similar to language models:
Teacher/student forcing

Maximum likelihood approach

Downsides:
Slow sequential generation process
Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images



Idea: Represent conditional distribution
as a convolution layer!

0 $ 255 1|1 ]1]1]1
AT SEIRIRIE Considers larger context (receptive field)
L|1]0]0]o0
// 0]0[0]0]0
/ 0jojojojo Practically can be implemented by
applying a mask, zeroing out “future”

pixels

Faster training but still slow generation
Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decodc-rs

) Pixel CNN Ge%




occluded completions original




Example Images (PixelCNN)
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Maximum le@llhOOd‘ / GAN
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Explicit density ‘ Implicit density ‘
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: : . Markov Chain‘
Tractable denﬂlty‘ Approximate density

-Fully visible belief nets GSN
_NADE ./ \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




Comparison

Discriminator

Generator

GAN: Adversarial / . o
X X > Z =
training D(x) G(z)

VAE: maximize % Encoder z Decoder N
variational lower bound Q¢(Z|X) po(x|z)
Flow-based models: x Flow . oz . Inlrfrse .
Invertible transform of f(x) f(2)

distributions
Diffusion models:‘ X0 - X1 - X9 .

Gradually add Gaussian - - == Te-------. REE RS e e
noise and then reverse




Minimize the difference (with MSE)

}
/!

Low dimensional embedding

Linear layers with reduced Linear layers with increasing
dimension or Conv-2d dimension or Conv-2d layers
layers with stride with bilinear upsampling

) Autoencoders Geo S



What is this?
Hidden/Latent variables
Factors of variation that —
produce an image:
(digit, orientation, scale, etc.)

P(X) = fP(XIZ; 0)P(Z)dZ

We cannot maximize this likelihood due to the integral
Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

) Formalizing the Generative Model




We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

Just as before, sample Z from simpler distribution

We can also output parameters of a probability
distribution!

Example: u, o of Gaussian distribution

For multi-dimensional version output
diagonal covariance

How can we maximize
P(X) = [P(X|Z;0)P(Z)dZ

) Variational Autoencoder: Decoder



We can combine the probabilistic view, sampling, autoencoders, and
approximate optimization

Given an image, estimate Z

Encoder

Q(Z|X; ¢)

Again, output parameters of a
distribution

Variational Autoencoder: Encoder




We can tie the encoder and decoder together into a probabilistic autoencoder
Given data (X), estimate u,, o, and sample from N (u,, 0,)
Given Z, estimate u,, g, and sample from N (u,, g,)

I |
Encoder
Q(Z1X; ¢)

» Putting Them Together



How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let's work out the (log)
data likelihood:

log pg(z)) = Bl [log pg(az(i))] (po () Does not depend on z)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeu” g

) Maximizing Likelihood Ge‘%




log pg(z)) = Bl [log pg(az(i))] (po () Does not depend on z)

(2)
=E, {log pol™ | z)pg(z)] (Bayes’ Rule)
po(z | z(9)

(2) (2)
=1, [log pole™ | z)pg(zz 42| @ )” (Multiply by constant)
po(z | 29) \gy(z | z) ]
. OM: (4)
=E, {logpg(m(t) | z)] -E, {log dol2 | @ )J + B hog 42 | 7 , )] (Logarithms)
po(2) [ =po(z | 2)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeu” g

) Maximizing Likelihood s




log pg(z)) = Bl [log pg(:c(i))] (po () Does not depend on z)

(4)
=E, {log po(™ | z)pg(z)] (Bayes’ Rule)
po(z | )

(4) (2)
=1, [log pol™ | z)pg(z) 42| @ . )] (Multiply by constant)
po(z [2)  gy(z [ 20)
: (4) ()
—E, {logpg(:r;(z) | z)] -E, {log 4z |2 )] +E, llog 42 | 2 , )] (Logarithms)
po(z) po(z | 33(”)

— E. [logpe(z® | 2)| — Dicr(as(z | 29) || pe(2)) + Dicr(gs(z | £®) || po (= | 2?))

—~

The expectation wrt. z (using
encoder network) let us write
nice KL terms

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeu” g

) Maximizing Likelihood s




log pg(z)) = Bl [log pg(:c(i))] (po () Does not depend on z)

(2)
=y hog = (:,,(7 ’| i)fff\(z)} (Bayes’ Rule)

_ . po(z? | 2)pe(2) q4(2 | )
= [l 2a(z | 20)  golz | &)

] (Multiply by constant)

po(z)
- E. hogpo<x<i>|z>1—DKL<q¢<z|x<i>>upa<z>>+DK< <z|x ) |1 po(= | 2®))

f t +

| (i)
_E, {logpg(:l}(t) | z)] _E, {mg 42| 2 )] +E. llog o(2 ] (Logarithms)

Decoder network gives p(x|z), can This KL term (between Pg(2[X) mtrac.:table (saw |
compute estimate of this term through ~ Gaussians for encoder and z ~ €arlier), can’t compute this KL
sampling. (Sampling differentiable prior) has nice closed-form term :( But we know KL
throuah reparam. trick. see paper.) solution! divergence always >=0.

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeu” g

) Maximizing Likelihood ceslliS
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log pg(z)) = Bl [log pg(x(i))] (po () Does not depend on z)
(4)
=E, {log pol™ | z)pg(z)] (Bayes’ Rule)
po(z | z™)

(2) (2)
=E, (log po(e” | z)pg(z) 42| @ . W (Multiply by constant)
po(z |z)  gy(z | 2)

: (1) (%)
" {logpg(:r:(t) | z)] —E, {log 4z |2 )w +E, {log 42| 2 : )w (Logarithms)

po(2) po(z | )
. |log pe (¥ | 2)1 — Dicr.(gp(z | ) HPH(Z)) + Drer(gs(2 | ) || po(z | )
Lz, 0,¢) 20
| . 9%, H* = Lz 9,
log p()(:r:("’)) > E(:r:("),ﬁ, }) , Q" = arg maxz (;z, gb)
Variational lower bound (“ELBQO”) Training: IVIaX|m|ze Iower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeu” g

) Maximizing Likelihood ceollS
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Putting it all together: maximizing the
likelihood lower bound

E. [logpg(:c(i) | 2)| — Drr(gs(z | z )| pa(2))

N -

c(a:@) 6, p)
Make approximate
posterior distribution

o e

Encoder

Q(Z|X; ¢)

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg
-

Forward and Backward Passes




Putting it all together: maximizing the
likelihood lower bound

E. [logpg(:c("“) | 2)| — Drr(gs(z | 2zl Hpa( )

N -

ﬁ(fc(” / Sample from Q(Z|X)~N(u,, 0,)

Encoder

QZ|X; )

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg
-

» Forward and Backward Passes




Putting it all together: maximizing the
likelihood lower bound Maximize likelihood of

A/, \ original input being
E. [logpg(x(” | 2) D r,(qs(z | 2 Hpa( ) reconstructed
a(:c@ /A [ 1]

Sample from P(X|Z; 0)~N(u,, o,)

Encoder

QZ|X; )

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg
-

» Forward and Backward Passes




Problem with respect to the
VLB: updating ¢

pg(z,iﬂ)]
L =, (z12) |10 KLIN(
VAE Q¢( | ) [ g qq;(z\a:) ’ f

= —Dkr(q4(2|)|[po(2)) + Eqg, (2|2) [log po (x| 2

Z~Q(Z|X;¢) : need to

differentiate through the Enf?;er
sampling process w.r.t ¢

(encoder is probabilistic)
From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

) Problem Ge‘%



https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

)|1% |

™

[11X — £
A

Solution: make the randomness

f(z)

Independent of encoder output, A
making the encoder deterministic KLIN (u(X), =(X)[IN(0, )] De(c]g;ier
N N

Gaussian distribution example:

Previously: encoder output =
random variable z~N(u, o) 2(X)|[E(xX)

N_ovv_ en_coder output = prooter | (e RS
distribution parameter [y, o] @)

z=u+exo,e~N(0,1)

From: Tutorial on Variational Autoencoders
https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

) Reparameterization Trick: Solution


https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
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Variational Autoencoders (VAES) provide a principled way to perform
approximate maximum likelihood optimization

Requires some assumptions (e.g. Gaussian distributions)
Samples are often not as competitive as diffusion models or GANs

Latent features (learned in an unsupervised way!) often good for
downstream tasks:

Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

) Summary Ge° >~




De-noising Auto-encoder

As close as possible

NN
Encoder Decoder

Vincent, Pascal, et al. "Extracting and composing robust features

JO]J0A

Georgia
=

with denoising autoencoders." ICML, 2008. ech ||



Discrete Representation

e Vector Quantized Variational Auto-encoder (VQVAE)

» .0
Encoder Decoder

(c.f. attention)
Codebook Compute similarity
(a set of vectors)

Learn from data

Y,
K 7

L4

The most similar one
is the input of decoder.

¢ 10]120A 4.;4 J0129A

T 401294

¢ J0129A
JleLEN

G JO129A k

) https://arxiv.org/abs/1711.00937 Slide by Hung-yi Lee Ge?rfgﬁ&



VQVAE — Vector Quantized VAE

VQ-VAE + Transformers:

VQ-VAE to build a codebook (dictionary) of features.

Transformer to predict those codebook vectors

(features) autoregressively, starting from Layer O.

- VQVAE sees whole set of features. Decodes it

into 64* tokens.
Transformer sees previous tokens, outputs
probabilities over the next one.

real/fake

Transformer I |
Al |I 1
pls) = T plsilsc) 2
[ T=TH - T
S ————

argmin;cz |2 — z||
_—

quantization

Results used for latent space diffusion!

Georgia &
Tech

=



Variational Autoencoders (VAES) provide a principled way to perform
approximate maximum likelihood optimization

Requires some assumptions (e.g. Gaussian distributions)
Samples are often not as competitive as GANs

Latent features (learned in an unsupervised way!) often good for
downstream tasks:

Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018

) Summary Ge° ~




Several ways to learn generative models via deep learning

PixelRNN/CNN:
Simple tractable densities we can model via a NN and optimize
Slow generation — limited scaling to large complex images
Generative Adversarial Networks (GANS):
Pro: Amazing results across many image modalities
Con: Unstable/difficult training process, computationally heavy for good results
Con: Limited success for discrete distributions (language)
Con: Hard to evaluate (implicit model)
Variational Autoencoders:
Pro: Principled mathematical formulation
Pro: Results in disentangled latent representations
Con: Approximation inference, results in somewhat lower quality reconstructions

Ha & Schmidhuber, World Models, 2018

Overall Summary




Comparison

Discriminator

Generator

GAN: Adversarial / . o
X X > Z =
training D(x) G(z)

VAE: maximize % Encoder z Decoder N
variational lower bound Q¢(Z|X) po(x|z)
Flow-based models: x Flow . oz . Inlrfrse .
Invertible transform of f(x) f(2)

distributions
Diffusion models:‘ X0 - X1 - X9 .

Gradually add Gaussian - - == Te-------. REE RS e e
noise and then reverse
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