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Transformer Lecture Speed Recap: The Transformer Block
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Attention is “All” You Need
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How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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Self-Supervised Learning
How do we most effectively turn
raw text into meaningful loss?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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Self-Supervised Learning
How do we most effectively turn
raw text into meaningful loss?
Covered Today (& In Homework)

- Encoder Only
- Decoder Only
- Encoder-Decoder
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How do we go from purpose driven models to LLMs?
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Data Scaling
How do we source and train on
high-quality data at scale?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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- Data Curation Over Time
- Distributed Training
- “Alignment”

(4
5

XLNet [c]

&

Decoder-Orly

©0e30% BOOowk

GloVe|

https://github.com/Mooler0410/LLMsPracticalGuide

CS 4644 / 7643 Deep Learning - William Held



https://github.com/Mooler0410/LLMsPracticalGuide

LLM Advancements have been driven primarily by these two

Self-Supervised Learning Data Scaling
How do we most effectively turn How do we source and train on
raw text into meaningful loss? high-quality data at scale?
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SSL | From raw text to loss!

Input Masking

90190

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

4008

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

= Masked Attention
] Similarities: E = (QXT / sqrt(DQ)) * MASK
Attention Matrix: A = softmax(E,dim=1)
o Output vectors: Y = AX
Y, = S X

1081

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

If MASK, = @, then Y, = 3. ., A X

j,jt=1'1,j

—] Intuition

a.k.a the representation of the masked
token is created purely from context

108

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction

Input Masking

9000
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Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction

P(“World” | Context)

/ [ Softmax \

[ Hidden States

Optimize Negative Log Likelihood

loss = -log(P(“World” | Context)
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SSL | Masked Token Prediction

P(“World” | Context)

/ [ Softmax \

[ Hidden States

Optimize Negative Log Likelihood

loss = -log(P(“World” | Context)

Stacked
. g Transformer
Equivalent to the Cross-Entropy g Blocks
Loss term from Lecture 3! - >

[ Embedding Layer
Lttt

Input Text )////
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Data | BERT used existing curation!

BERT Corpus
English Wikipedia + BooksCorpus

Size
~3 Billion Tokens

Quality
High quality text,
Broad “Academic” Knowledge,
Limited Diversity
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https://arxiv.org/abs/1810.04805

Input Masking

Questions?

Transformer

Mask Prediction

- Encoder
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Masked Language Model
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SSL | “How does GPT work?”

Input Masking

—

Transformer

Decoder

Causal Mask

1999

Radford et al. 2019 (GPT-2)

Next Token Prediction

o
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling

Masking

sl Masked Attention Again!

Similarities: E = (QXT / sqrt(DQ)) * MASK

Attention Matrix: A = softmax(E,dim=1)
Output vectors: Y = AX

Y, = 3A, X

Tokens only affected by preceding tokens
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Purely Autoregressive

Next Token Prediction

World
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Input Masking Transformer
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Optimize Negative Log Likelihood of Whole Sequence

| “Hello World”) +
log(P(“[EOS]"” | “Hello World!”))

loss = -(log(P(“World” | “Hello”) + log(P("“!"
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Data | Increasing Token Count via Human Curation Heuristics

GPT-2 Corpus
All Reddit Outbound links with at

least 3 karma

Size
~10 Billion Tokens

Quality
High quality text,
Broad Knowledge,
Improved Diversity

URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbc.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Input Masking

—_—

Questions?

Transformer

Decoder

Causal Mask

1999

Autoregressive Language Model

Next Token Prediction

o
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SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
+ Retrieval + Generative Abilities
+ Classification - Retrieval

- No Generative Abilities - Classification
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https://proceedings.mlr.press/v162/wang22u.html

SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
+ Retrieval + | Generative Abilities |—— This is pretty essentiall
+ Classification - Retrieval

- No Generative Abilities - Classification
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https://proceedings.mlr.press/v162/wang22u.html

SSL | Encoder-Only vs. Decoder-Only

Encoder Decoder
. +  Retrieval + | Generative Abilities |—— This is pretty essentiall
2
How to keep this? + Classification - Retrieval

- No Generative Abilities - Classification
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SSL | Encoder-Decoder Returns
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SSL | Universal Text-to-Text

Text Noising

—_—

AALEEL

Original text

Thank you fef inviting me to your party Jast week.

Inputs

Thank you <X> me to your party <Y> week.

Targets
<X> for inviting <v> last <z>
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https://arxiv.org/abs/1910.10683

SSL | Universal Text-to-Text

Text Noising

AALEEL

—_—

Input

Transformer

-

Encoder

~

Decoder

-

Decoder

N

Denoising
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https://arxiv.org/abs/1910.10683

SSL | Universal Text-to-Text

Regardless of noise, Loss Function remains the same still!

Continue using Negative Log Likelihood

loss = -(log(P(Denoised Sequence | Noised Sequence))
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Questions?

Text Noising Input Transformer Decoder Denoising

—_—

4 N[

Encoder - Decoder

N

0uYe0e
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Data & Parameter Scaling | Moving to Large Language Models

Today's LLMs are driven data and model scaling

Loss vs Model and Dataset Size
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https://arxiv.org/abs/2001.08361

Data Scaling | Collecting High-Quality Self-Supervision at Scale
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We could get a lot more data from CommonCrawl!
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Data Scaling | Collecting High-Quality Self-Supervision at Scale

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
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Data Scaling | Collecting High-Quality Self-Supervision at Scale

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
How do we get “useful” data?
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T5 - Encoder-Decoder with Common Crawl Scale Data

¢ We only retained lines that ended in a terminal punctuation mark (i.e. a period,
exclamation mark, question mark, or end quotation mark).

e We discarded any page with fewer than 3 sentences and only retained lines that
contained at least 5 words.

o We removed any page that contained any word on the “List of Dirty, Naughty, Obscene
or Otherwise Bad Words™.%

TS Corpus (AKA C4)

A” Common Cr an Text Wh| Ch e Many of the scraped pages contained warnings stating that Javascript should be

enabled so we removed any line with the word Javascript.

Meets Heuristics

« Some pages had placeholder “lorem ipsum” text; we removed any page where the
phrase “lorem ipsum” appeared.

Size 75
e e Some pages inadvertently contained code. Since the curly bracket “{” appears in
~350 Billion Tokens many programming languages (such as Javascript, widely used on the web) but not in
natural text, we removed any pages that contained a curly bracket.

gualit! « Since some of the scraped pages were sourced from Wikipedia and had citation markers
Va I'yin g quallty text, (e.g. [1], [citation needed], etc.), we removed any such markers.

Broad Knowledge’ « Many pages had boilerplate policy notices, so we removed any lines containing the

. . strings “terms of use”, “privacy policy”, “cookie policy”, “uses cookies”, “use of
Improved Dlversrty cookies”, or “use cookies”.

e To deduplicate the data set, we discarded all but one of any three-sentence span
occurring more than once in the data set.
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https://arxiv.org/abs/1910.10683

GPT-3 - Increased Scaling Via Automated Data Curation

Training

0. e . .
O ——— Distinguish High and Low Quality
A
Low-Quality, High Volume 6‘%%
/
e %
URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbe.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%

High Quality, Medium Volume
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https://arxiv.org/abs/2005.14165

GPT-3 - Increased Scaling Via Automated Data Curation
Filtering

Keep “False” Positives

—_—

“False” positive ~= High Quality

M

Brown et al. 2020 CS 4644 / 7643 Deep Learning - William Held



https://arxiv.org/abs/2005.14165

Data | GPT-2 to Original GPT-3 was mostly data scaling

GPT-3 Corpus
Common-Crawl Filtered using

GPT-2 Training Data

Size
~400 Billion Tokens

Quality
High-ish quality text,
Broad Knowledge,
Web-scale Diversity
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https://arxiv.org/abs/2005.14165

Data | Recent Open Source models focus heavily on data scaling

Llama 1 Corpus

Size
~1.4 Trillion Tokens

Quality
Varying quality text,
Broad Knowledge,
Web-scale Diversity,
Includes Code!

Dataset Sampling prop. Epochs Disk size
CommonCrawl  67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% 223 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB



https://arxiv.org/abs/2302.13971

Data | Data Mixture has become the biggest “secret”

Llama 2 Corpus Gemini Corpus
Size Size
> 2 Trillion Tokens Unknown
Quality Quality
Minimal details known No details known

N G

GPT-4 Corpus

Size
Unknown (Est. 11T Tokens)

Quality

No details known

G
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https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.08774

Llama 2 Corpus

Size
> 2 Trillion Tokens

Quality

Minimal details known

7\

Questions?

Gemini Corpus

Size
Unknown

Quality

No details known

C

GPT-4 Corpus

Size
Unknown (Est. 11T Tokens)

Quality

No details known

G
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https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.08774

Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD > > v:,’::?“’fs I
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https://engineering.fb.com/2021/07/15/open-source/fsdp/

Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD > > \:,‘:,DGAHTTES J
SHARD (LOCAL) (LOCAL) (LOCAL)
j\ .?s
]
]
1 ]
]

'
SYNC
GRADS

MODEL > FORWARD BACKWARD > UBDATE
SHARD (LOCAL) (LOCAL)

WEIGHTS
(LOCAL) \

Total memory increases linearly with shards

'S 4644 / 7643 Deep Learning - William Held



Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD ) > \:,’:,%AHTTES J
SHARD (LOCAL) (LOCAL) (LOCAL)
T KgS
]
]
1 ]
]

'
SYNC
GRADS

MODEL > FORWARD BACKWARD > UBDATE
SHARD (LOCAL) (LOCAL)

WEIGHTS
(LOCAL) \

Max memory constrains model size
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Scaling Parameters | *Fully* Sharded Data Parallel Training

ALL- Ny FoRwaro ALL- N BACKWARD > Bl
GATHER LOCAL GATHER LOCAL
( ) ( ) (LOCAL)
K8 N LAYERS XN N LAYERS K28
: H :
L} 1 1}
L ' )
L] ] B
B L ] .
v ‘ '
GATHER GATHER SYNC
WEIGHTS WEIGHTS GRADS
B 1 B
B . i
B . W
L] "
L} J B
I3 [} 3
L ] -
oo’ N LAYERS o' N LAYERS L
ALL- > FORWARD ALL- > BACKWARD REDUCE- #:&A"Tfs
GATHER (LOCAL) GATHER (LOCAL) SCATTER (LOCAL)

CS 4644 / 7643 Deep Learning - William Held


https://engineering.fb.com/2021/07/15/open-source/fsdp/

Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL > ALL- >
SHARD GATHER

FORWARD
(LOCAL)

ALL- BACKWARD > > \:;%?TES
GATHER
(LOCAL) (LOCAL)

K8 N LAYERS XN N LAYERS K28

& ] ]

T ' 3

L} 1 1}

L ' )

L] ] B
GATHER GATHER SYNC
WEIGHTS WEIGHTS GRADS
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'
L] l

L} I
l l
I I
o’ N LAYERS l N LAYERS '

MODEL ALL- FORWARD ALL- BACKWARD REDUCE- quFIDGA"TTEs
SHARD GATHER (LOCAL) GATHER (LOCAL) SCATTER (LOCAL)

T

Total memory is constant



Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL ALL- FORWARD ALL- BACKWARD > “‘,’:I%':‘TTES \
SHARD GATHER LOCAL GATHER
\ ) F OO (LOCAL)
‘

N LAYERS N LAYERS RS

u ' ]
GATHER GATHER SYNC
WEIGHTS WEIGHTS GRADS

o' N LAYERS N LAYERS

MODEL ALL- FORWARD ALL- BACKWARD > REDUCE- > :::,‘HTTES
SHARD GATHER (LOCAL) GATHER (LOCAL) SCATTER (LOCAL) l

Max single GPU memory constrains layer Size ... o wm e




Scaling Parameters | Tensor Parallel Training

0 1 2 3 11
4 5 6 7 12

16

74

98

13

17

258

346

https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism
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https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1
o | 1 10 | 14 1 | 15
10 | 14 . =
4 | s 1 | 15 95 | 131
o| 1] 2] 3 1 | 15 74 | 98 74 | 98
= is equal to + -
4| s | 6| 7 12 | 16 258 | 346 258 | 346
: 2 3 12 | 16 63 | 83
13 | 17
X Y = Y
6 | 7 13017 163 | 215
A
X2 A2 Y2

https://hugaingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism CS 4644/ 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + -
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don’t need to sync gradients!

https://hugaingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism CS 4644/ 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1l
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + =
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don’t need to sync gradients!
Max GPU memory constrains layer shard size

https://hugaingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism CS 4644 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | FSDP + TP = ~Limitless Scaling

( FSDP N
(@« checkpoint_wrapper o
( Decoder ~12H? params h
FSDP
Multi-Head Attention ~4H? params
Query Key Value Out
~H2 ~H2 "'H2 ~H2 \
params || params || params || params
FSDP
E€H
~4H? params
FSDP
FC2 {
~4H? params 1
-~ 4
> =,

1 Trillion Parameter Model with Tensor Parallelism and FSDP

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

Scaling Parameters | FSDP + TP = ~Limitless Scaling

( FSDP N
(@« checkpoint_wrapper o
( Decoder ~12H? params h
FSDP
Multi-Head Attention ~4H? params
Query Key Value Out
~H2 ~H2 "'H2 ~H2 \
params || params || params || params
FSDP
E€H
~4H? params
FSDP
FC2 {
~4H? params 1
-~ 4
> =,

1 Trillion Parameter Model with Tensor Parallelism and FSDP

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

Questions?

FSDP

checkpoint_wrapper

Decoder ~12H? params

FSDP

Multi-Head Attention ~4H? params

Query
~H?2
params

Key
~F2

Value Out
~H2 ~H2

params || params || params

FSDP

FC1

~4H? params

FSDP

G2

~4H? params

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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LLMs aren’t very good for “assistance” by default

[&] [Suggest 3 things to do in San Mateo.

p
San Mateo is a city in San Mateo County, California, in the
high-tech enclave of Silicon Valley in the San Francisco Bay
Area. With a population of 97,207 at the 2010 census, the
city is located on the San Francisco Peninsula halfway
between San Francisco and San Jose, about 20 miles (32 km)

\from the Pacific Ocean.

J

56



Massively Multitask Supervised “Instruction” Finetuning

“Reverse this string:

+ IHHELLolﬂ
‘OLLEH"” \

ffsuggest 3 things to +  “1 Visit San I\/Iateo L . 3
do in San Mateo.” Central Park. . ; :

+ “Doha” /

“What is the capital
of Qatar?”



Instruction Tuning | Just keep training!

Input Masking Transformer Next Token Prediction
JE—
/
.— Decoder \
X
n
©
(D
©
%)
-
.— ©
&)
- (oD
— |

Optimize Negative Log Likelihood of The Response
loss = -log(P(RESPONSE | INSTRUCTION))

Wanq et al 2022 CS 4644 / 7643 Deep Learning - William Held



https://arxiv.org/abs/2204.07705

Further Refinement from Sparse Reward (RLHF)

“Suggest 3 things to
do in San Mateo.”

—_—

“San Mateo is a city in Q&

" San Mateo County...”

—» “1. Visit San Mateo, Qg
Central Park...”
\

@
“I'm sorry | can’t help.” 0-
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Reinforcement Learning From Human Feedback (RLHF)

Language
Reward Model sras

foo

Preference Data

2020 ?1¢
20 BQ — °JRM o o Al 5o
BOQE

Q o1 olé
2 N




Reinforcement Learning From Human Feedback (RLHF)

Reward Model
Preference Data ? T ® _———""———. Reward Scores
BOBQ [ oRM
o l )

JE

Optimize Reward Margin between Preferences
loss = -log(o(RM(POSITIVE) - RM(NEGATIVE)))
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Reinforcement Learning From Human Feedback (RLHF)

Language

=) [2) 0 Model

efe ——r0u

RM Al
Optimize Reward Margin between Preferences
loss,, = -RM(GENERATED_EXAMPLES)

Reward Model

K

al;

616

62



Models Quickly Overfit to Naively Optimized Reward

14 RM Size RM Type
7 l— 3M === Proxy
— 12M  —— Gold
12 —— 25M  —— Gold (Fit)
— 42M
— 85M
1.0 —— 300M
—— 680M
o
g 038
(%]
=
o
0.6
0.4
0.2
00 °

0 20 40 60 80 100
KL distance between RL tuned policy and initial policy

Gao et al. 2022



https://arxiv.org/pdf/2210.10760.pdf

Reinforcement Learning From Human Feedback (RLHF)

Language

F‘jﬂ . ﬁm Model

el ——uu

RM Al

) l 6 — —

Optimize Reward Without Drifting Too Far from SFT

loss = lossg, + KL(LM

Reward Model

K

al;

élé

RLHF aner EMer)
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Final Questions?

Fill out my anonymous feedback form
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