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Visualization

of Neural
Networks




Interpretability Enables Trust in Al Models
Understand the reasons behind a prediction
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http://arxiv.org/abs/1602.04938

Interpretability Enables Trust in Al Models
Figure out when NOT to trust a model

Predicted:
True:

Neural network
to predict
wolf vs husky
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http://arxiv.org/abs/1602.04938

Given a trained model, we'd like to understand
what it learned. —>

Weights
plane Gradlents

= Activations f Robustness

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

\x L oan "*‘-“

Hendrycks & Dietterich,
2019

Zeiler & Fergus, 2014 Simonyan et al, 2013

) Visualizing Neural Networks



FC Layer: Reshape weights for a node back into size of image, scale 0-255

horse ship truck

plane

Problem:

Conv layers:
For each kernel, 3x3 filters
scale values difficult to
from 0-255 and interpret!
VISU8|IZ€ ResNet-18: ResNet-101:

64 x3x7x7 64x3x7TxX7

AlexNet:
64 x3x11x11

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Y&tinic, from CS 2214

Visualizing Weights




We can also produce
visualization output
(aka activation/filter)
maps

These are larger early
In the network.

» ) Visualizing Output Maps




Visualizing Output Maps
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Activations — Small Output Sizes

Problem: Small conv
outputs also hard to
Interpret

Tech

4
o
Activations of last conv layer in VGG network eeogﬁh



CNN101 and CNN Explainer

CNN 101 Learn Convolutional Neural Network (CNN) in your browser!

https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101




We can take the activations of
any layer (FC, conv, etc.) and
perform dimensionality
reduction

Often reduce to two
dimensions for plotting

OO~k WwWwhn =0

E.g. using Principle
Component Analysis (PCA)

t-SNE is most common

Performs non-linear mapping
to preserve pair-wise
distances

) Dimensionality Reduction: t-SNE



Weights

plane

=

Fei-Fei Li, Justin Johnson,
Serena Yeung, from CS
231n

Zeiler & Fergus, 2014
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. Gradients
Activations - ‘ Robustness
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Hendrycks & Dietterich,
2019

Simonyan et al, 2013

Visualizing Neural Networks




Summary & Caveats

While these methods provide some visually
interpretable representations, they can be

misleading or uninformative (Adebayo et al.,
2018)

Assessing interpretability is difficult
Requires user studies to show usefulness

E.g. they allow a user to predict mistakes
beforehand

Neural networks learn distributed
representation

(no one node represents a particular feature)
This makes interpretation difficult

Adebayo et al., “Sanity Checks for Saliency Maps”, 2018.




Gradient-

Based
Visualizations




Given a trained model, we can
perform forward pass given an
Input to get scores, softmax
probabilities, loss and then —
backwards pass to get
gradients

Forward Pass

Backward Pass

Note: We are keeping parameters/weights frozen

Do not use gradients w.r.t. weights to perform updates

) Visualizing Neural Networks




Backwards pass gives us
gradients for all layers: How
the loss changes as we change
different parts of the input

This can be useful not just for
optimization, but also to
understand what was learned

Forward Pass

Backward Pass

Gradient of loss with respect to all layers (including input!)

Gradient of any layer with respect to input (by cutting off computation

graph)

) Visualizing Neural Networks




Idea: We can backprop to the

_ Forward Pass
Image

Sensitivity of loss to individual
pixel changes

Large sensitivity implies
important pixels

Called Saliency Maps

Backward Pass

In practice:
Instead of loss, find gradient of classifier scores (pre-softmax)
Take absolute value of gradient
Sum across all channels

From: Simonyan et al., “Deep Inside Convolutional Networks:
Visualising Image Classification Models and Saliency Maps”, 2073

) Gradient of Loss w.r.t. Image




Normal backprop not always best
choice

Example: You may get parts of
image that decrease the feature
activation

There are probably lots of
such input pixels

Guided backprop can be used to
improve visualizations

) Guided Backprop

b)

Forward pass

Backward pass:
backpropagation

Backward pass:
“deconvnet”

Backward pass:
guided
backpropagation

From: Springenberg et al., “Striving For Simplicity: The All Convolutional Ne#”
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Guided Backprop Results

guided backpropagation
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VGG Layer-by-Layer Visualization

Note: These images were created
by a slightly different method called
deconvolution, which ends up
being similar to guided backprop

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014. Tec ﬁ



VGG Layer-by-Layer Visualization
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From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.




VGG Layer-by-Layer Visualization

, '_f;’“ﬁ

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.
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Guided Backpropagation
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Feature Maps
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Grad-CAM

RelLU

Grad-CAM

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization, 2016.
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Selfvaraju et al., Grad-CAM: Visual Explanations from Deep

el i Networks via Gradient-based Localization, 2016.
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What animal is in this picture? Dog

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM




What animal is in this picture? Cat

Selfvaraju et al., Grad-CAM: Visual Explanations from Deep
Networks via Gradient-based Localization, 2016.

Grad-CAM




Summary

Gradients are important not just
for optimization, but also for
analyzing what neural networks
have learned

Standard backprop not always
the most informative for
visualization purposes

Several ways to modify the
gradient flow to improve
visualization results




Optimizing

the Input
Images




Idea: Since we have the
gradient of scores w.r.t.
Inputs, can we optimize the
Image itself to maximize the
score?

Forward Pass

Why?

Generate images from
scratch!

Adversarial examples

.

Backward Pass

v

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2073

) Optimizing the Image



We can perform gradient
ascent on image

argmax S.(I) — A ||1]

2,
2

Start from random/zero image Forward Pass

Use scores to avoid

minimizing other class scores —
instead

Often need regularization term
to induce statistics of natural

imagery

E.g. small pixel values, spatial

smoothness I'=1+a

.

aS.,
Y

Backward Pass

v

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2073

) Gradient Ascent on the Scores




Example Images




Can improve results with
various tricks:

Clipping or normalization of
small values & gradients

Gaussian blurring

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2014

» Example Images

Flamingo Pelican

Ground Beetle Indian Cobra




Improved Results

Note: Can generate input images to
maximize any arbitrary activation!

Windsor Tie

Layer 5

Layer 4

yev 2 Layer3

PR M fpi a2t A e RS

T = HH =
Laver 1

From: Yosinski et al., “Understanding Neural Networks Through Deep Visualization”, 2015




Summary

We can optimize the input
Image to generate
examples to increase class
scores or activations

This can show us a great
deal about what examples
(not in the training set)
activate the network




Testing

Robustness




We can perform gradient
ascent on image

Rather than start from zero
Image, why not real image?

And why not optimize the
score of an arbitrary
(incorrect!) class

Surprising result: You need
very small amount of pixel
changes to make the network
confidently wrong!

.

2,
2

argmax S.(I) — 4 ||1]
where ¢ = cat

Backward Pass

Forward Pass

S

From: Simonyan et al., “Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps”, 2012

) Gradient Ascent on the Scores



+.007 x

T B
esign(VgJ (0, x, y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Note this problem is not specific to deep learning!
Other methods also suffer from it
Can show how linearity (even at the end) can bring this about
Can add many small values that add up in right direction

From: Goodfellow et al., “Explaining and Harnessing Adversarial Examples”, 2015

Example of Adversarial Noise




DEER
AIRPLANE(85.3%

BIRD
FROG(86.5%)

Single-Pixel
Attacks!

Su et al., “One Pixel
Attack for Fooling Deep
Neural Networks”, 2019.

Confidence
Reduction

Variations of Attacks

Misclassification
Targeted
Misclassification
Source / Target
Misclassification

. Increasing

White-Box Attack

Non-Adaptive
Black-Box Attack

Adaptive Black-
Box Attack

Strict Black-Box
Attack

v
Decreasing
Capability

Increasing

~ Complexity

Attack Difficulty

Confidence
Reduction

Misclassification

Targeted
Misclassification

Source / Target
Misclassification

. Increasing

Logic Corruption

Data Modification

Data Injection

A 4

Decreasing
Capability

~ Complexity

Increasing
Attack Difficulty

White vs. Black-Box Attacks of Increasing Complexity

Chakraborty et al., Adversarial Attacks and Defences: A Survey, 2018




Summary of dversarial
Attacks/Defenses

Similar to other security-related
areas, it's an active cat-and-mouse
game

Several defenses such as:

Training with adversarial
examples

Perturbations, noise, or re-
encoding of inputs

There are not universal methods
that are robust to all types of attacks




Other Forms of Robustness Testing

Gaussian Noise Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Architecture Corruption Robustness

® mCE
Relative mCE

Sy
i LA

Pixelate -

SqueezeNet 1.1
ResNet-18
VGG-19+BN

60 65 70
Architecture Accuracy (%)

Robustness to Common Corruptions and Perturbationsg 9.2'

Geor ﬁb
Tech
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We can try to understand the biases of CNNs
Can compare to those of humans

Example: Shape VS. Textu re BiaS Geirhos, “ImageNet-trained CNNs are biased towards texture;

increasing shape bias improves accuracy and robustness”, 2018.

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4% Indian elephant 71.1% tabby cat 63.9% Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
82%  Dblack swan 3.3% Siamese cat 9.6% black swan

Georg l:

Analyzing Bias




Shape vs. Texture Bias

Fraction of 'shape' decisions
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Geirhos, “ImageNet-trained CNNs are biased towards texture;
increasing shape bias improves accuracy and robustness”, 2018.
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Summary

Various ways to test the
robustness and biases of
neural networks

Adversarial examples have
Implications for understanding
and trusting them

Exploring the gain of different
architectures in terms of
robustness and biases can also
be used to understand what has
been learned




What about

Transformers,
LLMS, etc.




Large models, especially transformers, can be seen as
implementing algorithms

Several ways to try to understand:
Visualization — Often attention
Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm - compiler - Weights!

) Interpretability of Transformers Gograia |

=



Usage

« Click on any cell for a detailed view of attention for the associated atte
« Then hover over any token on the left side of detail view to filter the atf
« The lines show the attention from each token (left) to every other tokel

‘, model_view(attention, tokens, sentence b _start)

Attention: | All v

Visualization

Click on the Layer or Head drop-downs to change the model layer or hea

from bertviz.transformers_neuron_view import BertModel, BertT
from bertviz.neuron view import show

model = BertModel.from pretrained(model version, output_atten
tokenizer = BertTokenizer.from pretrained(model version, do_1l
model_type = 'bert'’

show(model, model_ type, tokenizer, sentence_a, sentence b, la

B T L —
Queryq
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Engineering Predictors for Interpretability

Using Shallow Decision Tree to Simulate Neural Network Prediction

QO

KO
A3
Vo

Product Line

A
Game Kiosk Push, Store

‘ L l
™ Count 2423205 Count. e

/ i SEi

lllllllllll ity Contines
Europe. North Amer.. Africa. Asia SouthA.. Eus North A;
. B§vond Sparsity: Tree Rep?ularlzatlon of De.e.p Mod.els for Interpretablllt\{ . e | e e
Mike Wu , Michael C. Hughes, Sonali Parbhoo , Maurizio Zazzi, Volker Roth , and Finale Doshi-

Slide by llknur Kaynar-Kabul

Model Distillation Ge%sgg&



https://arxiv.org/pdf/1711.06178.pdf

Local Interpretable Model-agnostic Explanations (LIME)
Gives explanations for individuals predictions from a classifier

Local approximation

I
| . I
LIME builds an interpretable
I
model of explanatory data
samples at local areas in the I
analyzed data. +
|
I
I

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin.

A Slide by Ilknur Kaynar-Kabul
) Model Distillation: Linear Approximations Gegrola |



http://arxiv.org/abs/1602.04938

—
092 Locally weighted
reg@ssion
0.001 ]
Original Image
P(labrador) =0.21
0.34

Explanation

Image Source: https://drive.google.com/file/d/0ByblrZgHugfYZ0ZCSWNPWFNONEU/view

Slide by Ilknur Kaynar-Kabul

Model Distillation Geg;g;g&




What is Mechanistic Interpretability?

® Goal: Reverse engineer neural networks
o Like reverse-engineering a compiled program binary
to source code

® Hypothesis: Models learn human-comprehensible
algorithms and can be understood, if we learn how
to make it legible

® Understanding features - the variables inside the
model

® Understanding circuits - the algorithms learned to
compute features

e Key property: Distinguishes between cognition e % - et
with identical output A

® A deep knowledge of circuits is crucial to gl ﬁ o
understand, predict and align model behaviour = E

¥
= - —|
Wheels (4b:373) excite TR
the car detector at the A car detector (4c:447)
bottom and inhibit at 2 is assembled from
the top. earlier units.
i . I

Slide by Neel Nanda

Mechanistic Interpretability Geg.gg&




A Mathematical Framework for Transformer
Circuits (Elhage et al, Anthropic 2021)

Yna11 Apply set-gender Yset-gender

v Rw

.
nurse Aurse man man

Investigating Gender Bias in Language Models
Using Causal Mediation Analysis (Vig et al,

NeurlPS 2020)

.. it will take a
... everyoncein a
,and fora

Transformer Feed-Forward Layers Are Key-Value
Memories (Geva et al, EMNLP 2021)

POTHETICAL DISENTANGL

OBSERVED MODEL

Toy Models of Superposition (Elhage, Anthropic
2022)

A Growing Area of Research

Num. Points

How often does Causal Tracing peak in each layer?

200
ROME Edit Layer
MEMIT Edit Layers
150
100
50
0

1 4 8 12 16 20 24 28
Layer in GPT-J where Causal Tracing effects peak

Does Localization Inform Editing? (Hase

et al, 2023

— —
{a) Counlerfattu.al:rEiffcl T wcr"is located in the city uf‘liomc]

(b) You can get from Berlin 1o the Eiffel Tower by. ..

GPT-J: train. You can take the ICE from Berlin Hauptbahnhof to
Rome Centrale. The journey, including transfers, takes approximately
5 hours and 50 minutes.

(c) The Eiffel Tower is right across from...

GPT-J: the Vatican. The Colosseum is a few blocks away. You can get
a gelato at a street cart and a pizza at a sidewalk pizza jomt, and the
city is teeming with life. The Vatican Museums and the Roman Forum
are a short bus or taxi ride away.

Locating and Editing Factual
Associations in GPT (Meng et al,

NeurlPS 2022

Slide by Neel Nanda

Georgia
Techl|



https://arxiv.org/pdf/2301.04213.pdf
https://arxiv.org/pdf/2301.04213.pdf
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://aclanthology.org/2021.emnlp-main.446.pdf
https://aclanthology.org/2021.emnlp-main.446.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://transformer-circuits.pub/2022/toy_model/index.html#motivation
https://rome.baulab.info/
https://rome.baulab.info/
https://rome.baulab.info/

Circuits = Functions: How does the model think?

* Zero layer transformers model bigram statistics. The bigram table can be accessed
directly from the weights.

* One layer attention-only transformers are an ensemble of bigram and “skip-
trigram” (sequences of the form "A... B C") models. The bigram and skip-trigram
tables can be accessed directly from the weights, without running the model.

* Two layer attention-only transformers can implement much more complex
algorithms using compositions of attention heads. These compositional algorithms
can also be detected directly from the weights. Notably, two layer models use
attention head composition to create “induction heads”, a very general in-context
learning algorithm.

Open Problems: Analysing Toy Language Models

Slide by Neel Nanda
) Mechanistic Interpretability: Example Gograta |


https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv

Circuits = Functions: How does the model think?

* Attention heads can be understood as independent operations, each outputting a
result which is added into the residual stream. Attention heads are often described
in an alternate “concatenate and multiply” formulation for computational efficiency,
but this is mathematically equivalent.

* Attention-only models can be written as a sum of interpretable end-to-end
functions mapping tokens to changes in logits. These functions correspond to
“paths” through the model, and are linear if one freezes the attention patterns.

* Transformers have an enormous amount of linear structure. One can learn a lot
simply by breaking apart sums and multiplying together chains of matrices.

A Mathematical Framework (Elhage et al)
Open Problems: Analysing Toy Language Models

Slide by Neel Nanda
) Mechanistic Interpretability: Example Ge‘%;%ﬁ@


https://transformer-circuits.pub/2021/framework/index.html
https://www.alignmentforum.org/s/yivyHaCAmMJ3CqSyj/p/GWCgZrzWCZCuzGktv

Tracr works analogously to how we would translate a
programming language into executable code

Programming
language

Assembly

Machine code

O

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062
Slide by David Lindler

Forward Engineering (Compiler) Ge%;%‘ﬁ@



https://arxiv.org/abs/2301.05062

Tracr translates human readable code into
transformer model weights in three steps

Human readable code in Basis independent Neural network

spaces and transformers

O

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062
Slide by David Lindler

Forward Engineering (Compiler) Ge‘%{;},‘ﬁ@



https://arxiv.org/abs/2301.05062

RASP is a symbolic programming language to
describe transformer computations

Arbitrary element-wise f( )

) < ---9p MLP
functions

layers

“Select-aggregate”

<4 - - - P Attention
operations

(w/ some layers
limitations)

RASP = “Restricted Access Sequence Programming” o
Weiss, Gail, Yoav Goldberg, and Eran Yahav. "Thinking like transformers.” ICML 2021.

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062

Slide by David Lindler

Forward Engineering (Compiler) Georgia@

Techl|


https://arxiv.org/abs/2301.05062

Tracr can compile a range of meaningful programs,
but it is not fully general

Limitations of RASP

e Binary attention patterns
Designed to model algorithmic tasks and not
probabilistic tasks

e Programs still relatively close to transformer

We can implement programs to:
e Count tokens and compute

histograms :
e Detect all occurrences of a architecture

patterns

Sort the input sequence Limitations of Tracr

Check balanced

parentheses (Dyck-n) e Resulting models are large and inefficient
L e Many possible optimization missing

e Some advanced RASP features not supported

o)

Lindler et al., Tracr: Compiled Transformers as a Laboratory for Interpretability, https://arxiv.org/abs/2301.05062
Slide by David Lindler

Forward Engineering (Compiler) Ge‘%{;{ﬁ@



https://arxiv.org/abs/2301.05062

Large models, especially transformers, can be seen as
implementing algorithms

Several ways to try to understand:
Visualization — Often attention
Distill into more interpretable model

Reverse engineer

Forward engineer: Algorithm - compiler = Weights!

) Summ ary Gegrreggﬁ&
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