Topics:
e Linear Classification, Loss functions
 Gradient Descent

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 1 out!

* Due Feb. 2" 11:59pm (grace period Feb 4th).
e Start early, start early, start early!
e HW?1 Tutorial, Matrix Calculus tutorial OH: TBA

Piazza: should be sync’d with Canvas now (Code: DLSPR2024)

e NOTE: There is an OMSCS section with a Ed. Make sure you are in the
right one

Tentative Office hours schedule:
https://piazza.com/class/lcl94yjxkbb59e/post/53

 Calendar on webpage:

https://faculty.cc.gatech.edu/~zk15/teaching/AY2024 cs7643 spring/ind
ex.html



https://piazza.com/class/lcl94yjxkbb59e/post/53
https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs7643_spring/index.html

Class Scores

Input (and representation)
Functional form of the model J I

Including parameters Car Coffee Bird

; Cup
Performance measure to improve

Loss or objective function
%3

Algorithm for finding best parameters
Optimization algorithm

Class Scores

=T Model I
ol ' ?,_%' fx,W)=Wx+b E>
Data: Image Q Car Coffee Bird
Cup

) Components of a Parametric Model Gogrola |




fx,w) =y

Classifier Output

Input — Weights  (gcajar or vector)
(vector)

Input: Continuous number or vector
Output: A continuous number
For classification typically a score

For regression what we want to regress to (house prices,
crime rate, etc.)

w IS a vector and weights to optimize to fit target function

) Model: Discriminative Parameterized Function Ge‘%&%ﬂ{&
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Neural Network

Linear
classifiers

This image is CCO 1.0 public domain

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Deep Learning as Legos Gegrata |
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http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

We can move
the bias term
Into the weight
matrix, and a “1”
at the end of the
Input

Results in one
matrix-vector
multiplication!

) Weights

Georgia
Tech

Jh
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Example with an image with 4 pixels, and 3 classes (cat/dog/ )

Stretch pixels into column

v

56
02 |-05] 01 ] 20 1.1 -96.8 | Cat score
231
15| 13| 21 1] 0.0 +| 32 | = | 437.9 | Dog score
24
Input image 0 025 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Georgia @1



I I
I I
c c I .
Algebraic : Visual | Geometric
Viewpoint | Viewpoint : Viewpoint
I I
I
Flx, W) = Wx | One template ! Hyperplanes
’ B | per class . cutting up space
I I
Stre mn I plane car bird cat deer | . i =
| I | = B
- HEEEE S e
] [ o o e R 2 ——&
e E- AR | T
| |
| .
I I

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Linear Classifier: Three Viewpoints Ge‘%é%ﬁ!h



Performance

Measure for
a Classifier

Georgia
groia |



Class Scores

Input (and representation)
Functional form of the model I

Including parameters Car Coffee Bird
: Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters
Optimization algorithm
Class Scores

i o |$ Model I Optimizer

;— “ - e < fxW)=W,+b ®
Data: Image  Features: Histogram Car CoffeeBird
ﬁ § up I ’

) Components of a Parametric Model Gogrola |
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The output of a classifier can
be considered a score

For binary classifier, use rule: Class Scores
y = 1 iff(x,w)>=0
0 otherwise Model |:>
fe,W)=Wx+b

Can be used for many
classes by considering
one class versus all the
rest (one versus all)

Car Coffee Bird
Cup

For multi-class classifier can
take the maximum

) Classification using Scores Gograta |
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Several issues with scores:

Not very interpretable (no

bounded value) s = f(x,W) Scores

We often want probabilities Sk

Softmax
Z]. e®i Function

More interpretable P(Y = k|X =x) =

Can relate to probabilistic
view of machine learning

We use the softmax function to
convert scores to probabilities

) Converting Scores to Probabilities Gegrata |
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We need a performance measure to

optimize Given a dataset of examples:

{(xs, ¥}

Where x; is image and

Penalizes model for being wrong

Allows us to modify the model to

reduce this penalty
Known as an objective or loss y; is (integer) label

function

In machine learning we use empirical
risk minimization

Loss over the dataset is a sum
of loss over examples:

1
L=2 LG W),y

Reduce the loss over the training
dataset

We average the loss over the training
data

) Performance Measure Gegrgia |
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Multiclass SVM loss:

margin
Given an example (x; ;) e | B | B + Scor:
where x; is the image and score for correct class
where y; is the (integer) label,
and using the shorthand for the ! . N )
scores vector: s = f(x;, W) Example: “Hinge Loss
the SVM loss has the form:
: S o
Lizz{o 1fsyl.__s]+1 Sy,
. Sj— Sy, +1 otherwise N
J#Yi S]' 1
= Z max(0,s; — s, +1) - /
J#Yi

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Performance Measure for Scores Ge‘%ﬁﬂﬁ!&
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Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x; ;) With some W the scores f(x,W)=Wx are:

where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 13 2 2

L; = z]_iyi max(0,s;—sy, +1)|  car 5.1 4.9 2.5

=max(0,5.1-3.2+1) frog -17 20 '31

+max(0, -1.7- 3.2+ 1)

=max(0,2.9) + max(0,-39)  Losses:| 2.9

=29+0
=29 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) SVM Loss Example Gograta |




Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
Given an example (x; ;) With some W the scores f(x,W)=Wx are:

where x; is the image and
where y; is the (integer) label, "

and using the shorthand for the
scores vector: s = f(x;, W)

the SVM loss has the form: cat 32 13 2 2

L; = z]_iyi max(0,s;—sy, +1)|  car 5.1 4.9 2.5

=max(0,1.3-4.9+1) frog -17 20 '31

+max(0,2.0-4.9 +1)

= max(0, -2.6) + max(0, -1.9) Losses: | 0.0
=0+0
=0 Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

=

) SVM Loss Example Gograta |



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What happens to loss if
car image scores change a

bit? cat
No change for small values

2.2

car 5.1 4.9 2.5
frog -1.7 2.0 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What is min/max of loss
value?

cat 1.3 2.2

[0,inf] car 5.1 4.9 2.5
-1.7 2.0 -3.1

frog

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @
Tech

) SVM Loss Example I



Suppose: 3 training examples, 3 classes.

Multiclass SVM loss:
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: At initialization W is
small so all s = 0. -
What is the loss? cat 1.3 29

car 5.1 4.9 2.5
-1.7 2.0 -3.1

C-1
frog

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if the sum was
over all classes?

(including j = y_i) cat 3.2 1.3 2.2

No difference car 5.1 4.9 2.5
(add constant 1 fog -1.7 20 -3.1

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.
With some W the scores f(x,W)=Wx are:

L; = z max(0,s; — s, + 1)
J#Yi

Q: What if we used mean
Instead of sum?

cat 3.2 1.3 2.2
No difference car 5.1 4.9 2.5
Scaling by constant frog 1.7 20 31

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



Multiclass SVM loss: Suppose: 3 training examples, 3 classes.

Given an example (x; y;) With some W the sores f(x,W)=Wx are:

where x; is the image and
where y; is the (integer) label,

and using the shorthand for the
scores vector: s = f(x;, W)

2.2

the SVM loss has the form: cat

L; = z]_iyi max(0,s;—sy,,+1)  car 5.1 4.9 2.5
frog -17 20 -31

L=(2.9+0+12.9)/3 .
i Losses: 2.9 0 12.9

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia @

) SVM Loss Example Tech|



. s = f(x,W) Scores
If we use the softmax function to

convert scores to probabilities,
the right loss function to use is
cross-entropy

Sk
Softmax

P(Y =k|X = =
( X =x) 2;e’’ Function

Can be derived by looking at the

distance between two probability
distributions (output of model and
ground truth)

L; = —-log P(Y = y;|X = x;)

Maximize log-prob of correct class =
Maximize the log likelihood
= Minimize the negative log likelihood

Can also be derived from a
maximum likelihood estimation
perspective

) Performance Measure for Probabilities Gegrgia |
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If we use the softmax function to convert scores to probabilities, the right
loss function to use is cross-entropy

Goal: Minimize KL-divergence (distance measure b/w probability

distributions) )
p Yy
46)

minKL(p'[Ip) = ) p*(7) log
P(Y =1[x,w)] 051 y

P(Y =2lx,w)| |o0.01 _\ - I .
Py =3ew)| 001 22@ () log(p* () gp () log(®(¥))

P(Y =4|x,w) 0.01

*
coorooo

= p = _ = —H(p") H(p",p)
P(Y = 5|x,w) 0.01 (negative entropy, term goes away (Cross-Entropy)
P(Y = 6[x,w) 0.01 because not a function of model, W,
P(Y =7|x,w) 0.15 parameters we are minimizing over)
L0 |P(Y =8|x,w)] L0.31
Ground Truth Prediction Since p* is one-hot (0 for non-ground truth classes), all we need to

minimize is (where i is ground truth class): min (=log p(y;))
w

) Performance Measure for Probabilities Gegrgia |
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Softmax Classifier (Multinomial Logistic Regression)

Want to interpret raw classifier scores as probabilities
Sk

e

s=f(x; W P(Y = kIX = x)) = Softmax

f(xi W) (v =KX =x) =525 | 20 on

Probabilities Probabilities

L; = —logP(Y = y;|X = x;
must be >= 0 must sumto 1 L— 0gP(Y = yilX = xi)

- L. =—log(0.13

cat | 3.2 24.5 0.13 = ~log(0.13)

eXp normalize

car 5.1 |—1164.0|— 0.87
frog -1.7 0.18 0.00

Unnormalized log- Unnormalized
probabilities / logits probabilities

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gograta)
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Softmax Classifier (Multinomial Logistic Regression)
gl Want to interpret raw classifier scores as probabilities

Sk

e
s=f(x; W P(Y = k|X = x:) = Softmax
Joa W) ( | 2 Y; €% | Function
Probabilities Probabilities
L; = —logP(Y = y;|X = x;
must be >= 0 must sumto 1 L— gP =il i)

L; = —log(0.13)
Q: What is the min/max of
possible loss L_i?

Infimum is 0, max is unbounded (inf)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Cross-Entropy Loss Example Gograta)
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Softmax Classifier (Multinomial Logistic Regression)
gl Want to interpret raw classifier scores as probabilities

Sk
s=f(x; W P(Y = k|X = x:) = Softmax
Joa W) ( | 2 Y; €% | Function
Probabilities Probabilities
L; = —logP(Y = y;|X = x;
must be >= 0 must sumto 1 L— gP =il i)

L; = —log(0.13)

Q: At initialization all s will be
approximately equal; what is
the loss?

Log(C), e.g. log(10) = 2

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Georgia &

) Cross-Entropy Loss Example Tech ||



Often, we add a regularization term to the loss function

L1 Regularization

L; = |y — Wx;|* + |W|

Example regularizations:

L1/L2 on weights (encourage small values)

) Regularization Gegrata |

=



Gradient

Descent

Georgia
graia |



Input (and representation) Class Scores
Functional form of the model I
Including parameters Car Coffee Bird

: Cup
Performance measure to improve
Loss or objective function

Algorithm for finding best parameters J %

Optimization algorithm
Class Scores

i o |$ Model I Optimizer

;— “ - e < fxW)=W,+b ®
Data: Image  Features: Histogram Car CoffeeBird
ﬁ § up I ’

) Components of a Parametric Model Gogrola |




Given a model and loss function, finding the
best set of weights is a search problem

Find the best combination of weights

that minimizes our loss function
Several classes of methods:

Random search

Genetic algorithms (population-based
search)

Gradient-based optimization

In deep learning, gradient-based methods
are dominant although not the only
approach possible

) Optimization

W11

W21

W21

W12
W22
W22

Loss

Wim bl-
Woam b2
W3m b3_

Georgia @

Tech
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As weights change, the loss
changes as well

This is often somewhat-
smooth locally, so small
changes in weights produce
small changes in the loss

We can therefore think about
Iiterative algorithms that take
current values of weights and
modify them a bit

) Loss Surfaces

CE

Log loss

Georgia
Tech

Jh
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A

-) Strategy: Follow the Slope! Georg-a&



We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the Ax

loss function changes as weights are varied

Can consider each parameter separatel Image and equation from:
P Sep y https://en.wikipedia.org/wiki/Derivative#/media/

by tak|ng partial derivative of loss Fi|e;Tangent_animati0n_gif
function with respect to that parameter

) Derivatives Gegrgia |
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fla+h)—f(a)
h

f'(a) = lim

Ax

Image and equation from:
https://en.wikipedia.org/wiki/Derivative#/media/
File:Tangent_animation.gif

Derivatives in d-dimensions Gegrgia |
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This idea can be turned into an algorithm (gradient descent)
Choose a model: f(x, W) = Wx

Choose loss function: L; = (y — Wx;)?

Calculate partial derivative for each parameter: oL

aWi

oL

awi

Update the parameters: w; = w; —

Add learning rate to prevent too big of a step: w; = w; — «a oL

awi

Repeat (from Step 3)

) Gradient Descent Gegrala |

=



http://demonstrations.wolfram.com/VisualizingTheGradientVector/

w, A

— original W
>

negative gradient direction

Gradient Descent Gegrgia |


http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent Gegrgia |



Often, we only compute the gradients across a small subset of
data

1
Full Batch Gradient Descent L = NE L (f(xi, W), yi)

1
Mini-Batch Gradient Descent L = MZ: L(f(x;W),y;)
Where M is a subset of data
We iterate over mini-batches:

Get mini-batch, compute loss, compute derivatives, and
take a set

) Mini-Batch Gradient Descent

Georgia

Tec

Al
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Gradient descent is guaranteed to converge under some
conditions

For example, learning rate has to be appropriately reduced
throughout training

It will converge to a local minima
Small changes in weights would not decrease the loss

It turns out that some of the local minima that it finds in
practice (if trained well) are still pretty good!

) Gradient Descent Properties Geqet

J&
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We know how to compute the
model output and loss
function

oL
aWi

Several ways to compute

Manual differentiation
Symbolic differentiation

Numerical differentiation

Automatic differentiation

Lh=r
Ity = 4lg(1 = I)

fiz) = lg = 6421 — 1){1 — 22)%(1 — 8z + Br?)?

Manual
Differentiation

fix):
V=X
fori=1to3
v=4v({l-w)
v

or, in closed-form,

f{x):
64x (1-x) (1-2x)72 (1-8x+8x72)"72

f(x) = 128x(1 — x)(—8 + 16x)(1 — 2x)%(1 -

8z +8x%)+64(1 —x)(1—2r)*(1— 8z + 8z7)2 —
647(1 — 22)%(1 — Br + 8r%)% — 2562(1 — z)(1 —
2r)(1 — 8z + 8z%)?

Symbolic v
Differentiation
of the Closed-form

Automatic
Differentiation

v

Numerical
Differentiation

£ (x):
,v') = (x,1)
fori=1to3
(v,v') = (4v(1-v], 4v'-Bvv')
(v, v’}

' (x):
128x(1 - x)(-B+ 16 x) (1 -2
"2 (1-8x+8x"2) +64 (1
-x)(1-2x)"2(1-8x+8
x"2)"2-64x(1-2x)"2(1-8
x+8x"2)"2-2586x(1 -x)(1 -
2x)(1-8x+8x"2)"2

£ (xp)

T (xd:
h = 0.000001
(f(x+h) -f(x)) /h

Computing Gradients

Georgia
Tec

Al
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

)

NN D NI N ) Y N

-
.
.

[ S

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25322

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W.:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

2N

(1.25322 - 1.25347)/0.0001
=25

WD _ s
dz h—0

fz +h) — f(=)
h

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W: W + h (second dim): gradient dw:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, 2.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . fla+h) - f(z)
-1.5, -1.5, e —
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, 2,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W.:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,
0,

N

(1.25347 - 1.25347)/0.0001

=0

df(z)
dx h —0

f(z +h) — f(=z)
h

= lim

7,

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Numerical vs Analytic Gradients

af(z) _ . flz+h) - f()

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Components of parametric classifiers:
Input/Output: Image/Label
Model (function): Linear Classifier + Softmax
Loss function: Cross-Entropy
Optimizer: Gradient Descent

Ways to compute gradients
Numerical
Next: Analytical, automatic differentiation

) Summ ary Ge?l';gciﬁ@
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For some functions, we can analytically derive the partial derivative

Example: Derivation of Update Rule
Function Loss
fw,x) =whx; (y; — w'x;)?
(Assume w and x; are column vectors, so same as w - x;)
Update Rule

N
w; < w;+ Zaz O Xy
k=1

. v

) Manual Differentiation Gegroia |
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For some functions, we can analytically derive the partial derivative

Example: Derivation of Update Rule
( v N\
N T, 2 oL _ 9 Vi — whx)?
. L= )= -—wXx FYV . Yk~ k
Function Loss Ziea 0 k) ow; £ 0w;
N
i i)
flw,x;) = WTxi (y; — wai)Z Gradient descent tells us _ z 2(yi — W) —— (Ve — W)
we should update w as &= ow;
(Assume w and X; are column vectors, so same as w - x;) follows to minimize L: N P
=-2 Z 8k—wak
W; « w; — oL = ...where...
J ] n aW] Sk = Y — WTxk
Update Rule N,
N So what’s :—L’? =2 z 6"a_w,-z WiXki
Wj k=1 i=1
W; < W;+2a ) 6pxy; N
J J ]
k=1 =2 z 01Xk
k=1
s J

) Manual Differentiation Gegroia |
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If we add a non-linearity (sigmoid), derivation is more complex

(=17 :
o = e~
First, one can derive that: '@ = a(x)(1 — a(x))
0.5
f(X) =0 (Z kak)
k 2

L= Z yi — 0 (Z kaik> -6 —4 -2 UO 2 4 6
i k

oL The sigmoid perception update rule:
aw; = Z 2(yi—o (Z kaik> —a—w]ff (Z kalk> N
i k W] <—W]+2az 6iai(1_ai)xij

]
= Z —2 <)’i -0 (Z kaik>> o' (Z kaik> WZ WiXik k=1 m
- j
‘ ‘ ‘ where o0;=0 Z W;Xij
=) —280(d) (1 - o(d)xy =

where &; = y; — f(x;) d; = Zwkx"‘ 6i=yi—0

) Adding a Non-Linear Function Geg;sggﬁ



Given a library of simple functions

Compose into a 1
) o
complicate function & 1+ e WX
u % L
wex ] lg®) —
1+e™ 5

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

) Decomposing a Function Gegrata |

=
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