Topics:
e Gradient Descent
e Neural Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 1 out!

* Due Feb 2" (with grace period Feb 4th)
e Start now, start now, start now!
e Start now, start now, start now!
e Start now, start now, start now!

Piazza

e Be activel!ll

Office hours

e Lots of special topics (e.g. Assignment 1, Matrix Calculus, etc.)

Note: Course will start to get math heavy!

Class Scores

Input (and representation)

Functional form of the model I
Including parameters Car Coffee Bird

Performance measure to improve m

Loss or objective function @
=

Algorithm for finding best parameters
Optimization algorithm
Class Scores

Yo = |$ Model Optimizer

- f(x,W)=Wx+b E> I
Data: Image Features: Histogram Car CoffeeBird
ﬁ S up I ’

) Components of a Parametric Model Gogrola |

=

Input: Vector

Functional form of the model: Softmax(Wx)
Performance measure to improve: Cross-Entropy
Algorithm for finding best parameters: Gradient Descent

L
Compute aw,

: oL
Update Weights w; = w; — a_—

) So far Ge‘%&%ﬂ&

We know how to compute the
model output and loss
function

oL
aWi

Several ways to compute

Manual differentiation
Symbolic differentiation

Numerical differentiation

Automatic differentiation

Lh=r
Ity = 4lg(1 = I)

fiz) = lg = 6421 — 1){1 — 22)%(1 — 8z + Br?)?

Manual
Differentiation

fix):
V=X
fori=1to3
v=4v({l-w)
v

or, in closed-form,

f{x):
64x (1-x) (1-2x)72 (1-8x+8x72)"72

f(x) = 128x(1 — x)(—8 + 16x)(1 — 2x)%(1 -

8z +8x%)+64(1 —x)(1—2r)*(1— 8z + 8z7)2 —
647(1 — 22)%(1 — Br + 8r%)% — 2562(1 — z)(1 —
2r)(1 — 8z + 8z%)?

Symbolic v
Differentiation
of the Closed-form

Automatic
Differentiation

v

Numerical
Differentiation

£ (x):
,v') = (x,1)
fori=1to3
(v,v') = (4v(1-v], 4v'-Bvv')
(v, v’}

' (x):
128x(1 - x)(-B+ 16 x) (1 -2
"2 (1-8x+8x"2) +64 (1
-x)(1-2x)"2(1-8x+8
x"2)"2-64x(1-2x)"2(1-8
x+8x"2)"2-2586x(1 -x)(1 -
2x)(1-8x+8x"2)"2

£ (xp)

T (xd:
h = 0.000001
(f(x+h) -f(x)) /h

Computing Gradients

Georgia
Tec

Al

=

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

N
T 2
fw,x) =wlx; D 0i-wx)
i=1
(Assume w and x; are column vectors, so same as w - x;)

Dataset: N examples (indexed by i)

Update Rule

N
w; < w;+ Zaz 0ixjj
i=1

) Manual Differentiation

Derivation of Update Rule

.

N oL d T <2
L= Y1 (yi — wlx)? a_w] = Z a_w] >i—wxy)
i=

1
N
Gradient descent tells us = 2(}’: — wai) FI (yi —wlx))
we should update w as = J
follows to minimize L: N
= —ZZ i wlx;
oL i=1 J h
Wi — Wi — 0 — ...where...
J J ow; S;i=yi—wix
N
aL =-2)6 —a
So what’s —? - Z P, £, Vi ik
ow;j i=1 J =1

Georgia

Tech

If we add a non-linearity (sigmoid), derivation is more complex

— 1 1
o(x) = 1+e>
First, one can derive that; o' (x) = a(x)(1 — a(x))
f(X) = 0'(kak) l
2. | J

L= Z yi — 0 (Z kaik> -6 —4 -2 UO 2 4 6
i k

oL The sigmoid perception update rule:
aw; = Z 2(yi—o (Z kaik> —a—w]ff (Z kalk> N
i k W] <—W]+2az 6iai(1_ai)xij

]
= Z —2 <)’i -0 (Z kaik>> o' (Z kaik> WZ WiXik k=1 d
- j
‘ ‘ ‘ where o0;=0 Z W;Xij
=) —280(d) (1 - o(d)xy =

where &; = y; — f(x;) d; = Zwkx"‘ 6i=yi—0

) Adding a Non-Linear Function Geg;sggﬁ

Neural
Network

View of a
Linear
Classifier

4
Georgi <
oroiad| &

A simple neural network has similar structure as our linear classifier:
A neuron takes input (firings) from other neurons (-> input to linear classifier)
The inputs are summed in a weighted manner (-> weighted sum)
Learning is through a modification of the weights

If it receives enough input, it “fires” (threshold or if weighted sum plus bias is high
enough)

Impulses carried toward cell body : Xo v."osynapse
WoXo

dendrite presynaptic

/ terminal

cell body f(Z w;x; + b)

Z W;X; +b
i - -
activation

Wo Xy function

W1X1

>

/ Impulses carried away

cell body from cell bod
y Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Origins of the Term Neural Network Ge°’e%'mh

1.0 . .
: Sigmoid
As we did before, the output of a e Activation
neuron can be modulated by a 04 Function
non-linear function (e.g. sigmoid) 02 1
00 1+e™
-10 -5 0 5 10

Impulses carried toward cell body Xo "."0
synapse
WoX
\ dendrite presynaptic 040
terminal
/ cell body f z w;x; +b

wiX -
171 Z W;X; +b !

i

activation
WX function

>
Impulses carried away
from cell body

7

cell body
Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding Non-Linearities Gograta |

We can have multiple neurons
connected to the same input

Corresponds to a multi-class classifier
Each output node outputs the score

for a class
f(x, W) = 0'(Wx + b) W11 W12 - Wim b1
W1 Wiz -+ Wy b2
W21 Wz -+ W3y b3
input layer
Often called fully connected layers
Also called a linear projection
Iayer Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Connecting Many Neurons

Each input/output is a neuron
(node)

A linear classifier (+ optional non-
linearity) is called a fully
connected layer

Connections are represented as
edges

Output of a particular neuron is
referred to as activation

input layer
This will be expanded as we view
computation in a neural network as
a g I’aph Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Neural Network Terminology

We can stack multiple layers together

Input to second layer is output of first
layer

Called a 2-layered neural network (input is
not counted)

Because the middle layer is neither input or
output, and we don’t know what their values
represent, we call them hidden layers

We will see that they end up learning

effective features input layer

This increases the representational power hidden layer
of the function!

Two layered networks can represent
any continuous function

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Connecting Many Layers

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W,W3) = oc(W0(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Linear Algebra View

A linear classifier can be broken down into:
Input
A function of the input
A loss function

It's all just one function that can be decomposed into building blocks

u 1 p : () L
1+4+e ¥ SP
Input Model Loss Function

) What Does a Linear Classifier

Consist of?

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow

\

: :§!§'n., X2
unreasonably (exponential or worse) L‘s’q 87
with respect to the complexity of the RS AR

.

N
Y
X

)

function
We will show them without edges:

output
layer

input
layer

hidden hidden
layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding More Layers!

Computation

Graphs

(eT=Ye]
S

Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:
fx, W) =o(Wsa(W4o(W30(W,0(WqX))

We can use any type of differentiable function (layer) we want!
At the end, add the loss function

Composition can have some structure

Loss
Function

» Adding Even More Layers

The world is compositional!
We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

VISION
pixels edge texton motif part object
SPEECH
sample spectral formant motif phone word
band
NLP
character word NP/VP/.. clause sentence story

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Pixels -> edges -> object parts -> objects

) Compositionality

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
Inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function Gegrgia,

Tech ly

Given a library of simple functions

Compose into a 1
) o
complicate function & 1+ e WX
u % L
wex] lg®) —
1+e™ 5

Adapted from slides by: Marc'Aurelio Ranzato, Yann LeCun

) Decomposing a Function Gegrata |

=

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework

Directed Acyclic Graphs (DAGS)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay

Directed Acyclic Graphs (DAGS)

* Concept
— Topological Ordering

Directed Acyclic Graphs (DAGS)

@
o
S\
G‘“x
o

Q

Backpropagation

(eT=Ye]
S

Given this computation graph, the training

algorithm will:
Calculate the current model’s outputs Input Function Output
(called the forward pass) 't
Calculate the gradients for each h

module (called the backward pass)
Backward pass is a recursive algorithm that:

Starts at loss function where we know
how to calculate the gradients

Progresses back through the modules w

Ends in the input layer where we do Parameters

not need gradients (no parameters)
This algorithm is called backpropagation

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Overview of Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

In the backward pass, we seek to aL
calculate the gradients of the loss with dht-1
respect to the module’s parameters

Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

Problem:
We will also pass the gradient of

: We can compute local gradients:
the loss with respect to the P J

_ on’ an’
module’s inputs GGt ow
This is not required for We are given:
: : an’
update the module’s weights, oL oL
but passes the gradients Compute: {775,

back to the previous module

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Backward Pass Computations

JdL JoL

We want to compute:
P {ahf’—l ’ aw}

aL aL
dh? ah{’ ll ah{) ahf’
hf-l aw

A

! + 9L
" oW

We will use the chain rule to do this:

0z dz 0y
Chain Rule: — .

dx dy O0x

)‘ Computing the Gradients of Loss

Loss

ah! on?
aht-1’ aw}

We can compute local gradients: {

This is just the derivative of our function with respect to its
parameters and inputs!

Example: If h* = Wh'™1

dh?
then o =W
oh} 2-1T
and —+=h*""
awi

Computing the Local Gradients: Example

oL
hf 1’ aw}

We will use the chain rule to compute: {

|

- : aL oL odhn’ -
Gradient of loss w.r.t. inputs: = L Given by upstream
P oht=1 9h’ 9n‘-1 module (upstream

gradient)

9L _ dL oht

Gradient of loss w.r.t. weights: —— = —= —

JdL
ah{’—l

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

alL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

W; =W; —Q
l l awl

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech

Backpropagation: a simple example

f(z,y,2) = (z +y)z

Backpropagation: a simple example

X

q

f(z,y,2) = (z +y)z

y

z

Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z s
e.g.x=-2,y=5,z=+4

z 4

Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z s
e.g.x=-2,y=5,z=+4

z 4

of of of

Want: o). Oy Dz

Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z s
e.g.x=-2,y=5,z=+4

z -4

4
=g =i

q=z+Yy

&
O

of of of

Want: o). Oy Dz

Backpropagation: a simple example

X -2

q 3
f(z,y,2) = (z +y)z s
f -12
eg.x=-2,y=5,z=-4 :
Z -4
of of
f=gqz 9“8 4
~Oof of of
Want: o). Oy Dz

)

Backpropagation: a simple example

X -2
q 3
f(z,y,2) = (z +y)z s
f -12
eg.x=-2,y=5,z=-4 :
Z -4
B dq dq f
g=z+y —=1 =1]
oz Ay 5
of af of
f=gqz 9“8 4
~Oof of of
Want: o). Oy Dz

)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

%
B dq dq f
g=+Yy e R | 1
oz Ay o
of of of
f=gqz 9“8 4
- of of of
Want: o). Oy Dz

)

Backpropagation: a simple example

X -2
q 3
f(z,y,2) = (z +y)z s
F9
eg.x=-2,y=5,z=-4 1
Z -4
ar
of of Oz
f=gqz 9“8 4
~of of 0of
Want: o). Oy Dz

)

Backpropagation: a simple example

X 2
q 3
f(z,y,2) = (z +y)z s
=12
eg.x=-2,y=5,z=-4 1
Z -4
g=z+y F=1g=1|—"——
af
of of 0z
f=gqz 9“8 4
~Oof of of
Want: -, B Bz

)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

- 9q . 09
g=z+Yy §_1’%_1
of of
f=gqz 9“8 4
_ Of of of
Want: o). Oy Dz

)

Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

- 9q . 09
g=z+Yy §_1’%_1
of of
f=gqz 9“8 4
_ Of of of
Want: o). Oy Dz

)

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5,z=-4

_ dq dq
=27y =Ly =1 T
_ oF 985 Chain rule: 3y
f_qz aq_z’az—q ﬂ_ﬁ&;
~of of of Oy Oq By
Want. Oz’ By ' Oz Upstr/;am Lgcal

gradient gradient

)

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5,z=-4

_ dq dq
=27y =Ly =1 T
_ oF 985 Chain rule: 3y
f_qz aq_z’az—q ﬂ_ﬁ&;
~of of of Oy Oq By
Want. Oz’ By ' Oz Upstr/;am Lgcal

gradient gradient

)

Backpropagation: a simple example

f(a:ayaz) = ($+y)z
eg.x=-2,y=5,z=-4

b of _ . Bf _ Chain rule: o
= S o _ ol &0
af df 8 9r ~ Oq Oz
Want: i UR e

Oz’ Oy’ Oz

o x
Upstream Local
gradient gradient

)

Backpropagation: a simple example

f(a:ayaz) = ($+y)z
eg.x=-2,y=5,z=-4

_ oqg dg
e oF __ . BF Chain rule: o
f_qz aq—Zaaz—q 6f_3f@
. of of 0oF 0r = Og Oz
Want: 9z Dy’ 02

o x
Upstream Local
gradient gradient

)

Backpropagation: a simple example

Backpropagation: a simple example

10.00 55\ -20.00
Nt

Patterns in backward flow

10.00 55\ -20.00
Nt

Patterns in backward flow

Q: What is an add gate? x 3.00

10.00 55\ _-20.00
200 _/ 100

Patterns in backward flow

add gate: gradient distributor x 3.00

10.00 55\ _-20.00
200 _/ 100

Patterns in backward flow

add gate: gradient distributor x 3.00
Q: What is a max gate?

-1000@ -20.00
200 _/ 1.00

Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

-1000@ -20.00
200 _/ 1.00

Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

Q: What is a mul gate?

-1000@ -20.00
200 _/ 1.00

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-1000@ -20.00
200 _/ 1.00

Gradients add at branches

7

Duality in Fprop and Bprop

FPROP BPROP
< P
> {4+ 1 m=mmsss
(%]

: : PR

COPY
A

.0
*
.0
L4

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— QOutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

Ty am class ComputationalGraph(object):
#...
def forward(inputs):

W N i (~ o N 1w /)
- Q) e () BRLIA G B TR
EE N AT e N e T

1. [pass inputs to input gates...]

2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = xX*y
return z
def backward(dz):
#dx = ... #toz\
y # dy = ... #todo 6—L
return [dx, dy] 62
(x,y,z are scalars) \
OL
Oz

)

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = xX*y
self.x = x # must keep these around!
self.y = y
return z
)/ def backward(dz):

()(’)/,ZZ are ES(:EiIEirS;) dx = self.y * dz # [dz/dx * dL/dz]

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

Example: Caffe layers

master~ | caffe [src | catfe | layers / Creatrew e Upload fies Findfile History

E shelhamer commite

o GitHub Merge p

cudnn_rak_tayer.cop

sigmoid_layor.cop

sigmeld_layer.cu

rop P " v
p_layer.cu .

cudnn_conv._layer.cpp d hea basa s jaar
idnn_conv_layer.c axp Japarce g sads R

Caffe is licensed under BSD 2-Clause

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

#include <cmath>
#include <vector>

#include "caffe/layers/sigmoid_layer.hpp"

Caffe Sigmoid Layer

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
return 1. / (1. + exp(-x));

}

namespace ©

template <typename Dtype>

void Signoidlayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {

const Dtype* bottom_data = bottom[0]->cpu_data();

Dtype* top_data = top[0]->mutable_cpu_data(); 1
bottom[0]->count();

const int count / J(;E) —
for (int 1 = 0; i < count; ++i) { 1
top_data[i] = signoid(bottom_data[i]); 4/’
}
H

template <typename Dtype>

void Signoidlayer<Dtype>: :Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_data = top[0]->cpu_d
const Dtype* top_diff = top[]->
Dtype* bottom diff = bottom[0]->mutable_cpu_diff();
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {

T e e | (1 —o(z))o(z)| * top_diff (chain rule)

fdef CPU_ONLY
STUB_GPU(SigmoidLayer);
#endif

ta();
giff();

SigmoidLayer);

Caffe is licensed under BSD 2-Clause

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: Directed Acyclic Graphs (DAGs)
	Slide 24: Directed Acyclic Graphs (DAGs)
	Slide 25: Directed Acyclic Graphs (DAGs)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Backpropagation: a simple example
	Slide 56: Backpropagation: a simple example
	Slide 57: Patterns in backward flow
	Slide 58: Patterns in backward flow
	Slide 59: Patterns in backward flow
	Slide 60: Patterns in backward flow
	Slide 61: Patterns in backward flow
	Slide 62: Patterns in backward flow
	Slide 63: Patterns in backward flow
	Slide 64: Gradients add at branches
	Slide 65: Duality in Fprop and Bprop
	Slide 66: Deep Learning = Differentiable Programming
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

