Topics:
e Backpropagation
e Matrix/Linear Algebra view

CS 4644-DL / 7643-A
ZSOLT KIRA

* Assignment 1 out!
* Due Feb 2" (with grace period 4th)
e Start now, start now, start now!
e Start now, start now, start now!
e Start now, start now, start now!

* Resources:
* These lectures

e Matrix calculus for deep learning

 Gradients notes and MLP/RelLU Jacobian notes.

* Assignment 1 (@57) and matrix calculus/computation graph (TBD)

* Piazza: Project teaming thread
* Project proposal overview during my OH (Thursday 4pm ET)

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

v

56
02 |-05] 01] 20 1.1 -96.8 | Cat score
231
15| 13| 21 1] 0.0 +| 32 | = | 437.9 | Dog score
24
Input image 0 025 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Georgia @1

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

Ax

In Machine Learning: Want to know how the

loss function changes as weights are varied

Can consider each parameter separatel Image and equation from:
P Sep y https://en.wikipedia.org/wiki/Derivative#/media/

by tak|ng partial derivative of loss Fi|e;Tangent_animati0n_gif
function with respect to that parameter

) Derivatives Gegrgia |

=

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W,W3) = oc(W0(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Linear Algebra View

Large (deep) networks can be built by

adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow

unreasonably (exponential or worse)
with respect to the complexity of the

function
We will show them without edges:

output
layer

input
layer

y

hidden
layer 1

hidden
layer 2

)
¢
)

\

<
y

XK
/4 N/ \)
a0\

hidden
layer 1

hidden
layer 2

fx, W1, Wy, W3) = c(Wyo(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

» Adding More Layers!

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
Inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

JdL JoL

We want to compute:
Pute: {551)
Layer ¢
aL oL [aL aL
dh? ah{’—ll ah! an? dh?! 9Qht-1
"' L Gt 3w Loss
: fo :
[0]
JdL L Oh'
We will use the chain rule to do this: Oht-1~ 9n’ 9n‘-1
0z dz 0y
Chain Rule: — = : oL _ oL dh?
dx 0y O0x ow — ont aw

)‘ Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

alL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

W; =W; —Q
l l awl

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech

Backpropagation: a simple example

f(z,y,2) = (z +y)z
e.g.x=-2,y=5,z=+4

_ dq dq
=27y =Ly =1 T
_ oF 985 Chain rule: 3y
f_qz aq_z’az—q ﬂ_ﬁ&;
~of of of Oy Oq By
Want. Oz’ By ' Oz Upstr/;am Lgcal

gradient gradient

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-1000@ -20.00
200 _/ 1.00

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function?

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

Linear
Algebra

View:
Vector and
Matrix Sizes

Georgia
graia |

_ 1 X1
Wi Wiz - Wy, b1 X
Wa1 Wz - Wz b2| | .
W31 Waz - Wi B3] |,
N
w X

Sizes: [cx(m+1)] [(m+1)x1]
Where ¢ is number of classes

m is dimensionality of input

) Closer Look at a Linear Classifier Ge‘%&%ﬂ{&

=

Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., V)T
and matrix M € R™M1xmz

s [V” M
s iy O] 9
ds- ov oM
v | 0V,
V' %] v, ‘
M| Ml Tensors

Georgia @

Tech

Dimensionality of Derivatives I

Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., U]

and matrix M € R™M1xmMz] _
61}1

ds
What is the size of % ? R™*1 (column vector of size m) | av,

o
What is the size of % ? R™ (row vector of size m) a;,m

L Js -

[65 ds as]

dv, 0vq v,

) Dimensionality of Derivatives Gograta)

=

Conventions:

: . vl : Col 7
What is the size of — ? A matrix: olJ
v - 1 .
0vq
_2 LN LN o0 0 o0 0
ov7
' 1 1 1
ROW l avi o 00 avi o0 0 avi
Vs v} 0vs,,

my X m,
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ecC

=

) Dimensionality of Derivatives Gograta)

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Conventions:

What is the size of :—:4 ? A matrix:

P _
ds

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

) Dimensionality of Derivatives Gograta)

=

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Example 1:

_[Ya_g*x ady 11
Y= J’z] - [x2] a_ Zx]
Example 2:
y=wlx=) wgx,
2.
ay lay dy
ax |dx; "' dx
. O(Th WiXi) _

= [Wq, e, Wiy because i

Oxi

) Examples Gograta)

=

Example 3:
y=Wx —=W

T
0xq
Row /7 |.. .. 2% . . |= [~ = wyg = = J’i=ZWiixi
axj ces ces cos cos cos]

Example 4:

Jd(wAw)
ow

) Examples Gograta)

=

= 2w’ A (assuming A is symmetric)

What is the size of oL ?
oW

Remember that loss Is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |

=

Batches of data are matrices or tensors (multi- X11 X12 X1n]
dimensional matrices) Xp1 Xz * Xon
Examples: : : " :
Each instance is a vector of size m, our batch is of | Xn1 Xn2 " Xnn]
size [B X m]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size W X H, our batch is [B X W X H] X
: : : : 11
Each instance is a multi-channel matrix (e.g. color X1o
image with R,B,G channels) of size € x W x H, our .
batch is [B x C x W X H] x.
21
Jacobians become tensors which is complicated X292
Instead, flatten input to a vector and get a vector of :
NS
derivatives! X1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | X

) Jacobians of Batches Gegrala |

=

Input Function Output

|14
Parameters
Define:
f __ £—1
0 _ o Typ—1 h* = Wh
hi — Wi h ST ;_ T_: - -
Wi

K| x1 |hf|x |h¢1| |ht1|x 1

) Fully Connected (FC) Layer: Forward Function

h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

i = wih? (L]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht 1 Jacobian tensor!
But it is sparse — each
dht . output only affected by
ant-1 w corresponding weight row
Define:

¢ _ W Tht-1
h; =w;h

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht 1 Jacobian tensor!
i 9L But it is sparse — each
dht . | oW output only affected by
ant-1 w corresponding weight row
Define: dL =~ dL ohn’
) T = ¢ T
 _ o Tht—1 dw: = dh* Odw;
b CIL e
oh! o

l

1 x |ht~1| 1 x |h?| || x |h*7Y|

) Fully Connected (FC) Layer

We can employ any differentiable 2

(or piecewise differentiable) b 1= o

function |

A common choice is the Rectified o |

Linear Unit o]
Provides non-linearity but better A — e
gradient flow than sigmoid EEE O.. o o 1 1 e
Performed element-wise ht = maX(O ht- 1)

. 0,
How many parameters for this layer? E — a

) Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

Backward:

AN

|h¢ x h?~1|

Input Function Output

w

|14
Parameters

Forward: h* = max(0, h‘™1)

aL dhn?

For diagonal

dht
ahf—l =

|

ont-1 ~— 9nt o9nt-1

1 ifh""1>0
0 otherwise

) Jacobian of ReLU

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
[1] —— — [1]
2 f(x) =max(0,x) | — [U
: 31-_ " (elementwise) Tl 8 :
. 4D dL/dz:
What doesalooklike? [4] +—
[-1]+—— Upstream
[5]+ gradient
[9]+

Georgia ﬂ
Tech|)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
1] — — [1
2 1 f(x) =max(0,x) | — L U |
: 31: | (elementwise) Tl 8 :
4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:
4] — [1 141 ~— 14—
[0] (00 1[-1] +—— [-1]+—— Upstream
(5] < 10][5] P (5]+ gradient
0] < [0000][9] <~ [9]-

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ﬂ
Tech ||

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? Next!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

Composition of Functions: f(g(x)) = (fe g)(x)

A complex function (e.g. defined by a neural network):

f) =9, (gr-1(..91(x)))
f(x)=9,°9p-1..°91(x)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gogrola |

=

Georgia
) Scalar Case Tech@

=

Georgia
) Vector Case Tech@

=

Jacobian View of Chain Rule Gegroia |

=

Graphical View of Chain Rule Gogrola |

=

) Chain Rule: Cascaded Gegrala |

=

w

1+e™

—log(p)

t~I
I

a~1|
Il
QJ|Q.>P-‘
=~
[y

1

where p = o(w'x) and o(x) =

1+e™*
— _ 0L oL ap
= 1-
u u ap du O'(O')
_ OL 0L du _ _ T
w = =ux

o Bw 6u 6w

We can do this in a combined way to see all terms
together:

__ 0L ap au_

s

ap ou ow a(wa) o(w'x)(1—a (whx))x"

= —(1 — O'(W x))

This effectively shows gradient flow along path from
Ltow

Example Gradient Computations

The chain rule can be u X p L
computed as a series of wix = T »| —log(p) —
scalar, vector, and matrix
linear algebra operations [| [] C3 C]

1x1 1x1

1xd
“dx1
Extremely efficient in B ’ . . .
graphics processing units W=— a(wix)(1—a (w'x))x
(GPUS) (1 []] [3
1x1 1x1 1x1 1xd

) Vectorized Computations

1 1
T] 1 . T > » 1 L
wx Mire= 0g(p) wix — og(p)
Ciry.. ...t .
L=1
_ oL 1 1xd 1x1 1x1
P*a***p
“dx1

where p = o(w'x) and a(x) = T

_ _aL _aL ap

i==3 L-po1-0) w= a'(wa) o(wix)(1 — o (w'x))x"
W= ;u :;Lzu_ﬁ]r [:I E:I I::I E :l
o 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms
together:
W o(wTx)(1~ g (W) Computational / Tensor View Graph View
=- (1 —o(w x))
This effectively shows gradient flow along path from aL aL
Ltow We want to to compute: { ant-1’ OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule i] i—»ﬂh" aL-— Loss

: | o :
' | oW [

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:
Composition of functions (scalar)
Composition of functions (vectors/matrices)
Jacobian view of chain rule

Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

) Summary Gegrgia |

=

w —>] —log(p) >

1+e™

Automatic differentiation:

Carries out this procedure for us
on arbitrary graphs

Knows derivatives of primitive
functions

As a result, we just define these
(forward) functions and don’t
even need to specify the
gradient (backward) functions!

) Automatic Differentiation

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Patterns in backward flow
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

