Topics:
* Jacobians/Matrix Calculus continued
* Backpropagation / Automatic Differentiation

CS 4644 / 7643-A
ZSOLT KIRA

* Assignment 1 out!
* Due Feb 2" (with grace period 4t)
e Start now, start now, start now!
e Start now, start now, start now!
e Start now, start now, start now!

* Resources:
* These lectures

e Matrix calculus for deep learning

 Gradients notes and MLP/RelLU Jacobian notes.

* Assignment 1 (@57) and matrix calculus (@80), convex optimization (@82)

* Piazza: Project teaming thread

* Will post video of project overview

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework

JoL JdL

We want to to compute:
pute: 13,77 aw}
aL oL aL
dh? ah{’ ll ah{) ahf’ dht-1
ahf’—l aw Loss
7}
I y 0L
: 1 aw

We will use the chain rule to do this:

0z dz 0y
Chain Rule: — .

dx dy O0x

)‘ Computing the Gradients of Loss

Backpropagation: a simple example

f(z,y,2) = (x +y)z
eg.x=-2,y=5,z=-4

_ dq dq
=27y =Ly =1 T
_ oF 985 Chain rule: 3y
f_qz aq_z’az—q ﬂ_ﬁ&;
~of of of Oy Oq By
Want. Oz’ By ' Oz Upstr/;am Lgcal

gradient gradient

)

Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., V)T
and matrix M € Rkx?

s [V” M
s %107 9 1 9
ds, ov oM
v | 0V,
V' %] v, ‘
M| Ml Tensors

Georgia @

Tech

Dimensionality of Derivatives I

What is the size of oL ?
oW

Remember that loss Is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |

=

Input Function Output

|14
Parameters
Define:
f __ £—1
0 _ o Typ—1 h* = Wh
hi — Wi h ST ;_ T_: - -
Wi

K| x1 |hf|x |h¢1| |ht1|x 1

) Fully Connected (FC) Layer: Forward Function

h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

i = wih? (L]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

h* = Wh'1
oL But it is sparse — each
oh? ' aw output only affected by
- W corresponding weight row
-1
oh l {)
Define: aLT _ oL ahT oL
ht = wrht-1 ow:.| 9h* ow, _ W
I [R

ahf < Oh R

l — h(’g_l),T awg' ->

L lterate and populate

Note can simplify/vectorjze!

1 x |ht~1| 1 x |h?| || x |h*7Y|

) Fully Connected (FC) Layer

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

Backward:

AN

|h¢ x h?~1|

Input Function Output

w

|14
Parameters

Forward: h* = max(0, h‘™1)

aL dhn?

For diagonal

dht
ahf—l =

|

ont-1 ~— 9nt o9nt-1

1 ifh""1>0
0 otherwise

) Jacobian of ReLU

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? This Time!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

Vectorizaiton

INn Function
Compositions

4
Georgi <
oroiad| &

Composition of Functions: f(g(x)) = (fe g)(x)

A complex function (e.g. defined by a neural network):

f) =9, (gr-1(..91(x)))
f(x)=9,°9p-1..°91(x)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gogrola |

=

Georgia
) Scalar Case Tech@

=

Vector Case

Jacobian View of Chain Rule Gegroia |

=

Graphical View of Chain Rule Gogrola |

=

) Chain Rule: Cascaded Gegrala |

=

We have discussed computation
graphs for generic functions

Machine Learning functions _10g< 1 _ >

(input -> model -> loss function) 1+e™*

IS also a computation graph ‘

We can use the computed u 1 p L
gradients from wix — = [—log(p) —
backprop/automatic Te

differentiation to update the
weights!

) Neural Network Computation Graph

w

T aw 6u 6w

L=1
. |°? Lyl 1

—— [log®) [— wop

1+e™ 1
where p = g(w'x) and o(x) = —
oL _dL dp _
U= ~ 9p ou po(l-o)
o dL 9L ou_ o 7

We can do this in a combined way to see all terms

together:
_ 0L dp ou _ ~
w= ap ou ow L

o(wix)(1— o (Wwhx))x"

a(wT)

This effectively shows gradient flow along path from

Ltow

Example Gradient Computations

The chain rule can be u X p L
computed as a series of wix = T »| —log(p) —
scalar, vector, and matrix
linear algebra operations [| [] C3 C]

1x1 1x1

1xd
“dx1
Extremely efficient in B ’ . . .
graphics processing units W=— a(wix)(1—a (w'x))x
(GPUS) (1 []] [3
1x1 1x1 1x1 1xd

) Vectorized Computations

Many standard regularization methods still apply!

L1 Regularization

L=|y—Wx;|*>+ W]

where |W| is element-wise

Example regularizations:
L1/L2 on weights (encourage small values)
L2: L =|y—Wx;|? + 2|W|? (weight decay)
Elastic L1/L2: |y — Wx;|? + a|W|? + B|W|

) Regularization

JdL dL

We want to to compute: {m) B_W}
aL AL :]61. aL
T 1
wix ——— —-log(p) —
1+e H)} H
! | ow i
i:(l”. 1 . .
P Backpropagation View

where p = o(w'x) and o(x) = 1+le -

(Recursive Algorithm)

_ _aL _aL ap

u=g=0 a—pcr(l o)

W=ttt 1 u S g . gL

We can do this in a combined way to see all terms wx d 14+ e v _IOE(P) —

together: ”

=5 ou = s O WA= (W) 1|:d] E:La E:Lu

- —(1—a(w x))xT X
This effectively shows gradient flow along path from “dx1
Ltow
. W= —o(Wx)(1 —a (wlx))aT
a(w x)

Co-mfn.xtatlon Graph.of P R
primitives (automatic w1 . 1xd
differentiation) Computational / Tensor View Graph View

Different Views of Equivalent Ideas

Backpropagation

and Automatic
Differentiation

4
Georgi <
oroiad| &

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— QOutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)

Modularized implementation: forward / backward API

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):
#...
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs_gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = xX*y
return z
def backward(dz):
#dx = ... #toz\
y # dy = ... #todo 6—L
return [dx, dy] 62
(x,y,z are scalars) \
OL
Oz

)

Modularized implementation: forward / backward API

class MultiplyGate(object):

def forward(x,y):
X Z = X*y
y4 self.x

X # must keep these around!

self.y =y
Yy return z
f backward(dz):
dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

)

D

(x,y,z are scalars) d

Example: Caffe layers

Branch: master~ caffe [src / caffe [layers | Create new file

Eshe\hamer committed on GitHub Merge pull request #4630 from BIGene/load_hdf5_fix

[E) absval_layer.cpp

[E) absval_layer.cu

[E) accuracy_layer.cpp

[E) argmax_layer.cpp

[E] base_conv_layer.cpp

[E) base_data_layer.cpp

[E) base_data_layer.cu

[E] batch_norm_layer.cpp
[E) bateh_norm_layer.cu

[E) batch_reindex_layer.cpp
[E) batch_reindex_layer.cu
E) bias_layer.cpp

[E) bias_layer.cu

[E) bnll_layer.cpp

E) bnll_layer.cu

[E] concat_layer.cpp

[E) concat_layer.cu

[E) contrastive_loss_layer.cpp
[E] contrastive_loss_layer.cu
[E) conv_layer.cpp

[E) conv_layer.cu

[l crop_layer.cpp

E) crop_layer.cu

[E) cudnn_conv_layer.cpp

[E) cudnn_conv_layer.cu

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

enable dilated deconvolution

Using default from proto for prefetch

Switched multi-GPU to NCCL

Add missing spaces besides equal signs in batch_norm_layer.cpp
dismantle layer headers

dismantle layer headers

dismantle layer headers

Remove incorrect cast of gemm int arg to Dtype in BiasLayer
Separation and generalization of ChannelwiseAffineLayer into BiasLayer
dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

add support for 2D dilated convolution

dismantle layer headers

Caffe is licensed under BSD 2-Clause
remove redundant operations in Crop layer (#5138)

remove redundant operations in Crop layer (#5138)
dismantle layer headers

Add cUDNN v5 support, drop CUDNN V3 support

Find file = History

Latest commit e687a71 21 days ago

a year ago
a year ago
a year ago
a year ago
a year ago
3 months ago
3 months ago
4 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
2 months ago
2 months ago
a year ago

11 months ago

& cudnn_len_layer.cpp

E) cudnn_len_layer.cu

E) cudnn_irn_layer.cop

& cudnn_Irn_layer.cu

[E) eudnn_pooling_layer.cpp
E) cudnn_pooling_layer.cu
&) cudnn_relu_layer.cpp

) cudnn_relu_layer.cu

[E) cudnn_sigmoid_layer.cpp
El eudnn_sigmoid_layer.cu
El cudnn_softmax_layer.cpp
[El cudnn_softmax_layer.cu
[E) cudnn_tanh_layer.cpp

E) cudnn_tanh_layer.cu

[E) data_layer.cpp

E) deconv_layer.cpp

E) deconv_layer.cu

[E) dropout_layer.cpp

[l dropout_layer.cu

& dummy_data_layer.cpp
E) eltwise_layer.cpp

B eltwise_layer.cu

E) elu_layer.cpp

B elu_layer.cu

E) embed_layer.cpp

E) embed_layer.cu

[euclidean_loss_layer.cpp
E) euclidean_loss_layer.cu
E) exp_layer.cpp

El exp_layer.cu

dismantle layer headers
dismantle layer headers
dismantle layer headers
dismantle layer headers
dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support

Add cuDNN v5 support, drop cuDNN v3 support

dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support

Add cuDNN v5 support, drop cuDNN v3 support

Switched multi-GPU to NCCL
enable dilated deconvolution

dismantle layer headers

supporting N-D Blobs in Dropout layer Reshape

dismantle layer headers
dismantle layer headers
dismantle layer headers
dismantle layer headers
ELU layer with basic tests
ELU layer with basic tests
dismantle layer headers
dismantle layer headers
dismantle layer headers

dismantle layer headers

Solving issue with exp layer with base e

dismantle layer headers

a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
11 months ago
11 months ago
11 months ago
11 months ago
a year ago
a year ago
11 months ago
11 months ago
3 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago

a year ago

a year ago

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

#include <cmath>
#include <vector>

#include "caffe/layers/sigmoid_layer.hpp"

Caffe Sigmoid Layer

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
return 1. / (1. + exp(-x));

}

namespace ©

template <typename Dtype>

void Signoidlayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {

const Dtype* bottom_data = bottom[0]->cpu_data();

Dtype* top_data = top[0]->mutable_cpu_data(); 1
bottom[0]->count();

const int count / J(;E) —
for (int 1 = 0; i < count; ++i) { 1
top_data[i] = signoid(bottom_data[i]); 4/’
}
H

template <typename Dtype>

void Signoidlayer<Dtype>: :Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_data = top[0]->cpu_d
const Dtype* top_diff = top[]->
Dtype* bottom diff = bottom[0]->mutable_cpu_diff();
const int count = bottom[0]->count();
for (int i = 0; i < count; ++i) {

T e e | (1 —o(z))o(z)| * top_diff (chain rule)

fdef CPU_ONLY
STUB_GPU(SigmoidLayer);
#endif

ta();
giff();

SigmoidLayer);

Caffe is licensed under BSD 2-Clause

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its gradient outputs for
efficient computation

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Ge‘%&%ﬂ?

L=1
u p L oL 1
1 p = — =
wa — = _log(p) P> ap p
1+e™ 1
where p = g(w'x) and o(x) = —
o W= 5= m=Po-0)
Automatic differentiation:
. . _ 6L aL 6u _
Carries out this procedure for us W= = aw = WX

on arbitrary graphs We can do this in a combined way to see all terms

Knows derivatives of primitive together:
functions u
w=2®n___1_G(wx)(1-0 (w'x))aT

. . dp ou ow a(w x)
As a result, we just define these (1 ())

. = - — 0 W X
(forward) functions and don’t
even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

f(x1,%2) = x1%2 + sin(xz) We want to find the partial

derivative of output f (output)
with respect to all intermediate

o variables

a, a, Assign intermediate variables

Simplify notation:
Gn(D> O PITy y

Denote bar as: a; = F
3

Start at end and move

C x,) C x, D backward

2
Georgi S
Teclﬂg \y

f(xq,x2) = x1x, + sin(x,)

aGi=—=1
3 6a3
g O _Of a3 _ Of daray) _ f 4 _ -
1 6a1 6a3 6a1 6a3 aal aag 3
__ 9 Of daz __
2 = = = a3
aaz aag aaz
—p1 _ Of day _ __
Xo" =— —=4aq Cos\x
2 6a1 axz 1 (2)
Gradients
£P2 =9 9a; _ 9f d(x1x2) -, from multiple
2 da,; 0dx; da, 0xy 2 1pathS
summed
. of day
X1 =7 7—— =4aXx
1 aaz 6x1 272

2
Georgi S
Teclﬂ S

f(xq,x2) = x1x, + sin(x,)

____df _ Oof daz _ Of d(aytay) _ Of L
a; = = = =21 1=a3
6a1 6a3 aal 6a3 6a1 6a3
G = _9f day_
2 aaz 6a3 6a2 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(xq,x2) = x1x, + sin(x,)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

__ df day _ of 0(x1x2) _

= = =a,X
2 aaz axz aaz 6.762 271

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max) (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

) Patterns of Gradient Flow: Other

. . - . —_— af 6a1 =
Key idea is to explicitly store 2 = 307 ax, — 31 C€OS(x2)

computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

) Computation Graphs in PyTorch

Note that we can also do forward mode
automatic differentiation

t

Start from inputs and propagate gradients W3 = Wi+ W,

forward @

Complexity is proportional to input size _ , , . .
Wi =cos(x1)Xx;y Wy = X1X3 +X1Xo

Memory savings (all forward pass, no
need to store activations)

However, in most cases our inputs X1 X1 X2
(images) are large and outputs
(loss) are small

) Automatic Differentiation

Assume given
dht1 oh’ dh' on'1
dx dx Oh'~1 ox

See https://www.cc.gatech.edu/classes/AY2020/cs7643 spring/slides/autodiff forward reverse.pdf

) Forward Mode Autodifferentiation

https://www.cc.gatech.edu/classes/AY2020/cs7643_spring/slides/autodiff_forward_reverse.pdf

Convolutional network (AlexNet)

Neural Turing Machine

iInput image/

https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\‘!
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 20~

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation

Optimization
of Deep

Neural
Networks
Overview

4 'o
o

Geol &?

Tech|)

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X l > = '| —log(p) IL*
Model
Input ﬂ Loss Function

» The Power of Deep Learning

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent
an inherently compositional world

Theoretical evidence that it leads

. . input
to parameter eff|C|ency layer hidden hidden

layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth

There are still many design
decisions that must be made:

D

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks

We must design the neural network
architecture:

What modules (layers) should ?
we use?

How should they be connected
together?

Can we use our domain
knowledge to add architectural
biases?

) Architectural Considerations

Input — -—> Predictions
Data

Fully Connected
Neural Network

) Example Architectures

Input __ —> Predictions Input — Predictions
Data Image

Fully Connected Convolutional Neural
Neural Network Networks

Example Architectures

Input __ —> Predictions Input — Predictions
Data Image

Fully Connected Convolutional Neural
Neural Network Networks

—>l|:| Before: Different

architectures are
suitable for different

applications or types of
Recurrent Neural Network inpppUt "

Example Architectures

Output
Probabilities

g 1 N
Add & Norm
Feed
Forward
e |) | Add & Norm ﬁ
ST Multi-Head
Feed Attention
Forward 77 Nx
N Add & Norm
f—)l Add & Norm | T
Multi-Head Multi-Head
Attention Attention
At 2 1
1 J . —)
Positional ®_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

Example Architectures

Now: Transformers for
all input modalities!

Vaswani et al., Attention Is All You Need

As In traditional machine
learning, data is key:

Should we pre-process
the data?

Should we normalize it?

Can we augment our data
by adding noise or other
perturbations?

) Data Considerations

Even given a good neural network
architecture, we need a good optimization
algorithm to find good weights

What optimizer should we use?

Different optimizers make different
weight updates depending on the
gradients

How should we initialize the weights?
What regularizers should we use?

What loss function is appropriate?

Optimizer
Trajectory

Local
Minima

) Optimization Considerations

Machine Learning
Considerations

The practice of machine learning
IS complex: For your particular
application you have to trade off all
of the considerations together

Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

Adding appropriate biases
based on knowledge of the
domain

	Slide 1: CS 4644 / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Deep Learning = Differentiable Programming
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Convolutional network (AlexNet)
	Slide 46: Neural Turing Machine
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

