
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Optimization

Administrivia

• Assignment 1 – Due Friday!!!

• DO NOT SEARCH FOR CODE!!!!

• Note: Syllabus will shift!!!

• Assignment 2

• Implement convolutional neural networks

• Piazza: Start with public posts so that others can benefit!

• Doesn’t mean don’t post!

• Meta OH: Data wrangling Friday 02/2 3pm ET
• Full schedule and discussions on https://ai-learning.org/

• See dropbox link on piazza @109 for first office hours and link to their lessons

https://ai-learning.org/

3
Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

So Far

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Re

LULo

gis

tic

2
1

.

8

1

.

6

1

.

4

1

.

2

1
0

.

8

0

.

6

0

.

4

0

.

2

0
-

2

-

1

.

5

-

1

-

0

.

5

0 0

.

5

1 1

.

5

2

input

layer hidden

layer

output
layer

• Gradient Descent
• Compute gradients via

chain rule
• Backpropagation
• Computation

Graph +Automatic
Differentiation

4

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients

from multiple

paths

summed

Path 1
(P1)

Path 2
(P2)

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Designing Deep Neural Networks

There are still many design

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and

Optimization

⬣ Machine Learning

Considerations

?

Local

Minima

The practice of machine learning

is complex: For your particular

application you have to trade off all

of the considerations together

⬣ Trade-off between model

capacity (e.g. measured by # of

parameters) and amount of data

⬣ Adding appropriate biases

based on knowledge of the

domain

Machine Learning

Considerations

Architectural

Considerations

Determining what modules to use, and how to

connect them is part of the architectural

design

⬣ Guided by the type of data used and its

characteristics

⬣ Understanding your data is always the

first step!

⬣ Lots of data types (modalities) already

have good architectures

⬣ Start with what others have

discovered!

⬣ The flow of gradients is one of the key

principles to use when analyzing layers

Designing the Architecture

?

⬣ Combination of linear and

non-linear layers

⬣ Combination of only linear

layers has same

representational power as one

linear layer

⬣ Non-linear layers are crucial

⬣ Composition of non-linear

layers enables complex

transformations of the

data

Linear and Non-Linear Modules

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

𝒘𝟏
𝑻(𝒘𝟐

𝑻(𝒘𝟑
𝑻𝒙)) = 𝒘𝟒

𝑻x

Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input &

output statistics

⬣ Gradients

⬣ At initialization (e.g. small

values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function

⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential

term

Sigmoid Function

Sigmoid

Derivative

𝒉ℓ = 𝝈 (𝒉ℓ−𝟏)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙
𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝑾

⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat

computationally heavy

Tanh Function

tanh
Derivative

𝒉ℓ = 𝒕𝒂𝒏𝒉(𝒉ℓ−𝟏)

⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ 𝟎 if 𝐱 ≤ 𝟎 (dead ReLU)

⬣ Constant otherwise (does

not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

𝒉ℓ = 𝒎𝒂𝒙(𝟎, 𝒉ℓ−𝟏)

⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

𝒉ℓ = 𝒎𝒂𝒙(𝜶𝒉ℓ−𝟏, 𝒉ℓ−𝟏)

⬣ Activation functions is

still area of research!

⬣ Though many don’t

catch on

⬣ In Transformer

architectures, other

activations such as

GeLU is common

Variations: ELU, GeLU, etc.

θ

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel

Selecting a Non-Linearity

Which non-linearity should you

select?

⬣ Unfortunately, no one activation

function is best for all applications

⬣ ReLU is most common starting

point

⬣ Sometimes leaky ReLU can

make a big difference

⬣ Sigmoid is typically avoided

unless clamping to values from

[0,1] is needed

Demo
• http://playground.tensorflow.org

http://playground.tensorflow.org/

Initialization

Initializing the Parameters

The parameters of our model must be

initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs

(given inputs) behave

⬣ Determines how well gradients flow in

the beginning of training (important)

⬣ Could limit use of full capacity of the

model if done improperly

⬣ Initialization that is close to a good (local)

minima will converge faster and to a better

solution

⬣ What happens to the

weight updates?

⬣ Each node has the same

input from previous layers

so gradients will be the

same

⬣ As a results, all weights

will be updated to the

same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input
layer

hidden
layer 1

hidden
layer 2

output
layer

𝒘𝒊 = 𝒄 ∀𝒊

⬣ E.g. 𝑵 𝝁, 𝝈 𝒘𝒉𝒆𝒓𝒆 𝝁 = 𝟎, 𝝈 = 𝟎. 𝟎𝟏

⬣ Small weights are preferred since

no feature/input has prior

importance

⬣ Keeps the model within the linear

region of most activation

functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers

⬣ With a deep network,

activations (outputs of

nodes) get smaller

⬣ Standard deviation reduces

significantly

⬣ Leads to small updates –

smaller values multiplied by

upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to

initialization

Distribution of activation values

of a network with tanh non-

linearities, for increasingly deep

layers

From "Understanding the difficulty of training deep

feedforward neural networks." AISTATS, 2010.

⬣ This condition leads to a

simple initialization rule,

sampling from uniform

distribution:

 Uniform −
𝟔

𝒏𝒋+𝒏𝒋+𝟏
, +

𝟔

𝒏𝒋+𝒏𝒋+𝟏

⬣ Where 𝒏𝒋 is fan-in

(number of input nodes)

and 𝒏𝒋+𝟏 is fan-out

(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar

to that of input!

Distribution of activation values

of a network with tanh non-

linearities, for increasingly deep

layers

From "Understanding the difficulty of training deep

feedforward neural networks." AISTATS, 2010.

(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

N 𝟎, 𝟏 ∗
𝟏

𝒏𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

𝑵 𝟎, 𝟏 ∗
𝟏

𝒏𝒋/𝟐

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.

Key takeaway: Initialization matters!

⬣ Determines the activation (output)

statistics, and therefore gradient

statistics

⬣ If gradients are small, no learning

will occur and no improvement is

possible!

⬣ Important to reason about

output/gradient statistics and

analyze them for new layers and

architectures

Summary

Normalization,

Preprocessing,

and

Augmentation

In deep learning, data drives

learning of features and classifier

⬣ Its characteristics are therefore

extremely important

⬣ Always understand your data!

⬣ Relationship between output

statistics, layers such as non-

linearities, and gradients is

important

Importance of Data

Preprocessing

Just like initialization, normalization can

improve gradient flow and learning

Typically normalization methods apply:

⬣ Subtract mean, divide by standard

deviation (most common)

⬣ This can be done per dimension

⬣ Whitening, e.g. through Principle

Component Analysis (PCA) (not

common)

Data after subtracting mean,

dividing by standard deviation

Data after whitening

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Making Normalization a Layer

⬣ We can try to come up with a layer that can normalize the data across

the neural network

⬣ Given: A mini-batch of data [𝑩 × 𝑫] where 𝑩 is batch size

⬣ Compute mean and variance for each dimension 𝒅

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Normalizing the Data

Normalize data

ෝ𝒙𝒊 =
𝒙𝒊 − 𝝁𝑩

𝝈𝑩
𝟐 + 𝝐

Note: This part

does not involve

new parameters

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Learnable Scaling and Offset

⬣ We can give the model

flexibility through

learnable parameters

𝜸 (scale) and 𝜷 (shift)

⬣ Network can learn to not

normalize if necessary!

⬣ This layer is called a

Batch Normalization

(BN) layer

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey Ioffe, Christian Szegedy

Some Complexities of BN

During inference, stored

mean/variances calculated on training

set are used

Sufficient batch sizes must be used to

get stable per-batch estimates during

training

⬣ This is especially an issue when

using multi-GPU or multi-machine

training

⬣ Use torch.nn.SyncBatchNorm to

estimate batch statistics in these

settings

Where to Apply BN

Normalization especially important before

non-linearities!

⬣ Very low/high values (un-

normalized/imbalanced data) cause

saturation

Input

Linear

Layer
BN Non-

Linearity

Variations

From: Group Normalization, Wu et al.

Batch normalization unstable for small batch sizes

Generalization of BN

There are many variations of batch

normalization

⬣ See Convolutional Neural

Network lectures for an example

Resource:

⬣ ML Explained - Normalization

http://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/

Optimizers

Loss Landscape

Deep learning involves complex,

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result

There is little direct theory and a lot of

intuition/rules of thumbs instead

⬣ Some insight can be gained via

theory for simpler cases (e.g.

convex settings)

Loss Landscape

It used to be thought that

existence of local minima is

the main issue in optimization

There are other more

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point

Noisy Gradients

⬣ We use a subset of the

data at each iteration to

calculate the loss (&

gradients)

⬣ This is an unbiased

estimator but can have

high variance

⬣ This results in noisy steps

in gradient descent

𝑳 =
𝟏

𝑴
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Loss Surface Geometry

Several loss surface geometries

are difficult for optimization

Several types of minima: Local

minima, plateaus, saddle points

Saddle points are those where the

gradient of orthogonal directions

are zero

⬣ But they disagree (it’s min for

one, max for another)

Plateau

Saddle Point

Adding Momentum

⬣ Gradient descent takes a step in the

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling

down loss surface, and use

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights

Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

= 𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏

Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights

Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 + 𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity

with current gradient, go along velocity

first and then calculate gradient at new

point

⬣ We know velocity is probably a

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Note there are several equivalent

formulations across deep learning

frameworks!

Resource:

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Hessian and Loss Curvature

⬣ Various mathematical ways to

characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the

curvature of the loss surface

First

order

Second

order

Condition Number

Condition number is the ratio of

the largest and smallest eigenvalue

⬣ Tells us how different the

curvature is along different

dimensions

If this is high, SGD will make big

steps in some dimensions and

small steps in other dimension

Second-order optimization methods

divide steps by curvature, but

expensive to compute

Idea: Have a dynamic learning rate

for each weight

Several flavors of optimization

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in

many cases but with much more

tuning

Per-Parameter Learning Rate

Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics

to reduce learning rate across

iterations

Denominator: Sum up

gradients over iterations

Directions with high

curvature will have higher

gradients, and learning rate

will reduce
Duchi, et al., “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”

As gradients are

accumulated learning

rate will go to zero

RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving

average of squared

gradients!

Does not saturate the

learning rate

Adam

Combines ideas from

above algorithms

Maintains both first

and second moment

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning

(one or both of moments will be

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015

Adam

Solution: Time-varying bias

correction

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number

divided by (1-0.9=0.1) resulting

in more reasonable values (and
෡𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒕 ෢𝑮𝒊 =

𝑮𝒊

𝟏 − 𝜷𝟐
𝒕

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

෢𝑮𝒊 + 𝝐

Behavior of Optimizers

Optimizers behave differently

depending on landscape

Different behaviors such as

overshooting, stagnating, etc.

Plain SGD+Momentum can

generalize better than adaptive

methods, but requires more tuning

⬣ See: Luo et al., Adaptive

Gradient Methods with

Dynamic Bound of Learning

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/pdf?id=Bkg3g2R9FX

Learning Rate Schedules

First order optimization methods have

learning rates

Theoretical results rely on annealed

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss

Learning Rate Schedules

First order optimization methods have

learning rates

Theoretical results rely on annealed

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Demo
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

