Topics:
* Optimization
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Assignment 1 — Due Friday!!!
e DO NOT SEARCH FOR CODE!!!!

Note: Syllabus will shift!!!

Assignment 2
* Implement convolutional neural networks

Piazza: Start with public posts so that others can benefit!

* Doesn’t mean don’t post!

Meta OH: Data wrangling Friday 02/2 3pm ET

Full schedule and discussions on https://ai-learning.org/

See dropbox link on piazza @109 for first office hours and link to their lessons


https://ai-learning.org/
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Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
zZ = xX*y
self.x = x # must keep these around!
self.y = y
return z
)/ def backward(dz):

()(’)/,ZZ are ES(:EiIEirS;) dx = self.y * dz # [dz/dx * dL/dz]

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]
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A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

)  Computation Graphs in PyTorch
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Different Views of Equivalent Ideas




There are still many design
decisions that must be made:

D

Architecture

Data Considerations

Training and
Optimization
Local
Machine Learning Minima
Considerations

) Designing Deep Neural Networks



Machine Learning
Considerations

The practice of machine learning
IS complex: For your particular
application you have to trade off all
of the considerations together

Trade-off between model
capacity (e.g. measured by # of
parameters) and amount of data

Adding appropriate biases
based on knowledge of the
domain




Architectural

Considerations

4 'o
o

Geol &?

Tech|)



Determining what modules to use, and how to
connect them is part of the architectural

design
Guided by the type of data used and its
characteristics
Understanding your data is always the
first step!

Lots of data types (modalities) already
have good architectures

Start with what others have
discovered!

The flow of gradients is one of the key
principles to use when analyzing layers

) Designing the Architecture




Combination of linear and o7 .
non-linear layers wi(Wz(W3x)) = wyx

Combination of only linear

1
layers has same W )
representational power as one 1+e ¥

linear layer

Non-linear layers are crucial T

10
s

Composition of non-linear »
layers enables complex 02
transformations of the .

data

) Linear and Non-Linear Modules




Several aspects that we can analyze:
Min/Max

12
10
08
0.6
04
02
0.0 4
-1 T T T T T -0.2

Correspondence between input &
output statistics

Gradients 10— om . —

At initialization (e.g. small 0o ;
values) :

At extremes

Computational complexity

) Analysis of Non-Linear Function



Min: 0, Max: 1

Output always positive

Derivative

Saturates at both ends

Gradients
Vanishes at both end h! = ¢ (' 1)
Always positive
5P o(x) = ! aT[ T ]E
i : 1+e™ 1 9L 9’
Computation: Exponential oh P
term oL  dL on’

ow  9ht ow

) Sigmoid Function



Min: -1, Max: 1

Centered

Derivative

Saturates at both ends
Gradients
Vanishes at both end

Always positive

Still somewhat
computationally heavy

) Tanh Function




Min: 0, Max: Infinity
Output always positive
No saturation on positive end!
Gradients
0 ifx < 0 (dead ReLU)

Constant otherwise (does
not vanish)

Cheap to compute (max)

) Rectified Linear Unit

h! = max(0, h*™1)



Min: -Infinity, Max: Infinity
Learnable parameter!
No saturation
Gradients

No dead neuron

Still cheap to compute

) Leaky RelLU

h! = max(ah?’~1, h*~1)




31 — GEWU
RelLU
— ELU

Activation functions is
still area of research!

Though many don’t
catch on

In Transformer
architectures, other
activations such as
GeLU is common

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel

) Variations: ELU, GelL U, etc.



Selecting a Non-Linearity

Which non-linearity should you
select?

Unfortunately, no one activation
function is best for all applications

ReLU is most common starting
point

Sometimes leaky RelLU can
make a big difference

Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed




DATA

Which dataset do
you want to use?

(2]

Ratio of training to
test data: 50%

—e

Noise: 0

Batch size: 10

—e

REGENERATE

FEATURES

Which properties do
you want to feed in?

Demo

+ — 2 HIDDEN LAYERS

+
|

7 neurens

L e D O

+ -

2 neurons

L}
L}

QUTPUT

Test loss 0.511
Training loss 0.517

Colors shows
data, neuron and
weight values

[ Show test data

[J Discretize output


http://playground.tensorflow.org/

Initialization
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Initializing the Parameters

The parameters of our model must be
Initialized to something

Initialization is extremely important!

Determines how statistics of outputs
(given inputs) behave

Determines how well gradients flow in
the beginning of training (important)

Could limit use of full capacity of the
model if done improperly

Initialization that is close to a good (local)
minima will converge faster and to a better
solution




Initializing values to a constant value leads to a degenerate solution!

What happens to the
weight updates? w;, =c Vi

Each node has the same
input from previous layers
so gradients will be the
same

output
layer

input
As a results, all weights layer layer 1 layer 2

hidden hidden

will be updated to the
same exact values

) A Poor Initialization



Common approach is small normally distributed random numbers

E.g. N(u,0) whereu=0,6 =0.01

(x)
=2 [N] w &
©) =] =] =]

Small weights are preferred since
no feature/input has prior
Importance

Keeps the model within the linear
region of most activation
functions

) Gaussian/Normal Initialization



Deeper networks (with many layers) are more sensitive to

initialization
With a deep network,

activations (outputs of
nodes) get smaller

Standard deviation reduces
significantly

Leads to small updates —
smaller values multiplied by
upstream gradients

15

—Layer 1

: : : —Layer 2

—Layer 4

5t ! F\ : : Layer 5|
e : H
0 I b i I
.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6

—Layer 3| |

-1 -0 0.8
Activation value

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

) Limitation of Small Weights




Ideally, we’d like to maintain the variance at the output to be similar

to that of input!

This condition leads to a
simple initialization rule,
sampling from uniform
distribution:

Uniform(— Ve -+ ve )

nj+njy’  nj+njgq
Where n; is fan-in
(number of input nodes)
and n;, 4 Is fan-out
(number of output nodes)

Xavier Initialization

i i i i i i
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Activation value

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.




In practice, simpler versions perform empirically well:

M0, 1) \/nZ]

This analysis holds for tanh or similar activations.

Similar analysis for ReLU activations leads to:

N(,1) * |—
\ ]

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification®, ICCV, 2015.

) (Simpler) Xavier and Xavier2 Initialization




Summary

Key takeaway: Initialization matters!

Determines the activation (output)
statistics, and therefore gradient
statistics

If gradients are small, no learning
will occur and no improvement is
possible!

Important to reason about
output/gradient statistics and
analyze them for new layers and
architectures




Normalization,
Preprocessing,

and
Augmentation
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Importance of Data

In deep learning, data drives
learning of features and classifier

Ilts characteristics are therefore
extremely important

Always understand your data!

Relationship between output
statistics, layers such as non-
linearities, and gradients is
Important




original data normalized data

Just like initialization, normalization can
improve gradient flow and learning

Typically normalization methods apply:

v

Y 20 = 3 E
-1 -08 02 0.4 0.6 0.8 1

Subtract mean, divide by standard Data after subtracting mean,

deviation (most Common) dividing by standard deviation
original data ) whitened data

This can be done per dimension

Whitening, e.g. through Principle
Component Analysis (PCA) (not
common)

Data after whitening

Figure from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Preprocessing ceal|S

Tech))



We can try to come up with a layer that can normalize the data across
the neural network

Given: A mini-batch of data [B x D] where B is batch size

Compute mean and variance for each dimension d

Input: Values of - over a mini-batch: B = {&1. ;. };
Parameters to be learned: ~, 3
Output: {y; = BN, 5(x;)}

m
g — — E €T // mini-batch mean
m 4
i=1
1 m
oR — — (i — pB) // mini-batch variance
B ™
i=1

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey loffe, Christian Szegedy

) Making Normalization a Layer




Normalize data

Input: Values of .- over a mini-batch: B = {w1. m };
~ _Xi— HUB Parameters to be learned: +, 3
Xi = 3 Output: {y; = BN, 5(x;)}
op + €
1 m
g — — Z €Ty // mini-batch mean

_ m
Note: This part -

: 1 . .
does not involve of — — Z(;f_.‘i — ug)? // mini-batch variance
new parameters M=

—~ .‘"l'.ll T .’JB :
T ¢ —— // normalize
\/ 0123 + €

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey loffe, Christian Szegedy

) Normalizing the Data




We can give the model
flexibility through

learnable parameters
y (scale) and B (shift)

Network can learn to not
normalize if necessary!

This layer is called a
Batch Normalization
(BN) layer

Input: Values of = over a mini-batch: B = {zy _,,};
Parameters to be learned: ~, 3
Output: {y; = BN, g(z;)}

m

1
B < — E T
m

i=1

1 m
2 2
o5 — E (z; — uB)
Ci=1

r; — UB
/O + €
B .

Y; ’}-‘5[??; + 3 = BNA;,‘__}.Q(ZI?@‘)

// mini-batch mean

// mini-batch variance

T; // normalize

// scale and shift

From: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Sergey loffe, Christian Szegedy

).

Learnable Scaling and Offset




Some Complexities of BN

During inference, stored
mean/variances calculated on training
set are used

Sufficient batch sizes must be used to
get stable per-batch estimates during
training
This is especially an issue when
using multi-GPU or multi-machine
training
Use torch.nn.SyncBatchNorm to
estimate batch statistics in these
settings




Normalization especially important before
non-linearities!

Very low/high values (un-
normalized/imbalanced data) cause

saturation
E>i :>i:>i
Linear Non-
Layer Linearity

) Where to Apply BN




Batch normalization unstable for small batch sizes

NAVAVAVAVA
AV
\AAANNNZ
A AN N NN

Group Norm

VAV AV AV ey a4
[ ST

M H
ANV

Instance Norm

VA4
M ‘H

NAVANAVAVAN

Layer Norm

Batch Norm

[ LSS S
/77777
VAV AVAYAV4
VAV AV YAV

MH

From: Group Normalization, Wu et al.
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Generalization of BN

There are many variations of batch
normalization

See Convolutional Neural
Network lectures for an example

Resource:

ML Explained - Normalization



http://mlexplained.com/2018/11/30/an-overview-of-normalization-methods-in-deep-learning/
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Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

=
MCL loss

There is little direct theory and a lot of
intuition/rules of thumbs instead

Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

) Loss Landscape Gegraia |



It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
Impactful issues:

Noisy gradient estimates

Saddle points

lll-conditioned loss surface

) Loss Landscape

Saddle Point

From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.
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We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

1
L=223 L(f(xiW),3)

This iIs an unbiased
estimator but can have
high variance

This results in noisy steps
In gradient descent

) Noisy Gradients Geo;%.ﬁ@



Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

But they disagree (it's min for
one, max for another)

) Loss Surface Geometry

Saddle Point
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Gradient descent takes a step in the
steepest direction (negative gradient) oL

Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

aL Update Velocity
ow;_, (startsasO, g =0.99)

v, = pv_q+

W; = W;_1 — Qav; Update Weights

Generalizes SGD (B = 0)

) Adding Momentum Gegrata |

=



Velocity term is an exponential moving average of the gradient

oL
v =Pri4+ oW,
i
dL oL
Vi = BB V2 + 5~ 2) t 3 )
i— i—
. aL oL
= v+ P +

ow;_, 0w; 4

There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

Georgia @

) Accelerated Descent Methods graia



Equivalent formulation:

oL Update Velocity

v, =BV 4 — a—o
i = Bria ow;_, (starts as 0)

Wi =W;_1+7; Update Weights

ecC

=

Equivalent Momentum Update Gegrgia |



Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new

point

We know velocity is probably a
reasonable direction

Wi_1=Wi_1+ Bv;_4
Momentum update: Nesterov Momentum

Gradient

dL
Velocity Velocity

a A\
wi_ 1 actual step

v, = pv_q+

actual step

Wi — Wi—l —_ a vi Gradient
Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia Jh

) Nesterov Momentum qoa



Momentum

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
Impostor/sgd-implementation-in-
pytorch-4115bch9f02c

Tech

Georgia I&


https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Various mathematical ways to
characterize the loss landscape

If you liked Jacobians... meet: Second

order

[ 9% f f 2f
Ox? Oz, Oz Oz, Oz,
2 P 2
H — 6$‘2 637] 8.’.[!3 6332 8-’511
o2 f f o?f
| 0z, 8z, Oz, Oz» Ox2

Gives us information about the
curvature of the loss surface

Tech

=

) Hessian and Loss Curvature Georgia@



Condition number is the ratio of
the largest and smallest eigenvalue

Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

D Condition Number Georg-aﬁ




Per-Parameter Learning Rate

ldea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

RMSProp

Adagrad 7'
Adam ‘

SGD can achieve similar results in
many cases but with much more

tunin g Georgia I&

Tech




Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

As gradients are
accumulated learning
rate will go to zero

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

) Adagrad Gegrgia |
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Solution: Keep a moving
average of squared
gradients!

Does not saturate the
learning rate

) RMSProp

L \°
GiZﬁGi—1+(1—ﬁ)( )

ow;_1

Georgia
Tech
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d
Vi=ﬂ1vi—1+(1—31)< = )

ow;_q

Combines ideas from
above algorithms

IL \2
Gi:ﬁzGi—1+(1—ﬁ2)< = >

ow;_4
. . . avi
Maintains both first W;=w;_q — ———
and second moment VGit+e€

statistics for gradients But unstable in the beginning

(one or both of moments will be
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015

) Adam Qoo



JdL
Vi=ﬂ1vi—1+(1—ﬁ1)( )

Solution: Time-varying bias ow;_,
i

correction

L \
G; = B> Gi—1+(1—ﬁz)( )

Typ|Ca”y Bl = 0. 9, ﬁz = 0.999 aWi_l

So v; will be small number

v _ G
divided by (1-0.9=0.1) resulting D= Gi=—
In more reasonable values (and
G; larger av.

¢ larger) Wi =Wi 1~ = l
Gi + €

) Adam Gegrgla|



Optimizers behave differently
depending on landscape

Different behaviors such as
overshooting, stagnating, etc.

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

See: Luo et al., Adaptive
Gradient Methods with

Dynamic Bound of Learning

fries,

11y = Gradient Descent
II/”;Z”I;',',"..

(TR

71155 e Mg,

T
IZ//,,,ZII”ZI:,ZI ’l

AL

whsotn

rtentento o yltyop

MNNOA ()

2000, ":“4?9?:?:'0/0
202030, 20 00,0

Rate, ICLR 2019

) Behavior of Optimizers

From: https://mlfromscratch.com/optimizers-explained/#/
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https://openreview.net/pdf?id=Bkg3g2R9FX

First order optimization methods have
learning rates

i ) Trainin
Theoretical results rely on annealed | loks i

learning rate :

0 200 400 &00 200 1k

Several schedules that are typical:

Maximum bound

Graduate student! (max_Ir)

Step scheduler

Exponential scheduler Minimum bound
(base_Ir)

stepsize

Cosine scheduler

From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

) Learning Rate Schedules Gegroia |
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First order optimization methods have
learning rates

i ) Trainin
Theoretical results rely on annealed | loks i

learning rate :

0 200 400 &00 200 1k

Several schedules that are typical:

Maximum bound

Graduate student! (max_Ir)

Step scheduler

Exponential scheduler Minimum bound
(base_Ir)

stepsize

Cosine scheduler

From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

) Learning Rate Schedules Gegroia |
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