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Problem Statement
Goal: Few-shot learning to perform novel multimodal tasks

Implications

• Key element of human intelligence

• Don’t need to fine-tune models
• Resource intensive

• Task-specific annotated data

Contributions

• Flamingo: family of VLMs [1]
• Connect frozen vision-only and 

language-only models

• Interactive, generates open-ended text

• State-of-the-art learning on 16 tasks (Q)
• Using just examples

• VQA, captioning, visual dialogue, etc.

Q: Can it localize objects?
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Related Works

Partial Fine-Tuning

• Adapter modules [2]
• Few trainable parameters per task

• Original network parameters stay fixed

• BitFit [3]
• Only modifies bias term

• Competitive performance to fine-tuned 

models

Prompt-Based Approach

• GPT-3 [4]
• Show in-context examples within prompt

• Scaled-up language model

• Prompt-Tuning [5] (Q)
• Prompt optimization through gradient 

descent

• Learn “soft prompts” to influence frozen 

LM to perform tasks

Adapting models to novel tasks

Q: Since prompt-tuning achieved better few-shot learning performance than GPT-3, could it also achieve 

better performance in multimodal space? 4



Related Works

• SOTA accuracy on MMLU
• MMLU: Exam-like questions on 

academic subjects

• Scaled training tokens at same rate 

as model size

• Trained on MassiveText [7]

Chinchilla: Base Language Model [6]
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Approach
Text input interleaved with image

Visually-conditioned autoregressive 
text generation 
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Use of tanh and initialized to zero: to 
have no effect at training beginning



Approach
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Approach
Vision Encoder: From pixels to features

Architecture:
• Normalizer Free ResNet (NFNet) 

Trained on:
• Datasets of image and text pairs, 

using the two-term contrastive loss 
from Radford et al.

Perceiver Resampler: From varying-size 
large feature maps to few visual tokens.
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Approach
Multi-visual input support: 
Per-image/video attention masking

At a given text token, the model attends 
to the visual tokens of the image that 
appeared just before it.
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Approach
Training on a mixture of vision and language datasets

• Datasets
• M3W:Interleaved image and text dataset.
• ALIGN: 1.8B text-to-image
• LTIP: 312M long-text and image
• VTP: 27M short-video and text

• Multi-objective training and optimisation strategy. 
• Tuning the per-dataset weights 𝜆𝑚 is key to performance.
• Below weights were obtained empirically at a small model scale and kept fixed afterwards.
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Dataset M3W ALIGN LTIP VTP

𝜆m 1.0 0.2 0.2 0.03



Experiments and Results
Zero/Few-shot Performance
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Experiments and Results
Fine-Tuning Performance
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Experiments and Results
Ablation Study
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Limitations
Functional Limitations

• Hallucinations (Q)

• Poor generalization for long 

sequences

• Worse than contrastive models in 

classification

• Sensitivity to examples

Practical Limitations

• Text interface inconvenient for some 

tasks

• Expensive to train

Q: Is the model simply inferring answers through the prompts without using images?
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Limitations

Learning new task or identifying trained task?

• Performance plateaus as number of examples 

reach 32

• Non-trivial performance without images (Q)

• Examples may be locating task in memory (Q)
• “Task Location” [8]

Q: Is the model learning a new task at inference or just identifying a task learned during training?

Q: Is it possible that the model’s success is just due to the capabilities of the LM?
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Societal Implications
Benefits

• Good performance with less data

• Lower barrier for non-experts

• Identifying harmful behavior
• Filtering toxic samples [9]

• Probing another LM [10]

Risks

• Good performance with less data

• Lower barrier for non-experts

• LLM risks
• Offensive language

• Propagating biases

• Leaking private information
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Strengths
Reusability

• Repurpose pretrained frozen models
• Practical and environmental benefits

• New modalities can be introduced

• Only used 5 datasets for design 

decisions

Accessibility

• Few-shot task learning

• Chat interface
• Non-expert use

• Handles open-vocabulary prompts

• Explainability and interpretability
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Weaknesses
Performance Dependencies

• Weights of mixture dataset

• Large model size and large 

pretraining dataset size

Minor Issues

• Lack of detailed settings on 

downstream tasks, e.g. will <image> 

token also cross-attend to visual 

conditions?
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Relationships to Other Papers
Frozen [11]

• Inspired Flamingo

• Could not achieve better 

performance than fine-tuned models

• Only handled images

• Only froze language model
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