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Problem Statement: VLM Reasoning Tasks

• Visual Grounding
• Identifying the bounding box in an image 

that corresponds best to a given query.

• Compositional Image Question 
Answering
• Decomposing complex questions into 

simpler tasks.

• External Knowledge-dependent Image 
Question Answering
• Many questions about images can only be 

answered correctly by integrating outside 
knowledge about the world.
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Query: pizza front

Query: Does that 

pancake look brown 

and round?

Query: The real 

live version of this 

toy does what in 

the winter?



Problem Statement

• Query: How many muffins can each 
kid have for it to be fair?

1) Find the children and the muffins 
in the image

2) Count how many there are of each

3) Reason that ‘fair’ implies an even 
split, hence divide.

End-to-end models do not inherently 
leverage compositional reasoning.

• They fail to make use of
• Advances in fundamental vision tasks at 

different steps

• Computers can perform mathematical 
operations (e.g., division) easily without 
machine learning

• Uninterpretable decisions
• No way to audit the result of each step to 

diagnose failure

• Model becomes increasingly untenable as 
the data and computation grow
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Problem Statement: ViperGPT

• Interpretability
• Explicit code function calls for each step

• Intermediate values that can be inspected

• Flexibility: Easily incorporate any vision or language module

• Composability: Decompose tasks into smaller sub-tasks performed step-by-step

• Training-free: Recombine existing models in new ways without additional training 

• Generalizability: Unify all tasks into one system
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Related Works



Related Works: Neural Module Networks

• Intuition: decompose tasks into simpler modules
• Training end-to-end with modules rearranged in different ways for different problems

• Each module would learn their appropriate function

• Cons
• Expensive supervision in the form of programs → domain-limited

• End-to-end training: learn the perceptual models jointly with the program generator → fail to 
produce the intended modular structure

Andreas, Jacob, et al. "Neural module networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Johnson, Justin, et al. "Inferring and executing programs for visual reasoning." Proceedings of the IEEE international conference on computer vision. 2017.
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Related Works: Automatic Module Integration Using LLMs

ViperGPT: directly generate 
unrestricted Python code

VISPROG
• Generates a list of 

pseudocode instructions 
which needs further 
interpretation

Very similar ideas. VISPROG 
was ~4 months earlier but 
went unnoticed due to CVPR 
publicity restrictions.

Gupta, Tanmay, and Aniruddha Kembhavi. "Visual programming: Compositional visual reasoning without training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.
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Related Works: HuggingGPT
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• 4 step process:

o Decompose request into tasks 

with dependencies

o Assign models for each task

o Execute tasks via 

HuggingFace

o Synthesize information into 

one response

• Similar reasoning approach to 

ViperGPT, but with more tools

• Structured natural language 

instead of code

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. 2023. Available at: https://arxiv.org/abs/2303.17580.
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Approach: Overview

• ViperGPT is a framework for solving complex 
visual queries programmatically.

• Inputs
• Visual input 𝑥: image / videos
• Textual query 𝑞: questions or descriptions

• Output 𝑟: any type (e.g., text / image crops) 

• Program generator 𝜋:  𝑧 = 𝜋 𝑞
• 𝜋: LLMs
• 𝑧 : Python code

• Execution engine 𝜙:  𝑟 = 𝜙(𝑥, 𝑧)
• Python Interpreter
• API Implementation
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Approach: Program Generation

• Program Generator: GPT-3 Codex
• Obviates the need for task-specific 

training for program generation.

• Input: a sequence of code text
• Prompt: API specification

• Query for the sample under consideration

• Output: Python function definition as 
a string.
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Approach: Modules - ImagePatch

• Each module is 
implemented as 
a class method.
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Approach: Modules - VideoSegment

• Each module is 
implemented as 
a class method.
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Approach: API

API specifies

• Input and output types

• Docstrings to explain the purpose 
of these functions in natural 
language

• Examples that show how to use 
these classes and their functions 
(query-code pairs)

Only specifications, no full implement

• LLM context windows are limited

• Code generation is independent of 
changes made to the module 
implementation
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Approach: Program Execution

• Python interpreter: logical operations

• Pretrained model APIs: perceptual operations
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Approach: Program Execution

• Pretrained Models
• GLIP: find, exists

• MiDaS: compute_depth

• BLIP-2: simple_query

• X-VLM: verify_property, best_image_match, best_text_match

• GPT-3: llm_query, select_answer

• Codex: code generation
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Evaluations and Results



Evaluations and Results

• Defines 4 main tasks ranging from basic understanding to complex synthesis

• Each task is a "prerequisite" for following task

Visual Grounding
Compositional 

VQA

External-

knowledge based 

VQA

Video-based QA
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Overview of Modules

• find: image and noun --> identifies patches containing noun

• exists: image and noun --> identifies if noun exists in image

• verify_property: image, noun, and property --> identifies if noun has property in image

• best_image_match: image patches and noun --> returns image patch matching noun

• best_text_match: list of nouns and image --> returns noun that matches image

• compute_depth: image patch --> median depth of patch

• distance: image patches --> distance between patches

• simple_query: short image/text questions that cannot be decomposed

• llm_query: queries requiring external knowledge

• select_answer: textual information about scene and possible answers --> best answer
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Visual Grounding

• Requires spatial reasoning and object identification

• Modules provided:
o Find, exists, verify_property,

best_image_match, compute_depth,
distance

• Evaluated on RefCOCO and 
RefCOCO+

• Takeaways:
o Clearly outperforms zero-shot methods

o Still far behind fine-tuned models

o Expected result since this task focuses 
on visual understanding instead of 
reasoning 
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Compositional VQA

• Requires breaking down complex questions into simpler components

• Modules added:
o simple_query, best_text_match

• Evaluated on GQA dataset

• Takeaways:
o Slightly better than BLIP-2

o Decently far behind all fine-tuned 
methods

o Some emphasis on reasoning,
but still largely focusing on 
spatial understanding Q: Are there any cups to the left 

of the tray on top of the table?
A: No
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Drew A. Hudson and Christopher D. Manning. GQA: A New Dataset for Real-World Visual 

Reasoning and Compositional Question Answering. 2019. Available 

at: https://arxiv.org/abs/1902.09506.



External-Knowledge Based VQA

• Requires querying external knowledge to reason about the image

• Modules added:
o llm_query

• Evaluated on OK-VQA dataset

• Takeaways:
o Better than zero-shot and on-par with some fine-

tuned models

o Likely due to emphasis on reasoning & CoT

• Example:
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Video-Based QA

• Requires causal and temporal reasoning about the video

• Modules added for this task:
o select_answer, VideoSegement

• Evaluated on multiple choice
NExT-QA dataset

• Takeaways:
o Achieves SoTA results, surpassing

fine-tuned methods

o Underscores importance of reasoning
in video understanding

o Only has perception for images, but 
extrapolates to temporal and causal
contexts using frames relations
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Video-Based QA 

• Loop to identify when the sparkles are dropped

• Identify the image patch of the boy and determine the action he takes

• Use action to select correct answer25
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Emergent Capabilities – Real-World Usage

• Beyond benchmarks, Viper-GPT easily adapts to real-world queries

• Simple to add new modules with the provided framework
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Emergent Capabilities - Intervention

• New method to evaluate importance of individual modules
o Cannot evaluate intermediate output --> no ground truth data

o Cannot compare accuracy between programs --> not all programs use the same modules

• Intervention: Substitute a module with a default value to measure performance 
drop with nonfunctional module

• Analysis performed on RefCOCO: 
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Emergent Capabilities – Context-Aware Responses

• Program can be adapted based on context provided as comments

• Important when considering different cultures, norms, and expectations
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Limitations & Societal Implications

• Limitations:

o Highly dependent on performance of pre-

trained models—no ability to fine-tune for 

specific tasks

o Produced code is interpretable, however not 

as simple as CoT which is easier for the 

public to understand

o Programs generated can be overly complex 

or incorrect for complex tasks—difficult to 

find error without manual inspection

• Societal Implications

o Enhances interpretability of VLM reasoning 

process, allowing for intermediate steps to 

be manually altered

o Framework can be implemented at any 

scale with any models --> ease of access to 

more powerful VLM systems

o Inherits biases of pre-trained models it uses 

(no inherent bias mitigation in the 

framework)
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Summary of Strengths and Weaknesses

• Strengths:

o Plug-and-Play system: can build modules 

with any models available

o As better pre-trained models are created 

(GPT, BLIP, etc.) performance increases

o Outputted programs are interpretable by 

humans for correction and general 

understanding

o Achieves strong zero-shot results 

compared to other zero-shot models

• Weaknesses:

o Performance is generally subpar 

compared to fine-tuned models

o Not many zero-shot models available for 

comparison on some tasks (GQA and 

NExT-QA) and analysis is very shallow

o Heavily dependent on capabilities of pre-

trained models—areas that the pre-trained 

models struggle in will be reflected in the 

compositional model
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Thank you!
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