y

ViperGPT: Visual Inference via
Python Execution for Reasoning

Didac Suris*, Sachit Menon*, Carl Vondrick
Columbia University, ICCV, 2023

Georgia
Tech



Outline

* Problem Statement

» Related Works

« Approach

» Experiments & Results

 Limitations, Societal Implications

« Summary of Strengths, Weaknesses, Relationship to Other Papers

Georgia
2 Gl" Tech.



Problem Statement: VLM Reasoning Tasks

* Visual Grounding

* |dentifying the bounding box in an image

uery: pizza front
that corresponds best to a given query. Query: p

« Compositional Image Question
Answering

« Decomposing complex questions into
simpler tasks.

Query: Does that
pancake look brown
and round?

» External Knowledge-dependent Image
Question Answering

« Many questions about images can only be
answered correctly by integrating outside
knowledge about the world.

3 Gr Georgia
Tech.

Query: The real
live version of this
toy does what in
the winter?




Problem Statement

End-to-end models do not inherently
leverage compositional reasoning.

 They fail to make use of

« Advances in fundamental vision tasks at
different steps

« Computers can perform mathematical
operations (e.g., division) easily without
machine learning

 Uninterpretable decisions

* Query: How many muffins can each  No way to audit the result of each step to
kid have for it to be fair? diagnose failure
1)  Find the children and the muffins - Model becomes increasingly untenable as
in the image the data and computation grow

2) Count how many there are of each

3) Reason that ‘fair’ implies an even
split, hence divide.

Georgia
4 Gl" Tech.



Problem Statement: ViperGPT

Interpretability
 Explicit code function calls for each step
 Intermediate values that can be inspected

Flexibility: Easily incorporate any vision or language module

Generalizability: Unify all tasks into one system

Query: How many muffins can each kid have for it to be fair? Execution
Generated Code muffin patches =
image_patch.find("muffin”)
def execute_command(image): @ @ '
image_patch = ImagePatch(image) & Ad N

muffin_patches = image_patch.find("muffin")
kid_patches = image_patch.find("kid")
return str(len(muffin_patches) // len(kid_patches))

Composability: Decompose tasks into smaller sub-tasks performed step-by-step
Training-free: Recombine existing models in new ways without additional training

————————————

kid_patches =
image_patch.find("kid”)

» len(muffin_patches)=8
» len(kid_patches)=2

»8//2 = 4
Result:4

Georgia
Gl" Tech.




Related Works



Related Works: Neural Module Networks

* |ntuition: decompose tasks into simpler modules
 Training end-to-end with modules rearranged in different ways for different problems
« Each module would learn their appropriate function

« Cons

« Expensive supervision in the form of programs - domain-limited

« End-to-end training: learn the perceptual models jointly with the program generator - fail to
produce the intended modular structure

=( couch )

color

Where is - oD
the dog? g ool Y
L I __________
: count where
Parser — Layout 1
! |
S dog cat
\

Question: Are there more cubes than yellow things? Answer: Yes

things —
yellow—
than—
cubes—
more —
there —

Are —

| st o] LT o[ e | [Clseifier]
+ .
—» LSTM | (| LSTM > count Ezzci::etlon
+ * filter
—>{ LSTM | —>| LSTM —»| color | greater_than |
[vellow]
: ! | ‘ count || count ‘
— LSTM | (| LSTM [—»| <scee>
* * filter filter
—| LSTM | || LSTM [—+| count cotor | shape
_»{ * | _>| * | filter 1‘. 'f'
LSTM LSTM > shape
) v | [cube] CNN
——— -
Predicted . Georgia
Program Generator Program lr Seore

Andreas, Jacob, et al. "Neural module networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
Johnson, Justin, et al. "Inferring and executing programs for visual reasoning."” Proceedings of the IEEE international conference on computer vision. 2017.



Related

Works: Automatic Module Integration Using LLMs

Visual Programming

Compositional Visual Question Answering

Natural Language Image Editing

Visual

Prediction Rationale

Program

Interpreter

IMAGE: Question: Are there both ties and glasses in the picture?

Program:

BOX@=Loc (image=IMAGE, object=‘ties’)

ANSWER@=Count (box=B0X0)

BOX1=Loc(image=IMAGE, object=‘glasses’)

ANSWER1=Count (box=B0OX1)

ANSWER2=Eval(“‘yes’ if {ANSWER®} > @ and {ANSWER1} > @ else ‘no’”)
RESULT=ANSWER2

Prediction: no

>

Natural Language Visual Reasoning

LEFT: RIGHT:

Statement: The left and right image contains a total of six people and two boats.
Program:

ANSWER@=Vqa(image=LEFT, question=‘How many people are in the image?’)
ANSWER1=Vga(image=RIGHT, question=‘How many people are in the image?’)
ANSWER2=Vqa(image=LEFT, question=‘How many boats are in the image?’)
ANSWER3=Vqa(image=RIGHT, question=‘How many boats are in the image?’)
ANSWER4=Eval( ‘{ANSWER@} + {ANSWER1} == 6 and {ANSWER2} + {ANSWER3} == 2’)
RESULT=ANSWER4

Prediction: False

IMAGE : Prediction: IMAGEL

/

Instruction: Hide Daniel Craig with 8) and Sean Connery with ;)
Program:

0OBJ@=FaceDet (image=IMAGE)

OBJ1=Select(image=IMAGE, object=0BJ@, query=‘Daniel Craig’, category=None)
IMAGE@=Emoji(image=IMAGE, object=0BJ1, emoji=‘smiling_face_with_sunglasses’)
0BJ2=Select(image=IMAGE, object=0BJ]@, query=‘Sean Connery’, category: None)
IMAGE1=Emoji(image=IMAGE®, object=0BJ2, emoji=‘winking_face’)

RESULT=IMAGE1

IMAGE:

Prediction: IMAGE®

Instruction: Replace desert with lush green grass
Program:

= 0BJO=Seg(image=IMAGE)
i : ¢ 5
Factual Knowledge Object Taggin OBJ1=Select(image=IMAGE, object=0BJ0@, query=‘desert’, category=None)
GProgr:m g ) Being IMAGE@=Replace(image=IMAGE, object=0BJ1, prompt=‘lush green grass’)
enerator IMAGE: Prediction: IMAGE® RESULT=IMAGE®
Prediction: IMAGE®
Input
Image(s)
Natural Language . »
Instruction Instruction: Tag the 7 main characters on the TV show Big Bang Theory
Program: Instruction: Create a color pop of Barack Obama (person)
OBJ@=FaceDet (image=IMAGE) Program:
In-context LISTO=List(query=‘main characters on the TV show Big Bang Theory’, max=7) 0BJO=Seg(image=IMAGE)
instruction-program 0BJ1=Classify(image=IMAGE, object=0BJ@, categories=LIST®) OBJ1=Select(image=IMAGE, object=0BJ@, query=‘Barack Obama’, category=‘person’)
pairs IMAGE@=Tag(image=IMAGE, object=0BJ1) IMAGE@=ColorPop (image=IMAGE, object=0BJ1)
RESULT=IMAGE® RESULT=IMAGE®
\ - ¥

8

Gupta, Tanmay, and Aniruddha Kembhavi. "Visual programming: Compositional visual reasoning without training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

ViperGPT: directly generate
unrestricted Python code

VISPROG

« Generates a list of
pseudocode instructions
which needs further
interpretation

Very similar ideas. VISPROG
was ~4 months earlier but
went unnoticed due to CVPR
publicity restrictions.

Georgia
Tech.



Related Works: HuggingGPT

» 4 step process:

o Decompose request into tasks

with dependencies
o Assign models for each task

o Execute tasks via
HuggingFace

o Synthesize information into
one response

» Similar reasoning approach to
ViperGPT, but with more tools

 Structured natural language
instead of code

9

HuggingGPT

Can you describe this picture and count how
many objects in the picture?

3

"\

LLM as Controller

b

-

A text can describe the given image: o herd of
giraffes and zebras grazing in a fields. In
addition, there are five detected objects as
giraffe with score 99.9%, zebra with score 99.7%, zebra
with 99.9%, giraffe with score 97.1% and zebra with
score 99.8%. The bounding boxes are shown in the
above image. | performed image classification, object
detection and image caption on this image. Combining
the predictions of =
. and =
models, | get the results for you.

I Task
Planing

Prediction

II Model

~ facebook/
detr-resnet-101 |

r ™
»| III Task Execution

Selection

Prediction
IV Response

<

Generation

—

T

= nlpconnet/
vit-gpt2-image-captioning

[{"task": "pose-detection”, "id": 0, "dep": [-1], "args":

n im

age": "e3.jpg" }}, {"task": "pose-text-to-image", "id": 1, "dep":

[0], "args": {"text": "a girl reading a book", "image": "<re-

source>-0" }}]

Georgia

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. HuggingGPT: Solving Al Tasks with ChatGPT and its Friends in Hugging Face. 2023. Available at: https://arxiv.org/abs/230|I. 755[;_901].

B A ——



Approach



Approach: Overview

ViperGPT is a framework for solving complex

uer Visual Input x : . :
Query ¢ P visual queries programmatically.

“Which pet is in
the top left?”

* Inputs
 Visual input x: image / videos
ViperGPT Generated Code 2 « Textual query g: questions or d.escrlptlons
Code LLM R S « Output r: any type (e.g., text / image crops)
T Pets_sorted = o)

return result

Program generator m: z = n(q)
 m:.LLMs
 z:Python code

AP ot .
Specification Code Execution ¢

def onpute_det (image) -» tnl.‘rl::h.rensor: Python Interpreter

eturn estimated deptt
def exists(image, object_name) -> bool:
"""Return True if object_name is in imac +
def (text) -> text: .
APl Implementation

Execution engine ¢: r = ¢(x, 2)
« Python Interpreter
« APl Implementation

Result: “shiba Inu”

Georgia
11 Gl" Tech.



Approach: Program Generation

Query: Does that pancake look brown
and round?

Generated code In:

def execute_command(image):
image_patch = ImagePatch(image)
pancake_patches = image_patch.find("pancake")
is_brown = pancake_patches[0@].verify_property("pancake", "brown")

is_round = pancake_patches[@].verify_property("pancake", "round") ° Input: a Sequence Of COde text

* Program Generator: GPT-3 Codex

« Obviates the need for task-specific
training for program generation.

return bool_to_yesno(is_brown and is_round) . ]
* Prompt: API specification

Query: Are there water bottles to the right of . .
« Query for the sample under consideration

the bookcase that is made of wood?

In:
Generated code

def execute_command(image):

e e 5 A  Output: Python function definition as

bookcase_patches = image_patch.find("bookcase") M
for bookcase_patch in bookcase_patches: a Strl ng

is_wood = bookcase_patch.verify property("bookcase", "wood")
if is_wood:

water_bottle_patches = image_patch.find("water bottle")

for water_bottle_patch in water_bottle_patches:

if water bottle_patch.horizontal_center > \
bookcase_patch.horizontal center:
return "yes"
return "no"
return "no"

Georgia
12 Gl" Tech.




Approach: Modules - ImagePatch

class ImagePatch:
"""A Python class containing a crop of an image centered around a particular object, as well as relevant information.

(=)

B T

0 -

[ o T S o R e = I S I o B S e )
wn

=)

Attributes
cropped_image : array_like

An array-like of the cropped image taken from the original image.
left : int

An int describing the position of the left border of the crop’s bounding box in the original image.
lower : int

An int describing the position of the bottom border of the crop’s bounding box in the original image.
right : int

An int describing the position of the right border of the crop’s bounding box in the original image.
upper : int

An int describing the position of the top border of the crop’s bounding box in the original image.

Methods
find(object_name: str)->List[ImagePatch]
Returns a list of new ImagePatch objects containing crops of the image centered around any objects found in the
image matching the object_name.
exists(object_name: str)->bool
Returns True if the object specified by object_name is found in the image, and False otherwise.
verify_property(property: str)->bool
Returns True if the property is met, and False otherwise.
best_text_match(option_list: List[str], prefix: str)->str
Returns the string that best matches the image.
simple_query(question: str=None)->str
Returns the answer to a basic question asked about the image. If no question is provided, returns the answer
to "What is this?".
compute_depth()->float
Returns the median depth of the image crop.

1%rop(left: int, lower: int, right: int, upper: int)->ImagePatch

Returns a new ImagePatch object containing a crop of the image at the given coordinates.

« Each module is
implemented as
a class method.

Cr

Georgia
Tech.



332

334
335
336
337
338
339
340
341

Approach: Modules - VideoSegment

class VideoSegment:

"""A Python class containing a set of frames represented as ImagePatch objects, as well as relevant information.

Attributes

14

video : torch.Tensor

A tensor of the original video.

start : int

end

An int describing the starting frame in this video segment with respect to the original video.
: int
An int describing the ending frame in this video segment with respect to the original video.

num_frames->int

An int containing the number of frames in the video segment.

frame_iterator->Iterator[ImagePatch]
trim(start, end)->VideoSegment

Returns a new VideoSegment containing a trimmed version of the original video at the [start, end] segment.

select_answer(info, question, options)->str

Returns the answer to the question given the options and additional information.

« Each module is
implemented as
a class method.

Cr

Georgia
Tech.



Approach: API

def exists(self, object_name: str) -> bool:

"""Returns True if the object specified by object_name is found in the image,

Parameters

object_name : str

Examples

A string describing the name of the object to be found in the image.

>>> # Are there both cakes and gummy bears in the photo?
>>> def execute_command(image)->str:

>>>
>>>
>>>
>>>

image_patch = ImagePatch(image)

is_cake = image patch.exists("cake")
is_gummy_bear = image patch.exists("gummy bear")
return bool_to_yesno(is_cake and is_gummy_bear)

return len(self.find(object_name)) > 0

def 1lm_query(question: str) -> str:

Parameters

question: str

15

"""Answers a text question using GPT-3. The input question is always a formatted string with a variable in it.

and False otherwise. API SpeCIfleS
 Input and output types

» Docstrings to explain the purpose
of these functions in natural
language

« Examples that show how to use
these classes and their functions
(query-code pairs)

Only specifications, no full implement
* LLM context windows are limited

« Code generation is independent of
changes made to the module
implementation

the text question to ask. Must not contain any reference to ’'the image’ or ’‘the photo’, etc.

return Ulm_query(question)

Georgia
Gl" Tech.



Approach: Program Execution

» Python interpreter: logical operations
* Pretrained model APIs: perceptual operations

Query: Does that pancake look brown Execution

~~~~~~~~~~~~~~~

andround° pancake_patches = image_patch. Y
: find("pancake") ...verify property("pancake", "brown")
Generated code In: » pancake_patches[0] = {ImagePatch} » is_brown = {bool} True

def execute_command(image):
image_patch = ImagePatch(image)
pancake_patches = image_patch.find("pancake")
is_brown = pancake_patches[@].verify_property("pancake", "brown")
is_round = pancake_patches[@].verify_property("pancake", "round")
return bool_to_yesno(is_brown and is_round)

...verify property("pancake", round)
» is_round = {bool} True

» is_brown and is_round = {bool} True
Result: “yes”

Query: Are there water bottles to the right of Executon oo i
the bookcase that is made of wood? bookcase_patches= image patch. water_bottle patches = image_patch.
In: find("bookcase") find("water bottle")

» bookcase_patches[@] = {ImagePatch} » water_bottle_patches[0]

Generated code oo
def execute_command(image):
image_patch = ImagePatch(image)
bookcase_patches = image_patch.find("bookcase")
for bookcase_patch in bookcase_patches:
is_wood = bookcase_patch.verify property('"bookcase", "wood")
if is_wood:
water_bottle_patches = image_patch.find("water bottle")
for water_bottle_patch in water_bottle_patches:
if water_bottle_patch.horizontal_center > \
bookcase_patch.horizontal _center:
return "yes"
return "no" » is_wood = {bool} True

» bookcase_patches[@].
horizontal_center = {float} 239.0

» water_bottle_patches[0].
horizontal_center = {float} 608.5

.. .verify_property("bookcase", "wood") » water bottle_patch.horizontal center >

bookcase_patch.horizontal _center = !Jiil

16 return "o" {bool} True Result: “yes” 1

________________



Approach: Program Execution

 Pretrained Models
e GLIP: find, exists
MiDaS: compute_depth
BLIP-2: simple_query
X-VLM: verify_property, best_image_match, best_text_match
GPT-3: liIm_query, select_answer
Codex: code generation

Georgia
17 Gl" Tech.



Evaluations and Results



Evaluations and Results

 Defines 4 main tasks ranging from basic understanding to complex synthesis
« Each task is a "prerequisite” for following task

External-
knowledge based Video-based QA
VQA

Compositional
VOA

Visual Grounding

Georgia
" G.'I." Tech.



Overview of Modules

* find: image and noun --> identifies patches containing noun

« exists: image and noun --> identifies if noun exists in image

- verify_property: image, noun, and property --> identifies if noun has property in image
 best_image_match: image patches and noun --> returns image patch matching noun
 best_text_match: list of nouns and image --> returns noun that matches image

compute_depth: image patch --> median depth of patch

distance: image patches --> distance between patches

simple_query: short image/text questions that cannot be decomposed

lIm_query: queries requiring external knowledge

select_answer: textual information about scene and possible answers > best answer

Georgia
20 Gl" Tech.



Visual Grounding

» Requires spatial reasoning and object identification
* Modules provided:

o Find, exists, verify_property, IoU (%)
best_image_match, compute_depth, RefCOCO RefCOCO+
distance

 Evaluated on RefCOCO and
RefCOCO+
- Takeaways: OWL-VIT [38] 30.3 29.4
«n GLIP [31] 55.0 52.2

o Clearly outperforms zero-shot methods N |
Still far behind fine-tuned models ReCLIP [49] 586 60.5

© ViperGPT (ours) 72.0 67.0

o Expected result since this task focuses

on visual understanding instead of
reasoning

Georgia
21 Gl" Tech.



Compositional VQA

Requires breaking down complex questions into simpler components

 Modules added: Table 2. GQA Results. We report accuracy on the test-dev set.
o simple_query, best_text_match Accuracy (%) 1
» Evaluated on GQA dataset |
» Takeaways:
o Slightly better than BLIP-2
o E]eeiﬁg’g)é far behind all fine-tuned . BLIP-2 [30] 447
ViperGPT (ours) 48.1

o Some emphasis on reasoning,
but still largely focusing on

spatial understanding Q: Are there any cups to the left

of the tray on top of the table?
A: No

Drew A. Hudson and Christopher D. Manning. GQA: A New Dataset for Real-World Visua
Reasoning and Compositional Question Answering. 2019. Available i
at: https://arxiv.org/abs/1902.09506. Georgla

22 Tech.




External-Knowledge Based VQA

Requires querying external knowledge to reason about the image

« Modules added: Table 3. OK-VQA Results.

o llm_query Accuracy (%) 1
« Evaluated on OK-VQA dataset |
» Takeaways:

o Better than zero-shot and on-par with some fine-
tuned models

o Likely due to emphasis on reasoning & CoT

' ) ' PNP-VQA [52] 35.9
o Query: The real live version of this toy PICa [60] 43.3
- - g R ’
does what in the winter~ ﬁ BLIP-2 [30] 45.9
Generated code : Flamin g0 [1] 50.6
O e b ehC o) Execution ViperGPT (ours) 51.9
toy = image.simple_query("What is this toy?") » toy = {str} "bear"

result = Llm_query("The real live version of
{} does what in the winter?", toy) » guess = {str} "hibernate"

1t
return resu Result: “hibernate” Gr Georgia

23
BLIP-2 result: “ski” Tech.



Video-Based QA

24

Requires causal and temporal reasoning about the video
Modules added for this task:

o select_answer, VideoSegement Table 4. NExT-QA Results. Our method gets overall state-of-the-
Evaluated on multi pI e choice art results (including supervised models) on the hard split. “T”” and
NEXT- Q A dataset “C” stand for “temporal” and “causal” questions, respectively.

Accuracy (%) T
Takeaways:

Hard Split- T Hard Split - C  Full Set

o Achieves SoTA results, surpassing
fine-tuned methods

o Underscores importance of reasoning
in video understanding

o Only has perception for images, but
extrapolates to temporal and causal
contexts using frames relations

&{ ViperGPT (ours) 49.8 56.4 60.0

Georgia
Gl" Tech.



Video-Based QA

25

Query: What did the boy do after he dropped the
sparkles on the floor?

Generated code

def execute_command(video, question, possible_answers):
video_segment = VideoSegment(video)
drop_detected = False
for i, frame in enumerate(video_segment.frame_iterator()):
if frame.exists("boy") and frame.exists("sparkles") and \

frame.simple_query("is the boy dropping the sparkles?") == "yes":

drop_detected = True
break
if drop_detected:
index_frame = i + 1
else:
index_frame = video_segment.num_frames // 2
frame_of_interest = ImagePatch(video_segment, index_frame)
boys = frame_of_ interest.find("boy")
if len(boys) == 0:
boys = [frame_of_interest]
boy = boys[@]
caption = boy.simple_query("What is this?")
info = {
"Caption of frame after dropping the sparkles": caption,
b

answer = select_answer(info, question, possible_answers)
return answer

Execution

frame.exists("boy") and \

frame.exists("sparkles") and \

frame.simple_query("is the boy
dropping the sparkles?") == "yes":

» frame = {ImagePatch}

» i= {int} 25

 Loop to identify when the sparkles are dropped

-

________________

_______________

index_frame = i + 1

» index_frame = {int} 26

» frame_of_interest = {ImagePatch}

boys = frame_of_interest.find("boy")

» boy = {ImagePatch}

» caption = {str} "a child running
with fire in his hands"

» answer = {str} "pick it up"

Result: “Pickitup”

* |dentify the image patch of the boy and determine the action he takes

» Use action to select correct answer

Cr

Georgia
Tech.



Discussion



Emergent Capabilities — Real-World Usage

« Beyond benchmarks, Viper-GPT easily adapts to real-world queries
« Simple to add new modules with the provided framework

Query: What would the founder of the brand of the car on the left say to the founder of the brand of the car on the right?

def execute_command(image):
image_patch = ImagePatch(image)
car_patches = image_patch. find("car
car_patches.sort(key=lambda car: car.horizontal_center)
left_car = car_patches[@]
right_car = car_patches[-1]
left_car_brand = left_car.simple_query("What is the brand of this car?")
right_car brand = right_car.simple_query("What is the brand of this car?")
left_car_founder = Llm_query(f"Who is the founder of {left_car brand}?")
right_car founder = llm_query(f"who is the founder of {right_car_brand}?")
return Llm_query(f"What would {left_car_founder} say to {right_car_ founder}?")

car_patches. sort(. .

car_patches = -
image_patch. f1nd("car") ' v

e ' »left_car_brand=‘lamborghini’
| »right_car brand=‘ferrari’
L
» right_car_founder=‘Enzo Ferrari’

I
-'
1
I
1

a

Result: “Ferruccio Lamborghini might say, ‘It’s been an honor to be a rival of yours for so many years, Enzo.
May our cars continue to push each other to be better and faster!

" ”

» left_car_founder=‘Ferruccio Lamborghini’

Query: Return the two kids that are furthest from the woman right before she hugs the girl

27

def execute_command(video):
video_segment = VideoSegment(video)
hug_detected = False
for i, frame in enumerate(video_segment.frame_iterator()):
if frame.exists("woman") and frame.exists("girl") and \

>
>

frame.simple_query("Is the woman hugging the girl?") == "yes":
hug_detected = True
break

if hug_detected:

index_frame = i - 1
frame_of_interest = ImagePatch(video_segment, index_frame)
woman_patches = frame_of_interest.find("woman"
woman_patch = woman_patches[@]
kid_patches = frame_of_interest.find("kid")
kid_patches.sort(key=lambda kid: distance(kid, woman_patch))
kid_patch_1 = kid_patches[-1]
kid_patch_2 = kid_patches[-2]
return [kid_patch_1, kid_patch 2]

————————————

hug_detected=True

frame= » kid patches—

HII

sort(.. .distance..
» kid_patches=

bl

Result:

Cr

Georgia
Tech.



Emergent Capabilities - Intervention

 New method to evaluate importance of individual modules
o Cannot evaluate intermediate output --> no ground truth data
o Cannot compare accuracy between programs --> not all programs use the same modules

* Intervention: Substitute a module with a default value to measure performance
drop with nonfunctional module

 Analysis performed on RefCOCO:

Figure 7. Intervention. Relative decrease in mloU(%)
We analyze the impor- find
tance of various vision exists
modules and
in the gener-

verify property
best image match

compute depth

ated programs as mea- [ distance
sured by the drop in | sort
| >, <
mloU when t.hey are s PR,
- made nonfunctional. 70 -525 -35 -175 O iy Georgia
Tech



Emergent Capabilities — Context-Aware Responses

* Program can be adapted based on context provided as comments
 Important when considering different cultures, norms, and expectations

Query: Return the car that is on the correct lane

# Context: the picture was taken in the US
def execute_command(image):
cars = image.find("car")
for car in cars:
if car.horizontal _center > image.horizontal center:
return car

return None Result: None

# Context: the picture was taken in the UK
def execute_command(image):
cars = image.find("car")
for car in cars:
if car.horizontal_center < image.horizontal center:
return car
return None

Result: @
29

Georgia
Gl" Tech.



Limitations & Societal Implications

 Limitations: » Societal Implications

o Highly dependent on performance of pre- o Enhances interpretability of VLM reasoning
trained models—no ability to fine-tune for process, allowing for intermediate steps to
specific tasks be manually altered

o Produced code is interpretable, however not o Framework can be implemented at any
as simple as CoT which is easier for the scale with any models > ease of access to
public to understand more powerful VLM systems

o Programs generated can be overly complex o Inherits biases of pre-trained models it uses
or incorrect for complex tasks—difficult to (no inherent bias mitigation in the
find error without manual inspection framework)

Georgia
30 Gl" Tech.



Summary of Strengths and Weaknesses

 Strengths: « Weaknesses:

o Plug-and-Play system: can build modules o Performance is generally subpar
with any models available compared to fine-tuned models

o As better pre-trained models are created o Not many zero-shot models available for
(GPT, BLIP, etc.) performance increases comparison on some tasks (GQA and

o Outputted programs are interpretable by NExT-QA) and analysis is very shallow
humans for correction and general o Heavily dependent on capabilities of pre-
understanding trained models—areas that the pre-trained

o Achieves strong zero-shot results models struggle in will be reflected in the

compared to other zero-shot models compositional model

Georgia
. Gl" Tech.



Thank you!



	Slide 1: ViperGPT: Visual Inference via Python Execution for Reasoning Dídac Surís*, Sachit Menon*, Carl Vondrick Columbia University, ICCV, 2023
	Slide 2: Outline
	Slide 3: Problem Statement: VLM Reasoning Tasks
	Slide 4: Problem Statement
	Slide 5: Problem Statement: ViperGPT
	Slide 6: Related Works
	Slide 7: Related Works: Neural Module Networks
	Slide 8: Related Works: Automatic Module Integration Using LLMs
	Slide 9: Related Works: HuggingGPT
	Slide 10: Approach
	Slide 11: Approach: Overview
	Slide 12: Approach: Program Generation
	Slide 13: Approach: Modules - ImagePatch
	Slide 14: Approach: Modules - VideoSegment
	Slide 15: Approach: API
	Slide 16: Approach: Program Execution
	Slide 17: Approach: Program Execution
	Slide 18: Evaluations and Results
	Slide 19: Evaluations and Results
	Slide 20: Overview of Modules
	Slide 21: Visual Grounding
	Slide 22: Compositional VQA
	Slide 23: External-Knowledge Based VQA
	Slide 24: Video-Based QA
	Slide 25: Video-Based QA 
	Slide 26: Discussion
	Slide 27: Emergent Capabilities – Real-World Usage
	Slide 28: Emergent Capabilities - Intervention
	Slide 29: Emergent Capabilities – Context-Aware Responses
	Slide 30: Limitations & Societal Implications
	Slide 31: Summary of Strengths and Weaknesses
	Slide 32: Thank you!

