
ViperGPT: Visual Inference via
Python Execution for Reasoning
Dídac Surís*, Sachit Menon*, Carl Vondrick
Columbia University, ICCV, 2023

Presented by Chengyue Huang, Aditya Chandaliya

• Problem Statement

• Related Works

• Approach

• Experiments & Results

• Limitations, Societal Implications

• Summary of Strengths, Weaknesses, Relationship to Other Papers

Outline

2

Problem Statement: VLM Reasoning Tasks

• Visual Grounding
• Identifying the bounding box in an image

that corresponds best to a given query.

• Compositional Image Question
Answering
• Decomposing complex questions into

simpler tasks.

• External Knowledge-dependent Image
Question Answering
• Many questions about images can only be

answered correctly by integrating outside
knowledge about the world.

3

Query: pizza front

Query: Does that

pancake look brown

and round?

Query: The real

live version of this

toy does what in

the winter?

Problem Statement

• Query: How many muffins can each
kid have for it to be fair?

1) Find the children and the muffins
in the image

2) Count how many there are of each

3) Reason that ‘fair’ implies an even
split, hence divide.

End-to-end models do not inherently
leverage compositional reasoning.

• They fail to make use of
• Advances in fundamental vision tasks at

different steps

• Computers can perform mathematical
operations (e.g., division) easily without
machine learning

• Uninterpretable decisions
• No way to audit the result of each step to

diagnose failure

• Model becomes increasingly untenable as
the data and computation grow

4

Problem Statement: ViperGPT

• Interpretability
• Explicit code function calls for each step

• Intermediate values that can be inspected

• Flexibility: Easily incorporate any vision or language module

• Composability: Decompose tasks into smaller sub-tasks performed step-by-step

• Training-free: Recombine existing models in new ways without additional training

• Generalizability: Unify all tasks into one system

5

Related Works

Related Works: Neural Module Networks

• Intuition: decompose tasks into simpler modules
• Training end-to-end with modules rearranged in different ways for different problems

• Each module would learn their appropriate function

• Cons
• Expensive supervision in the form of programs → domain-limited

• End-to-end training: learn the perceptual models jointly with the program generator → fail to
produce the intended modular structure

Andreas, Jacob, et al. "Neural module networks." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

Johnson, Justin, et al. "Inferring and executing programs for visual reasoning." Proceedings of the IEEE international conference on computer vision. 2017.

7

Related Works: Automatic Module Integration Using LLMs

ViperGPT: directly generate
unrestricted Python code

VISPROG
• Generates a list of

pseudocode instructions
which needs further
interpretation

Very similar ideas. VISPROG
was ~4 months earlier but
went unnoticed due to CVPR
publicity restrictions.

Gupta, Tanmay, and Aniruddha Kembhavi. "Visual programming: Compositional visual reasoning without training." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.

8

Related Works: HuggingGPT

9

• 4 step process:

o Decompose request into tasks

with dependencies

o Assign models for each task

o Execute tasks via

HuggingFace

o Synthesize information into

one response

• Similar reasoning approach to

ViperGPT, but with more tools

• Structured natural language

instead of code

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging Face. 2023. Available at: https://arxiv.org/abs/2303.17580.

Approach

Approach: Overview

• ViperGPT is a framework for solving complex
visual queries programmatically.

• Inputs
• Visual input 𝑥: image / videos
• Textual query 𝑞: questions or descriptions

• Output 𝑟: any type (e.g., text / image crops)

• Program generator 𝜋: 𝑧 = 𝜋 𝑞
• 𝜋: LLMs
• 𝑧 : Python code

• Execution engine 𝜙: 𝑟 = 𝜙(𝑥, 𝑧)
• Python Interpreter
• API Implementation

11

Approach: Program Generation

• Program Generator: GPT-3 Codex
• Obviates the need for task-specific

training for program generation.

• Input: a sequence of code text
• Prompt: API specification

• Query for the sample under consideration

• Output: Python function definition as
a string.

12

Approach: Modules - ImagePatch

• Each module is
implemented as
a class method.

13

Approach: Modules - VideoSegment

• Each module is
implemented as
a class method.

14

Approach: API

API specifies

• Input and output types

• Docstrings to explain the purpose
of these functions in natural
language

• Examples that show how to use
these classes and their functions
(query-code pairs)

Only specifications, no full implement

• LLM context windows are limited

• Code generation is independent of
changes made to the module
implementation

15

Approach: Program Execution

• Python interpreter: logical operations

• Pretrained model APIs: perceptual operations

16

Approach: Program Execution

• Pretrained Models
• GLIP: find, exists

• MiDaS: compute_depth

• BLIP-2: simple_query

• X-VLM: verify_property, best_image_match, best_text_match

• GPT-3: llm_query, select_answer

• Codex: code generation

17

Evaluations and Results

Evaluations and Results

• Defines 4 main tasks ranging from basic understanding to complex synthesis

• Each task is a "prerequisite" for following task

Visual Grounding
Compositional

VQA

External-

knowledge based

VQA

Video-based QA

19

Overview of Modules

• find: image and noun --> identifies patches containing noun

• exists: image and noun --> identifies if noun exists in image

• verify_property: image, noun, and property --> identifies if noun has property in image

• best_image_match: image patches and noun --> returns image patch matching noun

• best_text_match: list of nouns and image --> returns noun that matches image

• compute_depth: image patch --> median depth of patch

• distance: image patches --> distance between patches

• simple_query: short image/text questions that cannot be decomposed

• llm_query: queries requiring external knowledge

• select_answer: textual information about scene and possible answers --> best answer

20

Visual Grounding

• Requires spatial reasoning and object identification

• Modules provided:
o Find, exists, verify_property,

best_image_match, compute_depth,
distance

• Evaluated on RefCOCO and
RefCOCO+

• Takeaways:
o Clearly outperforms zero-shot methods

o Still far behind fine-tuned models

o Expected result since this task focuses
on visual understanding instead of
reasoning

21

Compositional VQA

• Requires breaking down complex questions into simpler components

• Modules added:
o simple_query, best_text_match

• Evaluated on GQA dataset

• Takeaways:
o Slightly better than BLIP-2

o Decently far behind all fine-tuned
methods

o Some emphasis on reasoning,
but still largely focusing on
spatial understanding Q: Are there any cups to the left

of the tray on top of the table?
A: No

22

Drew A. Hudson and Christopher D. Manning. GQA: A New Dataset for Real-World Visual

Reasoning and Compositional Question Answering. 2019. Available

at: https://arxiv.org/abs/1902.09506.

External-Knowledge Based VQA

• Requires querying external knowledge to reason about the image

• Modules added:
o llm_query

• Evaluated on OK-VQA dataset

• Takeaways:
o Better than zero-shot and on-par with some fine-

tuned models

o Likely due to emphasis on reasoning & CoT

• Example:

23

Video-Based QA

• Requires causal and temporal reasoning about the video

• Modules added for this task:
o select_answer, VideoSegement

• Evaluated on multiple choice
NExT-QA dataset

• Takeaways:
o Achieves SoTA results, surpassing

fine-tuned methods

o Underscores importance of reasoning
in video understanding

o Only has perception for images, but
extrapolates to temporal and causal
contexts using frames relations

24

Video-Based QA

• Loop to identify when the sparkles are dropped

• Identify the image patch of the boy and determine the action he takes

• Use action to select correct answer25

Discussion

Emergent Capabilities – Real-World Usage

• Beyond benchmarks, Viper-GPT easily adapts to real-world queries

• Simple to add new modules with the provided framework

27

Emergent Capabilities - Intervention

• New method to evaluate importance of individual modules
o Cannot evaluate intermediate output --> no ground truth data

o Cannot compare accuracy between programs --> not all programs use the same modules

• Intervention: Substitute a module with a default value to measure performance
drop with nonfunctional module

• Analysis performed on RefCOCO:

28

Emergent Capabilities – Context-Aware Responses

• Program can be adapted based on context provided as comments

• Important when considering different cultures, norms, and expectations

29

Limitations & Societal Implications

• Limitations:

o Highly dependent on performance of pre-

trained models—no ability to fine-tune for

specific tasks

o Produced code is interpretable, however not

as simple as CoT which is easier for the

public to understand

o Programs generated can be overly complex

or incorrect for complex tasks—difficult to

find error without manual inspection

• Societal Implications

o Enhances interpretability of VLM reasoning

process, allowing for intermediate steps to

be manually altered

o Framework can be implemented at any

scale with any models --> ease of access to

more powerful VLM systems

o Inherits biases of pre-trained models it uses

(no inherent bias mitigation in the

framework)

30

Summary of Strengths and Weaknesses

• Strengths:

o Plug-and-Play system: can build modules

with any models available

o As better pre-trained models are created

(GPT, BLIP, etc.) performance increases

o Outputted programs are interpretable by

humans for correction and general

understanding

o Achieves strong zero-shot results

compared to other zero-shot models

• Weaknesses:

o Performance is generally subpar

compared to fine-tuned models

o Not many zero-shot models available for

comparison on some tasks (GQA and

NExT-QA) and analysis is very shallow

o Heavily dependent on capabilities of pre-

trained models—areas that the pre-trained

models struggle in will be reflected in the

compositional model

31

Thank you!

	Slide 1: ViperGPT: Visual Inference via Python Execution for Reasoning Dídac Surís*, Sachit Menon*, Carl Vondrick Columbia University, ICCV, 2023
	Slide 2: Outline
	Slide 3: Problem Statement: VLM Reasoning Tasks
	Slide 4: Problem Statement
	Slide 5: Problem Statement: ViperGPT
	Slide 6: Related Works
	Slide 7: Related Works: Neural Module Networks
	Slide 8: Related Works: Automatic Module Integration Using LLMs
	Slide 9: Related Works: HuggingGPT
	Slide 10: Approach
	Slide 11: Approach: Overview
	Slide 12: Approach: Program Generation
	Slide 13: Approach: Modules - ImagePatch
	Slide 14: Approach: Modules - VideoSegment
	Slide 15: Approach: API
	Slide 16: Approach: Program Execution
	Slide 17: Approach: Program Execution
	Slide 18: Evaluations and Results
	Slide 19: Evaluations and Results
	Slide 20: Overview of Modules
	Slide 21: Visual Grounding
	Slide 22: Compositional VQA
	Slide 23: External-Knowledge Based VQA
	Slide 24: Video-Based QA
	Slide 25: Video-Based QA
	Slide 26: Discussion
	Slide 27: Emergent Capabilities – Real-World Usage
	Slide 28: Emergent Capabilities - Intervention
	Slide 29: Emergent Capabilities – Context-Aware Responses
	Slide 30: Limitations & Societal Implications
	Slide 31: Summary of Strengths and Weaknesses
	Slide 32: Thank you!

