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Align data across all senses

Image -> Audio Audio -> Image Text -> Audio & Image

"Drums"
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Align data across all senses

Audio & Image -> Image Audio -> Image (Generation [1)

<)

Gr Georgia
[1]. Ramesh, Aditya, et al. "Hierarchical text-conditional image generation Tech.
with clip latents." arXiv preprint arXiv:2204.06125 1.2 (2022): 3.



But no paired data across all modalities

Text Image Sound Depth ...

"A dog"
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Link all modality data via images

IMAGEBIND [

Heat map
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Related Works: CLIP l'I- Image & Text

7

(1) Contrastive pre-training
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[1] Radford, Alec, et al. "Learning transferable visual models from natural language supervision."
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Related Works: Mining 12- Video from seed Images

Caption Seed Image Mined Videos

“Person throws
a pitch during a
game against

university”
similarity score
Multimodal Video Encoder $ Text Encoder
cr 2 ) ) )2 ) (v
iF Video Projection . i Audio Projection

FNEd HNaN ‘pop artst performs at

the festival in a city
RGB frame patches Audio spectrogram patches

. N s SSEE——L O __
“Lots of green [ r -

mountains , with i
clear blue sky e

above , and 2

shadows marking : %

the valleys” G AL Y

Georgia
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Related Works: AudioCLIP 8I- Audio & Image & Text

collection (~ 1.8 M & ~ 20 k evaluation set) of audible data organized into 527

cat” classes in a non-exclusive way. Each sample is a snippet up to 10 s long from a H
YouTube-video, defined by the corresponding ID and timings.

For this work, we acquired video frames in addition to audio tracks. Thus.
the AudioSet dataset became the glue between the vanilla CLIP framework H
and our tri-modal extension on top of it. In particular, audio tracks and the -~
respective class labels were used to perform image-to-audio transfer learning for m
the ESResNeXt model, and then, the extracted frames in addition to audio and
class names served as an input for the hybrid AudioCLIP model.

Georgia
9 [3] Guzhov, Andrey, et al. "Audioclip: Extending clip to image, text and audio." ICASSP 2022-2022 |IEEE International Conference on Acoustics, Speech and Signal &' TEChg
Processing (ICASSP). IEEE, 2022. '



Related Works: PointCLIP - PL & Image & Text

Classifier
Point | Cloud | Depth | Map of a [CLASS] | —> Textual —>
Encoder wrT Multi-view Predictions
t |
. o A1 .

. >

zero-shot classification. Their summation further comple- } | | fwe
ments the information of different perspectives to obtain an
overall understanding. The whole process of PointCLIP is

A, @y

3D Point Cloud . . . i
non-parametric for the “unseen” 3D dataset, which pairs e
| each point cloud with its category via CLIP’s pre-trained
» 2D knowledge and without any 3D training. ‘
‘ Liccoucr ' f3 JV;utr;-vtew
eatures :{$ :§® é),
TIT
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Related Works: PointCLIP 4I- PL & Image & Text
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on downstream tasks, we append a three-layer Multi-layer

1 ~ Perceptron (MLP) on top of PointCLIP, named inter-view

adapter, to further enhance its performance under few-shot
) T Zero-shot
_ Multi-view
Features S0 R

C
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Related Works: Binding Touch 191- Tactile & Image & Text

12 [5] Yang, Fengyu, et al. "Binding touch to everything: Learning unified multimodal tactile representations." Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2024.

[ |
We denote {2, as the visual image domain and (); as

the tactile image domain. Thus, given B visual and touch

. pairs in a batch, {(v;,t;)}E,, where v; : Q, C RZ — R?
and t; : Q;, C R? — R’ we align a tactile embed-
ding Fr(t;) € R® with the pretrained visual embedding
Fyv(v;) € RS from [35] by maximizing the cosine similar-

< 1ty between corresponding visuo-tactile pairs. We optimize

Se this objective using InfoNCE loss [81] to match touches to
correct images:

! ::HV_——Z ) )

T exp(Fr(t) - Fo(v,)/7)

(1)
Image
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Related Works: Summary

To scale up the modality, there were two typical methods:

1. Separate encoder for each modality + paired data for all modalities

2. Only visual-text encoders + project other modality data to visual data

While In this work, we demonstrate its

emergent zero-shot generalization across
various modalities.

Georgia
13 Gl" Tech.



Approach

* The goal is to learn a single joint embedding space for all
modalities by using images to bind them together.

* |.e. Image as the linkage

et

A J n ‘ ) ))) Naturally Ali.gned IMAGEBIND ﬁ
Images Videos Text Audio Depth Thermal IMU Emergent Alignment \ ]
Web Image-Text n Depth Sensor Data Web Videos ")) Thermal Data Egocentric Videos ))) w A \

'
I
\ SN
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\ ' Py
\ I
\ I

Sheep basking in the sun

Figure 2. IMAGEBIND overview. Different modalities occur naturally aligned in different data sources, for instance images+text and
video+audio in web data, depth or thermal information with images, IMU data in videos captured with egocentric cameras, etc. IMAGE-
BIND links all these modalities in a common embedding space, enabling new emergent alignments and capabilities.
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Approach

* Modality encoder

q; = f(I;) and k; = g(M,;)

« Where | represents images, M is another modality
 Dataset: (image, text) pairs and (image, modality) pairs

15

Cr

Georgia
Tech.



Approach

* Modality encoder

q; = f(I;) and k; = g(M,;)

* Loss design

exp(q, ki /T)
exp(a; ki/7) + >, exp(ajk;/7)’

o InfoNCE loss to compare embeddings

o Tau as temperature to control concentration
o Symmetric loss Lz + L 1.

o j denotes negative examples

LI,M = — log

16
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Approach

* Image
o Depth and thermal image are treated in the same way, as 1-D image
= Convert depth into disparity maps for scale invariance.

Vision Transformer (ViT) Transformer Encoder
A
Lx
MLP
Head [ MLP

-

Transformer Encoder
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[class] embedding Linear Projection of Flattened Patches

* Extra learnable l I '
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Patches

17 OmniMAE: Single Model Masked Pretraining on Images and Videos.

* Animage is worth 16x16 words: Transformers for image recognition at scale
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Approach

* Videos

18

o How to address the temporal relations?
= Use 2 frame video clips sampled from 2 seconds

= |nflate the patch projection layer (using same encoder as image)

Inflated Inception-V1

Rec. Field: Rec. Field:
711,11 11,27.27

. [
Video — R Max-Pool - Inc.
Rec. Field:
23,7575
Hlnc J«—{ Inc. +—— Inc }—\—.~—[Inc
Rec. Field: Rec. Field:
59,219,219 99,539,539

|- [ Inc. } [ Inc. Jl “—PrediCtiOHS

Inception Module (Inc.)
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Approach

« Audio
o Encoding audio and convert a 2
second audio sampled at 16kHz
into spectrograms using 128
mel-spectrogram bins.
o Spectrogram:
= X-axis time
= Y-axis frequency
o Design choices:
= Qverlap size
= Patch size
= ImageNet pretraining

"’ ST: Audio Spectrogram Transformer.

» |.inear H» Output

Transformer Encoder
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Approach

 IMU inertial measurement unit

o Usually include accelerometer and gyroscope.
Measure linear acceleration and angular rate

oX,Y,and Z axes. 5 second clips resulting in 2K
time step IMU readings which are projected
using a 1D convolution with a kernel size of 8

o All modality is projected by a linear layer

Georgia

“ ST Audio Spectrogram Transformer. Gr Tech.



Downstream Tasks

Training & Validation. Contains
2,084,320, 10-second video clips from YouTube, labeled across

Dataset Task #cls Metric #test 632 audio event classes, covering diverse human, animal,
ical, and ' tal ds.
Audioset Audio-only (AS-A) [19] | Audiocls. 527 mAP 19048 oo Anc EnvITOnmEntaSetngs -
ESC 5-folds (ESC) [59] Audiocls. 50 Acc 400 . - Validation. 200k 10-second video clips,
) annotated with 209 sound classes consisting of human actions,
Clotho (Clotho) [17] Retrieval - Recall 1045 sound-emitting objectis and human object interactions.
AudioCaps (AudioCaps) [37] ReU:ieval - Recall 796 . Features audio clips from Freesound with
VGGSound (VGGS) [8] Audiocls. 309 Acc 14073 2,893 development and 1,045 test clips, each paired with 5 text
SUN Depth-only (SUN-D) [69] Scenecls. 19 Acc 4660 descriptions, designed for text-to-audio retrieval tasks.
NYU-v2 Depth-only (NYU-D) [66]| Scenecls. 10 Acc 653 : Training & Validation. Includes over
( ) [32] Personcls. 2  Acc 15809 51,0%0 (\j(?uTube audiodr_:lips p_aireld with human-written captions,
EgodD (EgodD) [23] Scenario cls. 108 Acc 68865 intended for text-to-audio retrieval.
* SUN-D<image, depth>:Training & Validation Consists of 10,335
. . . depth images across 19 scene classes, focused on depth-based
Table 1. Emergent zero-shot classification datasets for audio, chne C|agsiﬁcation_ P
depth, , and Inertial Measurement Unit (IMU) modalities. . Contains 15,809 thermal images in low-

light conditions. Collected in an outdoor setting using fixed
cameras observing street scenes.

« Ego4D <video, IMU>: Offers 3,000 hours of egocentric video
footage, labeled into 108 scenario classes, with multimodal data
including IMU readings for scenario classification tasks.

Georgia
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Training Details

e LLVIP: Crop out pedestrian bounding boxes and random
background bounding boxes.
- Person: [‘person’, ‘man’, ‘woman’, ‘people’]
- Background [‘street’, ‘road’, ‘car’, ‘light’, ‘tree’]

e Ego4D: Scenario classification with 108 unique scenario
labels,Activities such as “cooking a meal,” “gardening
work outdoors,

n u

riding a bike,” and “cleaning a room.”

o )\ DAax harlina o)) Qaa wavae HNKavhaard tunina s\ ClAasl alarm

22

00 Meta Al

Emergent Zero-Shot vs Zero-Shot (Audio
cls.)

« Zero-Shot: Direct paired training — <text,
audio>

« Emergent Zero-Shot: No direct paired
training - <text, image>, <image, audio>
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Training Details

Image/video RGB/2-frame clips Pretrained ViT- Frozen
H 630M params

Text - OpenCLIP Frozen

302M params

Audio 2D mel-spectograms VIiT-B Updated

Thermal 1-channel Image VIT-S Updated

Depth 1-channel Image VIT-S Updated

IMU 6xT tensor Updated

Georgia
23 GI' Tech.



Zero-shot Classification

24

£

Vi o) »

INIK P365 K400 MSR-VTT | NYU-D SUN-D AS-A VGGS ESC Egod4D

Random 0.1 0.27 0.25 0.1 10.0 5.26 0.62 0.32 2.75 50.0 0.9
IMAGEBIND 77.7 45.4 50.0 36.1 54.0 35. 17.6 278 66.9 63.4 25.0
Text Paired - - - - 41.9* 25.4* | 28.41[27] - 68.67 [27] - -
Absolute SOTA | 91.0[82] 60.7 [67] | 89.9[80] 57.7[79] |76.7[21] 64.9[21]|49.6[39] 52.5[36] 97.0[9] - -

Random: Performance without learned associations,
showing baseline results with no alignment between

modalities.

Text Paired: paired text data for that modality

Absolute SOTA: Uses additional supervision, model

ensembles

e Strong performance on non-visual
modalities such as audio and IMU

e Overall, IMAGEBIND shows strong
emergent zero-shot performance.

Cr
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Comparison to prior work

Clotho AudioCaps ESC

Emergent
R@1 R@10|R@1 R@10|Top-1

Uses audio and text supervision

AudioCLIP [27] | |- - | - _ | 68.6
Uses audio and text loss

AVFIC [51] | | 30 175 ‘ 8.7 3717 |

No audio and text supervision

IMAGEBIND | v |60 284 |93 423|669
Supervised

AVFIC finetuned [51] 84 38.6 i

ARNLQ [53] 126 454 (243 721

Table 3. Emergent zero-shot audio retrieval and classification.

25

IMAGEBIND outperforms AVFIC on audio-text

retrieval tasks, achieving double the performance

on the Clotho dataset
Matches performance with AudioCLIP’s on ESC

Modality | Emergent MSR-VTT

R@]1 R@5 R@10
MIL-NCE [49] Vv 8.6 169 258
SupportSet [57] Vv 104 222 30.0
FIT [5] Vv 154 336 44.1
AVFIC [51] A+V 194 395 50.3
IMAGEBIND A v 6.8 185 272
IMAGEBIND A+V 36.8 61.8 70.0

Table 4. Zero-shot text based retrieval on MSR-VTT 1K-A.

* IMAGEBIND performs strongly in audio-only
retrieval

« Combining audio and video modalities further
Improves retrieval accuracy.

Georgia
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Few-shot classification

e Setup: Evaluated on ESC (audio) and SUN (depth) datasets, using k-shot samples
per class where k={1, 2, 4, 8}.

* Training Approach: Encoder parameters were frozen; a linear classifier was trained
for few-shot learning.

40
L4 AUdio: 201 -‘--"""'"-—_—_‘IJ L
e Comparison Model: AudioMAE (self-supervised and supervised) with ViT- B § * / Z 30
audio encoder for learning audio features. = 60 =
= a
e Performance: ImageBind outperforms AudioMAE on audio feature learning. £ g 20
) W
e . . .. . w1 == IMAGEBIND
e Training Details: ESC dataset using AdamW optimizer (learning rate = 1.6 x - AudioMAE [77] -©- IMAGEBIND
1073, weight decay =0.05) for 50 epochs. 20 Supervised [77] 10F MultiMAE [4]
: 0 1 2 4 8 0 1 2 4 8
* Depth: # shots per class # shots per class
e Comparison Model: MultiMAE with ViT-B/16 encoder for depth feature
learning. Figure 3. Few-shot classification on audio and depth. We report

e Performance: ImageBind outperforms MultiMAE on depth features.

e Training Details: SUN dataset using AdamW optimizer (learning rate = 1072, no
weight decay) for 60 epochs.

26
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Ablation Study — Scaling the Image Encoder

« Experiments with different image '#
encoder sizes (ViT-B, VIT-L, ViT-H) to + —~ 64|
see the effect on performance. - =
: .. -] [ I
« Focus on image representation impact, E v 62
other modality encoders (e.g., depth, ' - A , ' -
audio) are kept at a fixed size. VITB VitL - vilH VIFB VL.  ViTH
- Larger image encoders lead to better + 62 - + 24 F
emergent zero-shot accuracy o, a 2
E 60 - -g 20 -
S ok
— 58 [ l l = 13 l l
VIiTB ViT-L  ViT-H VIiTB ViT-L  ViT-H

Figure 6. Scaling the image encoder size while keeping the other

Georgia
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Applications of Emergent Capabilities

o < @%

Without re-training, we can ‘upgrade’ existing vision models
that use CLIP embeddings to use IMAGEBIND embeddings
from other modalities such as audio.

* Multimodal embedding space arithmetic: add together
iImage and audio embeddings and retrieve the new image

* Upgrading text-based detectors to audio-based: replace
CLIP-based ‘class’ (text) embeddings with IMAGEBIND’s
audio embeddings.

* Upgrading text-based diffusion models to audio-based:
replace prompt embeddings by ImageBind's embeddings

l

3) Audio to Image Generation

=

o Dog barking o) Sea waves W) Keyboard typing * Clock alarm

Figure 5. Object detection with audio queries. Simply replacing

: ' ‘ Georgia
28 Gl" Tech.




Training details

Text query: "Cooking a meal

LA ” ‘l \l| )’JJ‘ lI 'J M, o
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Text query: "A person doing gardening work outdoors™

I
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a5 f' ' I\
oz
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o pi séc .3 ] 1ne L300 e Ay

Yigure 7. IMU retrievals. Given a text query, we show some
MU retrievals and corresponding video frames.

3-channel Accelerometer and Gyroscope recording,
29 matches the text query.

Config AS SUN LIVIP  EgodD
Vision encoder ViT-Huge
embedding dim. 768 384 768 512
number of heads 12 8 12 8
number of layers 12 12 12 6
Optimizer AdamW
Optimizer Momentum B = 0.9, 8, = 0.95
Peak learning rate 1.6e-3 1.6¢-3 Se-4 S5e-4
Weight decay 0.2 0.2 0.05 0.5
Batch size 2048 512 512 512
Gradient clipping 1.0 1.0 5.0 1.0
Warmup epochs
Sample replication 1.25 50 25 1.0
Total epochs 64 64 64 8
Stoch. Depth [29] 0.1 0.0 0.0 0.7
Temperature 0.05 0.2 0.1 0.2
Augmentations:
RandomResizedCrop
size S 224px Z
interpolation = Bilinear  Bilinear S
RandomHorizontalFlip o p=05 p=05 =
RandomErase - p=0.25 p=0.25 -
RandAugment - 9/0.5 9/0.5 -
Color Jitter - 0.4 0.4 -
Frequency masking 12 - - -

Table 9. Pretraining hyperparameters

Cr
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Ablation Study — Training Loss and Architecture

a. Fixed Temperature: Fixed temperature in
contrastive loss outperforms a learnable one across
modalities.

b. Projection Head: Linear projection head is better
than MLP for depth and audio embeddings.

c. Training Duration: Longer training boosts zero-shot
classification for all modalities.

d. Image Augmentation: Strong augmentation aids
depth classification; Basic augmentation helps
audio.

e.f. Spatial Alignment: Aligned image and depth crops
improve performance; RandErase 1 is crucial for depth.

g.h. Temporal Alignment: Aligned audio and video
enhance performance; frequency augmentation slightly
helps audio.

Temp — |Learn 0.05 0.07 0.2 1.0

SUN-D | 24.1 27.0 27.3 26.7 28.0
ESC | 54.8 56.7 52.4 454 243

(a) Temperature for loss.
Spatial align — ‘ None Aligned
SUN-D  [160 267
(e) Spatial alignment of depth.

Epochs —| 16 32 64

SUN-D (26.7 27.9 299
ESC  |56.7 61.3 62.9

(c) Training epochs.
Temporal align— ‘NDIIE Aligned

ESC 557 567

(g) Temporal alignment of audio.

[1]. Zhong, Zhun, et al. "Random erasing data augmentation." Proceedings of the AAAI conference on artificial intelligence. Vol. 34. No. 07. 2020.

Proj head — |Linear MLP

SUN-D 26.7 26.5
ESC 56.7 51.0
(b) Projection Head.

Data aug — |None RandErase

SUN-D [242 267
(f) Depth data aug.

Data aug — ‘Basic Strong

SUN-D |254 26.7
ESC 56.7 22.6

(d) Data aug for image.

Data aug — ‘Basic +Freq mask
ESC  [565 567
(h) Audio data aug.

Georgia
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Ablation Study — Training Loss and Architecture

e Capacity of the audio and depth encoders: A

) Audio Encoder (ESC) Depth Encoder (SUN
smaller Depth encoder improves performance udio Encoder (ESC) Depth Encoder (SUN)

VIS ViTB |ViFS  ViT-B

Image Encoder

presumably because of the relatively small size of ViLB 573 567 307 267
the dataset. ViT-H ‘ 54.8 60.3 ‘ 333 29.5
* Effect of batch size: batch size can vary across Table 6. Capacity of the audio and depth encoders and their
modalities depending on the size of pretraining
datasets.

Batchsize » | 512 1k 2k 4k

NYU-D ‘ 473 46.5 430 399
o We use image-paired data to align and train ESC 394 539 36.7 53.9
text, audio, and depth encoders

* ImageBind to evaluate Pretrained Vision Model:

Table 7. Effect of scaling batch size. We found the optimal batch
o DINO model is better at emergent zero-shot
classification on both depth and audio

modalities. |INIK|VGGS ESC|SUN-D NYU-D

DINO[6]| 644 | 17.2 44.7| 26.8 48.8
DeiT [72]| 7447 | 9.6 25.0| 25.2 48.0

Table 8. IMAGEBIND as an evaluation tool. We initialize (and

Georgia
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Summary of Strengths, Weaknesses

Strength:

« Multimodal Alignment  Enrich Image Alignment Loss:

- Emergent zero-shot capabilities using othe.r .allgan]e.nt data.
. Upgrade existing models without ~ * Task-Specific Training: Implement
additional training training on targeted downstream tasks,
like object detection.

 New Evaluation Benchmarks: better

o assess emergent zero-shot and cross-
* Limited benchmark modal capabilities.

« Underperform task-
specific model

Weakness:

Georgia
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Zero-shot Capabilities of Binding Touch 8

\
(Zero-shot Touch Understandmg\ i Cross-modal Retrieval ([ Zero-shot Image Synthesis with Touch
| :
Inputtouch  Text prompts: : Rofleh - FiEis i Input touch - Input touch
N "Itis '
[ CLASS ] touching
the string
’ S 5 f a guitar.”
uitar string Guitar || ©' 9
\ g
( Touch-LLM =
Can you tell me materials and hardness @ R R ' Original |
of objects in the touch image? \_ elerence k= e 2
Reference /
s | & ;
cosine ﬂsimilarity frce lnPUtUCh (go ) X-to-Touch Generation il
Input Generated Input Generated

touch text touch

§ "The surface
© : Q of densely
o )  The materials of the objects in the woven or
| [ touch image are likely to be rocks, or looped
stones, which is a hard and durable. carpet.

K Score A i X

Figure 1. Putting touch “in touch” with other modalities. We show that a variety of tactile sensing tasks, ranging from touch image
understanding to image synthesis with touch, can be solved zero-shot by aligning touch to pretrained multimodal models, extending previous
approaches on work on other modalities [35]. Our learned model can be applied to various vision-based tactile sensors and simulators (e.g.,
GelSight, DIGIT, Taxim, and Tacto). For visualization purposes, we show the corresponding visual signal (labeled “reference”) for each
touch signal, even though it is not used by the model.

Georgia
33 [5] Yang, Fengyu, et al. "Binding touch to everything: Learning unified multimodal tactile representations." Proceedings of the IEEE/CVF Conference on Computer Vision &' TEChg
and Pattern Recognition. 2024. )
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Image
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Contrastive loss [

_/ Binding space

Figure 3. Method overview.%e align our touch embedding with a
pre-trained image embedding derived from large-scale vision lan-
guage data, using sensor-specific tokens for multi-sensor training.

Sensor Token of Binding Touch bl

Specifically, we introduce a set of learnable sensor-
specific tokens {s;}r_,, where s, € RU*P| to capture
specific details for each senor, e.g., calibration and back-
ground color in touch images, so that the remaining model
capacity can be used to learn common knowledge across
different type of touch sensors, such as texture and geome-
try. Here, K represents the number of sensors we train on,
L is the number of sensor-specific tokens for each sensor,
and D is the token dimension. For the given touch image
t;, and its corresponding tactile sensor tokens s¢,, we ap-
pend these sensor-specific tokens as prefixes to touch image
patch tokens and then encode them with our touch encoder
resulting in the final embedding F(t;. s¢,) (Fig. 3). For our
contrastive vision-touch pretraining, we optimize:

Ly = — eXP(FT(t st,) - Fv(vi)/7) ,
=v="-3 ; > =1 exp(Fr(ti,se,) - Fv(vy)/7)
(3)

34 [5] Yang, Fengyu, et al. "Binding touch to everything: Learning unified multimodal tactile representations.” Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2024.
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In-batch Data Samplina of Binding Touch 1]

In-batch data sampling. We found that batch sampling
strategy [18] plays an important role when we train with
data, acquired by multiple touch sensors, using contrastive
learning. The model will under-perform if we randomly

sample from each data source [ 1 13] which results in a surplus >0
of easy negatives due to the domain gap between different ::
sensors. Therefore, we design a batch sampling strategy to 2.
guarantee that o percent of training examples in a batch are 3 4o
sampled from the same datasets. Given that our dataset D Y 40
1s the union over N datasets collected with diverse tactile g -
sensors D = Une{1,2,...,N} D,,, the probability of selecting ® 361
a given dataset [J,, to sample from is defined as: 34
D | *%70.00 0.25 0.30 0.75 1.00
Pn = —= , (4) | | |
Zm:1 ”Dm || Figure 6. Effect of o for 1n-b.atch- sampling. We compare the
average zero-shot material classification accuracy from six datasets
where || - || denotes cardinality. D, denotes the selected using different o of 0, 0.5, 0.75, 1.

dataset from which we perform uniform random sampling
to yield o - B examples; the rest (1 — o) - B examples are
uniformly sampled from other datasets, i.e., D \ D,, where
Georgia

35 [5] Yang, Fengyu, et al. "Binding touch to everything: Learning unified multimodal tactile representations.” Proceedings of the IEEE/CVF Conference on Computer Vision &' Tech
and Pattern Recognition. 2024. '
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