ViT-Lens: Towards Omnimodal Representations

Weixian Lei, Yixiao Ge, Kun Yi, Jianfeng Zhang, Difei Gao, Dylan Sun, Yuying Ge, Ying Shan, Mike Zheng Shou CVPR 2024

Presenters: Zoe Fowler and Ghazal Kaviani

Outline

- Problem Statement
- Related Works
- Approach
- Experiments & Results
- Limitations, Societal Implications
- Summary of Strengths, Weaknesses, Relationship to Other Papers

Problem Statement

Omni-modal representation learning by perceiving novel modalities

Human perception and physical world is inherently multi-modal

Available data for building AI models:

- Rich resource data:
 - $\circ\,$ Text , Image , Video , Audio
- Low resource data
 - $\,\circ\,$ Tactile, EMG, 3D point cloud, ...

How to integrate low resource data with large scale models?

• Modality specific lens to project any-modal signals to an intermediate embedding space

Vision Language models (VLMs)

Embed visual and textual representations into a shared space

CLIP

Flamingo

CoCa

Align

Multimodal Foundation Models(MFMs)

Multi-modal Pre-training

... PN

13.PN

T2.PN

T3.PN

TN.P

>>>

ULIP

Georgia

Joint training across multiple modalities

Sheep basking in the sun

AudioCLIP

IMAGEBIND

Multimodal Foundation Models(MFMs)

Unified Encoder

Meta-Transformer

ONE-PEACE

ONE-PEACE

- Modality Adaptors:
 - A module converting different raw signals into unified features
 - Adapters do not interact with each other
 - The backbone can change (CNN, RNN, Transformer)
- Modality Fusion encoder:
 - A transformer block with shared self attention layer and modality-specific feedforward network.
- Sharing separated architecture enables submodality branches
 Scaling-friendly

- Pretrain Tasks:
 - Cross-Modal Contrastive Learning: aligns the semantic spaces of different modalities

$$\mathcal{L}_{CL} = -\frac{1}{2N} \sum_{i=1}^{N} (\log \frac{\exp(s_i^1 s_i^2 / \sigma)}{\sum_{j=1}^{N} \exp(s_i^1 s_j^2 / \sigma)} + \log \frac{\exp(s_i^1 s_i^2 / \sigma)}{\sum_{j=1}^{N} \exp(s_j^1 s_i^2 / \sigma)}$$

• Intra-Modal Denoising Contrastive Learning: emphasis on the learning of fine-grained details within modalities

$$\mathcal{L}_{DCL} = -\frac{1}{N\hat{N}} \sum_{i=1}^{N} \sum_{j=1}^{\hat{N}} \log \frac{\exp(\hat{\boldsymbol{h}}_{ij} \cdot \operatorname{sg}(\boldsymbol{h}_{ij})/\tau)}{\sum_{m=1}^{N} \sum_{n=1}^{N} \exp(\hat{\boldsymbol{h}}_{ij} \cdot \operatorname{sg}(\boldsymbol{h}_{mn})/\tau)}$$

Meta-Transformer

- Tokenizer:
 - Data to Sequence tokenizer via meta scheme
- Modality-agnostic encode:
 - A ViT pretrained on LAION-2B dataset with contrastive learning

- Task-specific head $h(.; \theta_h)$:
 - Consist of MLPs
- Objective function:

$$\hat{\boldsymbol{y}} = \mathcal{F}(\boldsymbol{x}; \theta^*) = h \circ g \circ f(\boldsymbol{x}), \quad \theta^* = \operatorname*{arg\,min}_{\theta} \mathcal{L}(\hat{y}, y)$$

(a) Meta Scheme

EEG

Tactile

Leveraging pre-trained large-scale model for low-resource data modalities

Modality Embedding Module: 1. pre-defined space Align Raw data modality into token embeddings Module is modality-specific. E.g. Audio to spectrogram, tactile to spatial map Foundation patches of size $P \times P$ Image/Depth P = 16 for VIT-LENS-B P = 14 for VIT-LENS-L Model(s) 2 frame clip, patches of size 2xPxP Video Construct local patches by sampling 512 sub-clouds, each comprising 32 points. via Farthest Point Sampling Point-bert [1] approach Point cloud (FPS) and the k-Nearest Neighbors (kNN) algorithm. B 1 *∞*... & Anchor Convert an audio with duration of t to Audio Text/Image/ spectrogram dimension of 128 × 100t

truncated into a common length of 512

and embed using Conv1D

treated similarly to RGB images

Pretrained ViT

Lens

ModEmbed

New Modality Dat

B

[1] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training 3d point cloud transformers with masked point modeling. In CVPR, 2022.

Leveraging pre-trained large-scale model for low-resource data modalities

2. Modality-lens:

- Convert a sensory data from *ModEmbed* into a format that the pretrained encoder (ViT) can interpret
- Self-Attention Blocks (A) for image-like data
- Iterative Cross-Self-Attention Blocks (B) for lengthy sequential data

	⁹ 3D Point Cloud	Depth	H Audio	le Tactile	FEEG
ModEmbed ►	Mini PointNet	PatchEmbed	PatchEmbed	PatchEmbed	Conv1D
	Iter-CS-Attn	S-Attn	Iter-CS-Attn	S-Attn	Iter-CS-Attn
Lens Config 🕨	N = 4, M = 1	N = 4	N = 2, M = 3	N = 4	N = 1, M = 1
	√tie weights	CLIP-ViT Block.1-4 Init	-	CLIP-ViT Block.1-4 Init	-

Leveraging pre-trained large-scale model for low-resource data modalities

- 3. Unified Modality Encoder:
 - Frozen pre-trained ViT model
 - Embeds each modality to a unified feature space

	¹⁹ 3D Point Cloud	Depth	W Audio	le Tactile	[₩] EEG
Pretrained ViT	CLIP-ViT	CLIP-ViT	CLIP-ViT	CLIP-ViT	CLIP-ViT
Config	Block.1-12	Block.5-12	Block.1-12	Block.5-12	Block.1-12

Leveraging pre-trained large-scale model for low-resource data modalities

- 4. Alignment with Anchor Modality:
 - Maximizing the similarity between the representations of the new modality and its corresponding anchor modality while minimizing the similarity with unrelated anchor data

E.g.: **EEG signal paired with a text description**, and ViT-Lens learns to bring the EEG embedding close to the text embedding

Training Objective:

$$\begin{split} \mathcal{L} &= -\frac{1}{2B|\mathcal{A}|} \sum_{i=1}^{B} \sum_{k=1}^{|\mathcal{A}|} \left(\log \frac{\exp(h_i^X \cdot h_i^{A_k} / \tau)}{\sum_j \exp(h_i^X \cdot h_j^{A_k} / \tau)} \right. \\ &+ \log \frac{\exp(h_i^{A_k} \cdot h_i^X / \tau)}{\sum_j \exp(h_i^{A_k} \cdot h_j^X / \tau)} \right), \end{split}$$

Georaia

Integrating ViT-lens into other MFMs

ViT-lens module can be plugged in place of the image-encoder only foundation model without further instruct-following training.

- (A) A multimodal foundation model with image encoder
- (B) Well trained Lenses for different modalities

MFM integration Steps

- 1. Select an MFM (e.g., InstructBLIP or SEED)
- 2. Take the trained Encoder (CLIP-ViT) as modality encoder for ViT-lens
- 3. Tune the *ModEmbed* and *lens* parameter (fine-tuning step) for alignment
- 4. Take the tuned *ModEmbed* and *lens* module add it directly to the pretrained MFM (inference step)

Handle inputs of various modality without specific instruction following

MFM integration with a LLM

Enabling a LLM to handle 3D points

Experiments: Datasets used for Evaluation

Dataset	Task	#cls	Metric	#test
ModelNet40(MN40) [90]	3D shape cls	40	Acc	2,468
Objaverse-LVIS(O-LVIS) [17]	3D shape cls	1,156	Acc	46,832
ScanObjectNN(SONN) [85]	3D shape cls	15	Acc	581
SUN Depth-only(SUN-D) [78]	Scene cls	19	Acc	4,660
🕅 NYU-v2 Depth-only(NYU-D) [61]	Scene cls	10	Acc	654
Audioset Audio-only(AS-A) [29]	Audio cls	527	mAP	17,132 ¹
ESC 5-folds(ESC) [70]	Audio cls	50	Acc	2,000
Clotho(Clotho) [22]	Retrieval	-	Recall	1,046
AudioCaps(ACaps) [44]	Retrieval	-	Recall	813 ¹
VGGSound(VGGS) [9]	Audio cls	309	Acc	15,434 ¹
Touch-and-go(TAG-M) [94]	Material cls	20	Acc	29,879
b Touch-and-go(TAG-H/S) [94]	Hard/Soft cls	2	Acc	29,879
b Touch-and-go(TAG-R/S) [94]	Rough/Smooth cls	2	Acc	8,085
ImageNet-EEG(IN-EEG) [79]	Visual Concept cls	40	Acc	1,997

Datasets include:

- 3D point cloud
- Depth
- Audio
- Tactile
- EEG

Datasets (More Details)

3D point cloud

- ULIP-ShapeNet Triplets

 Anchor = image+text
- ULIP2-Objaberse Triplets
- OpenShape Triplets
- ModelNet40
 - Anchor = text
- ScanObjectNN
- Objaverse-LVIS

RGBD (Depth)

• Anchor = image

 \circ Anchor = text

• SUN-RGBD

Audio

•

Audioset

Clotho

• ESC 5-folds

AudioCaps

VGGSound

• NYU-Depth v2

Tactile and EEG

- touch-and-go
 - \circ Anchor = image
- ImageNet-EEG
 Anchor = image and/or text

Experiments: Zero-shot 3D Classification

Experimental Setup

- Authors use triplets to train ViT-Lens
 - (point cloud, image, text)

2 Setups

- First setup: pretrain on ULIP-ShapeNet or ULIP2-Objaverse
 - Evaluate on ModelNet40
- \circ Second setup: train on OpenShape-Triplets
 - Evaluate on Objaverse-LVIS, ModelNet40, ScanObjectNN

Experiments: Zero-shot 3D Classification

	٢	Top1	Top5
	Trained on ULIP-ShapeNet	92]	
	ULIP-PointNet++(ssg) [92]	55.7	75.7
	ULIP-PointNet++(msg) [92]	58.4	78.2
	ULIP-PointMLP [92]	61.5	80.7
	ULIP-PointBERT [92]	60.4	84.0
VII-B/16	VIT-LENS _B	65.4	92.7
ViT-L/14	\rightarrow VIT-LENS _L	70.6	94.4
	Trained on ULIP2-Objaverse	[93]	
	ULIP2-PointNeXt [93]	49.0	79.7
	ULIP2-PointBERT [93]	70.2	87.0
	VIT-LENS _B	74.8	93.8
	$VIT-LENS_L$	80.6	95.8

(a) Zero-shot 3D of classification on ModelNet40. Models are pretrained on triplets from ULIP-ShapeNet and ULIP2-Objaverse respectively.

Setup 1

ViT-bigG/14

Experiments: Audio Classification and Retrieval

alah	anahan	AudioSet	VGGSound ^o	ESC° Clotho°		lotho°	AudioCaps [◊]	
.400	anchor	mAP	Top1	Top1	R@1	R@10	R@1	R@10
AVFIC [60]	-	-	-	-	3.0	17.5	8.7	37.7
ImageBind-H [32]	Ι	17.6	27.8	66.9	6.0	28.4	9.3	42.3
VIT-LENS _L	I	23.1	28.2	69.2	6.8	29.6	12.2	48.7
AudioCLIP [38]	I+T	25.9	-	69.4	-	-	-	-
VIT-LENS _L	I+T	26.7	31.7	75.9	8.1	31.2	14.4	54.9
Prev. ZS SOTA	-	-	29.1/46.2* [89]	91.8 [87]	6.0	28.4 [32]	9.3	42.3 [32]

Table 3. Audio classification and retrieval on Audioset, VGGSound, ESC, Clotho and AudioCaps. ^odenotes zero-shot evaluation. Gray-out denotes using larger audio-text datasets in pretraining. ^{*}denotes using augmented captions for training.

- Pretrained on Audioset dataset (accompanied by image+text as anchor)
- ViT-Lens, when anchored using image and text, has strong performance compared to other baselines

Experiments: Audio and Video Retrieval

- MSR-VTT benchmark
- Utilizes both audio and video modalities
 - They follow ImageBind's method to combine audio and video modalities

	modality	R@1	R@5	R@10
MIL-NCE [57]	V	8.6	16.9	25.8
SupportSet [67]	V	10.4	22.2	30.0
AVFIC [60]	A+V	19.4	39.5	50.3
ImageBind-H [32]	A+V	36.8	61.8	70.0
VIT-LENS _L	A+V	37.6	63.2	72.6
Zero-shot SOTA [10]	V	49.3	68.3	73.9

Table 4. Video Retrieval on MSRVTT. V: use video; A+V: use audio and video. Gray-out means using video data in pretraining.

Experiments: Depth-only Scene Classification

- Two benchmarks
 - \circ NYU-D
 - SUN-D
- Pretraining data from Sun RGD-D dataset (paired image and scene labels as anchor)
- Does pretty well compared to the supervised setting!

	anchor	NYU-D	SUN-D
Text Paired [32]	T*	41.9	25.4
ImageBind-H [32]	I	54.0	35.1
VIT-LENS _L	I	64.2	37.4
VIT-LENS _L	I+T	68.5	52.2
Supervised SOTA [31]	-	76.7	64.9

Table 5. Depth-only scene classification on NYU-D and SUN-D. *[32] rendered depth as grayscale images for direct testing. The supervised SOTA [31] used RGBD as input and extra training data.

Experiments: Tactile Classification Tasks

Tactile classification tasks

- o Material
- \circ Hard/soft
- o Rough/smooth
- Train using Touch-and-go trainmaterial split (anchor is paired frame and material label text)
 - test H/S and test R/S are zero-shot classification results
- Linear probing
 - Model is fine-tuned using corresponding train set for a given task

Ð	anchor	Material	H/S	R/S
ImageBind-B*	Ι	24.2	65.7	69.8
VIT-LENS _B	Ι	29.9	72.4	77.9
VIT-LENS _L	Ι	31.2	74.3	78.2
$VIT-LENS_L$	I+T	65.8	7 4. 7	63.8
Linear Probing				
CMC [82, 94]	Ι	54.7	77.3	79.4
VIT-LENS _B	Ι	63.0	92.0	85.1

Table 6. Tactile classification on Touchand-go. *denotes our implementation. H/S: Hard/Soft; R/S: Rough/Smooth.

Experiments: EEG Visual Concept Classification

- Trained on ImageNet-EEG (anchor is corresponding ImageNet image and text label)
- Image and text anchor once again provides best performance

Ø	anchor	Val	Test
ImageBind-B*	Ι	17.3	18.4
DreamDiffusion-L# [4]	Ι	20.4	19.2
VIT-LENS _B	Ι	24.6	25.3
VIT-LENSL	Ι	29.3	29.2
VIT-LENSL	I+T	41.8	42.7

Table 7. Visual concept classification on ImageNet-EEG. *denotes our implementation. #We use the released EEG encoder and paired text encoder for inference. We report results on Val and Test set.

Experiments: Few-shot Linear Probing

- Left: Using ViT-Lens L image depth encoder
- Right: ViT-Lens G 3D encoder
- Good few-shot capabilities

Experiments: Integration with MFMs

2 MFMs selected Instruct-BLIP and SEED

- EVA01-g14 CLIP-ViT as visual encoder
- Instruct-BLIP
 - $_{\odot}$ Framework for instruction-tuning
 - Complex visual reasoning and image descriptions

• SEED

 $_{\odot}$ Multimodal comprehension and image generation

• Can these capabilities of MFMs be extended to novel modalities by integrating ViT-Lens?

Qualitative examples for plugging VIT-LENS into MFMs

(A-B) Integrate with InstructBLIP (C-E)Integrate with SEED

U: Describe this object in detail.

(A)

Qualitative examples for plugging VIT-LENS into MFMs

Ablation Study: Scaling ViT-Lens

- Performed experiments on scaling up ViT-Lens
- Tested on SUN-D dataset (depth) and ModelNet40 (point cloud)
- In conclusion, ViT-Lens is amenable to this scaled up scenario

Figure 7. Scaling the VIT-LENS on depth and 3D point cloud. B: VIT-LENS_B, L: VIT-LENS_L, bigG: VIT-LENS_G.

Limitations

• Error and Bias Propagation:

- The pre-trained encoder (ViT here) explicitly passes its biases to this multimodal foundation model
- Assumption that the ViT is a general token learner is suboptimal!
 - ViTs are designed for image data, which has specific spatial and structural properties (like 2D grid patterns)
 - Not every modality shares similar structure and properties!

- Generalization of this model is still bound by the low-resource data modalities.
- Convergence to larger-scale modalities during training for lenses and modality embedders.

Comparison to Other Methods

ImageBind

- Trains joint embedding, showing that only image-paired data is enough to get this embedding
- Separate encoders for modalities

Unified-IO 2

- $_{\odot}$ Processes all modalities with single encoder-decoder transformer
- Combine modality tokens dynamic packing
- Emphasis on this shared embedding space
- More similar to Unified-IO 2 in how modality data is processed

Summary of Strengths, Weaknesses

- Strengths:
 - Computation cost is bound by 1 encoder
 - Compared with multiple encoder or mixture of expert methods
 - Modular and Adaptable
 - Modality embeddings can be replaced
 - Integration with other multimodal foundation model
- Weaknesses:
 - Suboptimal unified encoder
 - Bias propagation by using an image-trained model
 - Scaling the model is bound by low-resource modality

