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Problem Statement
Omni-modal representation learning by perceiving novel modalities

Human perception and physical world is How to integrate low resource data with large
inherently multi-modal scale models?
Available data for building Al models: « Modality specific lens to project any-modal

. Rich resource data: signals to an intermediate embedding space
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Related Works
Vision Language models (VLMs)

Embed visual and textual representations into a shared space

1. Contrastive pre-training . pretrained and frozen Pre-training
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Related

Joint training across multiple modalities

Works

Multimodal Foundation Models(MFMs)

. Multi-modal Pre-training
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Related Works

Multimodal Foundation Models(MFMs)

Unified Encoder
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Related Works

ONE-PEACE

» Modality Adaptors:

* A module converting different raw signals into
unified features

» Adapters do not interact with each other
« The backbone can change (CNN, RNN, Transformer)

« Modality Fusion encoder:

« Atransformer block with shared self attention layer and
modality-specific feedforward network.

Sharing separated architecture enables sub-
modality branches

Scaling-friendly
Architecture

VAL- VA- VL- AL- V- A-

L-

Branch Branch Branch Branch Branch Branch Branch

‘\

Pretrain Tasks:

» Cross-Modal Contrastive Learning: aligns the semantic
spaces of different modalities
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* Intra-Modal Denoising Contrastive Learning: emphasis on
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https://huggingface.co/spaces/OFA-Sys/ONE-PEACE_Multimodal_Retrieval

Related Works

Meta-Transformer

» Tokenizer:
» Datato Sequence tokenizer via meta scheme

* Modality-agnostic encode:
» A VIT pretrained on LAION-2B dataset with contrastive
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Approach

Leveraging pre-trained large-scale model for low-resource data modalities

1. Modality Embedding Module: -
- Raw data modality into token embeddings TR

« Module is modality-specific. t

Align

E.g. Audio to spectrogram, tactile to spatial map Pretrained ViT
Image/Depth |—>  patches of size P x P P = 16 for VIT-LENS-B Foundation TTQ
. J P = 14 for VIT-LENS-L Model(s) | :
) ) 2 frame clip, patches of size 2xPxP [' Lens nJ" |
Video — - :
§ ) $ i [ ModEmbed ._fl,J '
P < Construct local patches by sampling 512 sub-clouds, f{— e -—,:_—-*'
i | Point-bert [1] approach each comprising 32 points. via Farthest Point Sampling & S e g
L Point cloud ) [L]app (FPS) and the k-Nearest Neighbors (kNN) algorithm. J S . I,S“_“?}____}'T“_b______zr'f"?____‘
s N\ . i . E @oo. i ",_,.4"?:4”:_";?0!' : @ @: fq I||I||I {?ﬁj LT E
Audio Convert an audio with duration of t to | Text/Image/... | L New M@dﬂ,iw Data |
\ / spectrogram dimension of 128 x 100t Tt T
EEG — truncated into a common length of 512
> / and embed using Conv1D
Tactile —— treated similarly to RGB images
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[1] Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-training

3d point cloud transformers with masked point modeling. In CVPR, 2022.



Approach

Leveraging pre-trained large-scale model for low-resource data modalities

output output
) T [TTT]
2. Modality-lens: I S
« Convert a sensory data from ModEmbed into a format '@ b setpann ]
. . . | ! :
that the pretrained encoder (ViT) can interpret L -
« Self-Attention Blocks (A) for image-like data T
° Iterative CrOSS'SeIf'Attention BIOCkS (B) for Iengthy modality embeddings |latl|3nt|qu|ery| mlodallit!f e!nbled(llinlgs
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Approach

Leveraging pre-trained large-scale model for low-resource data modalities

P Align
3. Unified Modality Encoder: P S
* Frozen pre-trained ViT model [ Pretrained i1 J
- Embeds each modality to a unified feature space F

________________

Q3D < : @ .
k>| II|i||I ‘
Point Cloud \Depth Audio ™Tactile & EEG
Pretrained ViT CLIP-ViT CLIP-ViT CLIP-ViT CLIP-ViT CLIP-ViT
Config Block.1-12 Block.5-12 Block.1-12 Block.5-12 Block.1-12
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Approach

Leveraging pre-trained large-scale
model for low-resource data modalities

4. Alignment with Anchor Modality:

« Maximizing the similarity between the
representations of the new modality and
its corresponding anchor modality while
minimizing the similarity with unrelated
anchor data

E.g.: EEG signal paired with a text description, and ViT-
Lens learns to bring the EEG embedding close to the text
embedding

Training Objective:
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Integrating ViT-lens into other MFMs

ViT-lens module can be plugged in place of the image-encoder only foundation model
without further instruct-following training.

LLM * LLM i
(_abstractor ) E (_abstractor ) i
ViT : ViT i
LA Prompt I# @ ®| % Prompt
'Tramed Lenses

—_—— e e o o = o == = —

(A) A multimodal foundation model with image
encoder

(B) Well trained Lenses for different modalities
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MFM integration Steps

1. Select an MFM (e.g., InstructBLIP or SEED)
2. Take the trained Encoder (CLIP-ViT) as modality encoder for ViT-lens

3. Tune the ModEmbed and lens parameter (fine-tuning step) for

alignment
4. Take the tuned ModEmbed and lens module add it directly to the
pretrained MFM (inference step) ®
i Foundation
Model(s)

Align

;T_@
Handle inputs of various modality without specific instruction following O ‘
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MFM integration with a LLM

Visual input example, Plant:

Visual input example, Piano:

User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS

‘What is this object?

Potted plant.

Describe it in detail.

In the image, there is a potted plant sitting in a ceramic pot on a table. The
plant appears to be a bamboo-like species, and it is positioned in such a way
that its leaves appear to be growing out of the top of the pot. The plant’s
placement on the table suggests that it is meant to be a decorative element,
adding a touch of greenery to the space. The ceramic pot has a diameter of
around 10 centimeters, making it a suitable size for holding a small plant
like this one. Overall, the image showcases a simple yet elegant arrangement
of a potted plant in a ceramic pot on a table.

User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS
User
InstructBLIP w/ VIT-LENS

What is this object?

Piano.

What is the function of this?

Pianos are used to play music.

Describe it in detail.

The object in the image is an upright piano, which is a type of keyboard
instrument known for its distinct sound and versatility. The piano is placed
on a wooden surface, possibly a floor or a stage, and it appears to be
quite large in size. Additionally, there is a chair placed next to the piano,
suggesting that it may be used for seating during performances or lessons.
The piano is positioned in the center of the image, making it the focal point
of the scene. Overall, the combination of the piano and the chair creates
an inviting atmosphere for music enthusiasts or those interested in learning
how to play the piano.

Enabling a LLM to handle 3D points

Georgia
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Experiments: Datasets used for Evaluation

Dataset Task #cls Metric  #test
@ ModelNet40(MN40) [20] 3D shape cls 40  Acc 2,468
9 Objaverse-LVIS(O-LVIS) [17] 3D shape cls 1.156 Acc 46,832
o ScanObjectNN(SONN) [85] 3D shape cls 15 Acc 581
1 SUN Depth-only(SUN-D) [75] Scene cls 19  Acc 4,660
H NYU-v2 Depth-only(NYU-D) [61] Scene cls 10 Acc 654
1 Audioset Audio-only(AS-A) [29] Audio cls 527 mAP 17,132
M ESC S-tolds(ESC) [70] Audio cls 30 Acc 2,000
sl Clotho(Clotho) [22 Retrieval - Recall 1.046
Il AudioCaps(ACaps) [44] Retrieval - Recall 813
1 VGGSound(VGGS) [9] Audio cls 309 Acc 15434
® Touch-and-go(TAG-M) [94] Matenal cls 20 Acc 29879
# Touch-and-go(TAG-H/S) [94] Hard/Soft cls 2 Acc 29879
* Touch-and-go(TAG-R/S) [94] Rough/Smooth cls 2 Acc  B,085
@& ImageNet-EEG(IN-EEG) [79] Visual Conceptcls 40  Acc 1.997

Datasets include:

3D point cloud
Depth

Audio

Tactile

EEG

Cr
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Datasets (More Details)

3D point cloud RGBD (Depth)
» ULIP-ShapeNet Triplets * Anchor = image
o Anchor = image+text « SUN-RGBD
» ULIP2-Objaberse Triplets - NYU-Depth v2
» OpenShape Triplets
* ModelNet40 _
o Anchor = text Audio |
« ScanObjectNN * Audioset
o Anchor = text
* Objaverse-LVIS « ESC 5-folds
« Clotho
« AudioCaps
« VGGSound

Tactile and EEG
* touch-and-go

o Anchor = image
ImageNet-EEG

o Anchor = image and/or text

Cr
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Experiments: Zero-shot 3D Classification

« Experimental Setup

o Authors use triplets to train ViT-Lens
« (point cloud, image, text)

« 2 Setups

o First setup: pretrain on ULIP-ShapeNet or ULIP2-Objaverse
« Evaluate on ModelNet40

o Second setup: train on OpenShape-Triplets
» Evaluate on Objaverse-LVIS, ModelNet40, ScanObjectNN

Georgia
Gl" Tech.



Experiments: Zero-shot 3D Classification

° Topl Top5 o Objaverse-LVIS | ModelNet40 | ScanObjectNN
Trained on ULIP-ShapeNet [92] __ _ Topl Top3 Top5|Topl Top3 Top5|Topl Top3 Tops
ULIP-PointNet++(ssg) [92] | 55.7 75.7 <) inference, no 3D training
ULIP-PointNet++(msg) [92]| 58.4 78.2 PointCLIP [101] 1.9 4.1 58193 286 348|105 20.8 306

PointCLIP v2 [106] 47 95 129]63.6 779 850|421 633 745

ULIP-PointMLP [92 61.5 80.7
ot 92] Trained on OpenShape-Triplets (No LVIS) [54]

ULIP-PomntBERT [Y] 60.4 84.0

ViT-B/l ) 1 ULIP-PointBERT [92] 21.4 38.1 460|714 844 89.2[46.0 66.1 76.4
VIT-LENS g 634 92.7 OpenShape-SparseConv [54] 37.0 58.4 66.9[82.6 95.0 97.5/54.9 76.8 87.0
iT- e — 1 F ] _
ViT-L/14 == VIT-LENS; _ 70.6 944 OpenShape-PointBERT [54] | 39.1 60.8 68.9(853 962 974|472 724 847
Trained on ULIP2-Objaverse [93] VIT-LENS G 50.1 71.3 78.1/86.8 96.8 97.8|59.8 79.3 87.7
ULIP2-PomtNeXt [V3] 49.0 79.7 Trained on OpenShape-Triplets [54]
ULIPZ-PomntBERT [Y3] | 70.2 87.0 ULIP-PointBERT [92] 268 448 52.6|75.1 88.1 93.2|51.6 72.5 823
VIT-LENS g T4.8 938 OpenShape-SparseConv [54]| 43.4 64.8 724|834 956 978|567 78.9 88.6
VIT-LENS 80.6 95.8 OpenShape-PointBERT [54] [46.8 69.1 77.0|84.4 965 98.0|52.2 79.7 88.7
(a) Zero-shot 3D of classification on ModelNetdo0. VIT-LENS ¢ 52.0 733 799 | 87.6 96.6 98.4|60.1 81.0 90.3
Models are pretrained on triplets from ULIP- {b) Zero-shot 3D clad jfication on Objaverse-LVIS, ModelMNetdD and ScanObjectNN. Models are
ShapeNet and ULIP2-Objaverse respectively. pretrained on OpenSEhpe Triplets. “NO LVIS” denotes exclude the Objaverse-LVIS subset.
Setup 1 Setup 2
ViT-bigG/14
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Experiments: Audio Classification and Retrieval

m anchor AudioSet | VGGSound® ESC* Clotho® AudioCaps®
mAP Topl Topl |R@1 R@I10 |R@1 R@I10

AVFIC [60] - - - - 3.0 17.5 8.7 377
ImageBind-H [32] 1 17.6 27.8 66.9 6.0 284 9.3 42.3
VIT-LENS |, 1 23.1 28.2 69.2 6.8 29.6 12.2 48.7
AudioCLIP [3%] I+T 25.9 - 69.4 - - - -
VIT-LENS 1, I+T 26.7 31.7 75.9 8.1 31.2 14.4 54.9
Prev. Z5 SOTA - - 20.1/46.27 [89] | 91.8 [87]] 6.0 28.4[32]]| 93 423][32]

Table 3. Audio classification and retrieval on Audioset, VGGSound, ESC, Clotho and
AudioCaps. “denotes zero-shot evaluation. Gray-out denotes using larger audio-text
datasets in pretraining. “denotes using augmented captions for training.

» Pretrained on Audioset dataset (accompanied by image+text as anchor)
* VIiT-Lens, when anchored using image and text, has strong performance compared
to other baselines

Georgia
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Experiments: Audio and Video Retrieval

e MSR-VTT benchmark B ) modality|R@1 R@5 R@10
MIL-NCE [57] V| 86 160 258
SupportSet [67] V 104 222 30.0
. . . AVFIC [60] A+V [194 395 503
- Utilizes both audio and video ImageBind-H[32] | A+V |36.8 61.8 70.0
modalities VIT-LENS A+V |37.6 632 726
o Zero-shot SOT? 03 683 731
o They follow ImageBind's method to Zero-shot SUTA[10]] V. |49.3 683 739
Combm? audio and video Table 4. Video Retrieval on MSRVTT. V: use
modalities video; A+V: use audio and video. Gray-out

means using video data in pretraining.

Georgia
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Experiments: Depth-only Scene Classification

e Two benchmarks
o NYU-D
o SUN-D

 Pretraining data from Sun RGD-D
dataset (paired image and scene
labels as anchor)

» Does pretty well compared to the
supervised setting!

anchor | NYU-D SUN-D
Text Paired | 5] T 41.9 254
ImageBind-H [32] I 54.0 35.1
VIT-LENS, I 64.2 374
VIT-LENS | I+T 68.5 52.2
Supervised SOTA [31] - 76.7 64.9

Table 5. Depth-only scene classification on
NYU-D and SUN-D. *[22] rendered depth as
grayscale images for direct testing. The su-

pervised SOTA [31] used RGBD as input and
extra training data.
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Experiments: Tactile Classification Tasks

e Tactile classification tasks

o Material ® anchor|Material H/S R/S
o Hard/soft ImageBind-B*| 1 242 65.7 69.8
o Rough/smooth VIT-LENS I 299 724 779
VIT-LENS | 31.2 743 78.2
 Train using Touch-and-go train- VIT-LENS, | I+T | 65.8 74.7 638
material split (anchor is paired Linear Probing
frame and material label text) CMC[82,94] | 1 | 547 773794
o test H/S and test R/S are zero-shot VIT-LENSp : 63.0 92.085.1
classification results Table 6. Tactile classification on Touch-
e Linear probing and-go. “denotes our implementation. H/S:

ic fi : Hard/Soft; R/S: Rough/S th.
o Model is fine-tuned using ar/so ough/Smoo

corresponding train set for a given
task

Georgia
Gl" Tech.



Experiments: EEG Visual Concept Classification

* Trained on ImageNet-EEG
(anchor is corresponding
ImageNet image and text label)

« Image and text anchor once
again provides best performance

o anchor| Val Test
ImageBind-B* I 17.3 184
DreamDiffusion-L* [4] I 204 192
VIT-LENS 5 | 246 25.3
VIT-LENS I 293 29.2
VIT-LENS, I+T |[41.8 42.7

Table 7. Visual concept classification on
ImageNet-EEG. “denotes our implementa-
tion. “We use the released EEG encoder and
paired text encoder for inference. We report

results on Val and Test set.

Cr
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Experiments: Few-shot Linear Probing

i

10 -

20)

51 SUN-D Top-1

e

=

o
T

h\

0

Lb

== ImageBind-H [32]
4 MultiMAE [ 3]

0

1 2 4 8

# of labeled training samples per class

@ 0-LVIS Top-1

== VIT-LENS;
== OS-SparseConv [54]
& OS-PointBERT [54]

0

1 2 4 8

# of labeled training samples per class

o Left: Using ViT-Lens L image
depth encoder

 Right: ViT-Lens G 3D encoder

» Good few-shot capabilities
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Experiments: Integration with MFMs

« 2 MFMs selected

o Instruct-BLIP and SEED
« EVAO01-g14 CLIP-VIT as visual encoder

e Instruct-BLIP

o Framework for instruction-tuning
« Complex visual reasoning and image descriptions

« SEED

o Multimodal comprehension and image generation

» Can these capabilities of MFMs be extended to novel modalities by integrating ViT-Lens?

Georgia
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Qualitative examples for plugging VIT-LENS into MFMs

((A) _ U: Describe this object in detail.

R: The object in the image is an upright piano, which is a type of keyboard instrument known for its distinct sound and versatility. The piano is
placed on a wooden surface, possibly a floor or a stage, and it appears to be quite large in size. Additionally, there is a chair placed next to the
piano, suggesting that it may be used for seating during performances or lessons. The piano is positioned in the center of the image, making it the
focal point of the scene. Overall, the combination of the piano and the chair creates an inviting atmosphere for music enthusiasts or those interested

in learning how to play the piano.

U: Describe the details of what you see.
I  R: A man is walking a dog on a beach near a body of water. The dog is wearing a collar and leash, and the man is wearing a shirt
and shorts. There are palm trees visible in the background, adding to the tropical atmosphere of the scene. The man and dog appear

to be enjoying their time together on the beach.

&l

dog wave

kitchen

(D)

add Christmas atmosphere

A

HF

grass cat

(A-B) Integrate with InstructBLIP
(C-E)Integrate with SEED

Cr
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Qualitative examples for plugging VIT-LENS into MFMs
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Ablation Study: Scaling ViT-Lens

» Performed experiments on

scaling up ViT-Lens + N + o |-
 Tested on SUN-D dataset (depth) O 53f o T0F
and ModelNet40 (point cloud) 5 s2f g %t
: : : ~ 51 | 66 |-
* In conclusion, ViT-Lens is e bigG o E— bi'gG
amenable to this scaled up Fieure 7. Scaling the VIT-Le denth and 3D boin cloud
Scenarlo 1gurc /. >caling e YIT-LENS on cp dIl point cioud.

B: VIT-LENS g, L: VIT-LENS 1, bigG: VIT-LENSG.
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Limitations

 Error and Bias Propagation: » Generalization of this model is still
« The pre-trained encoder (ViT here) bound by the low-resource data
explicitly passes its biases to this modalities.

multimodal foundation model

« Assumption that the ViT is a general
token learner is suboptimal!

 ViTs are designed for image data, which

« Convergence to larger-scale
modalities during training for lenses
and modality embedders.

R CH pertt _'_'_'_'_'T_'_'"'u
has specific spatial and structural : .T = |
properties (like 2D grid patterns) [ o des nJ" ;

* Not every modality shares similar [ ModEmbed )
structure and properties! B RO I

-.hﬁ Xt g &

F
I
I
i
"
]

: New Modality Data :
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Comparison to Other Methods

* ImageBind

o Trains joint embedding, showing that only image-paired data is enough to get this
embedding

o Separate encoders for modalities

 Unified-10 2
o Processes all modalities with single encoder-decoder transformer
o Combine modality tokens dynamic packing

« Emphasis on this shared embedding space
« More similar to Unified-lO 2 in how modality data is processed

Georgia
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Summary of Strengths, Weaknesses

 Strengths:

« Computation cost is bound by 1 encoder

« Compared with multiple encoder or mixture of expert methods
« Modular and Adaptable

» Modality embeddings can be replaced
* Integration with other multimodal foundation model

« Weaknesses:
« Suboptimal unified encoder
 Bias propagation by using an image-trained model
» Scaling the model is bound by low-resource modality

Georgia
Gl" Tech.
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