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and
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Data Similarity
Learning

Deep-Learning
based
Clustering

How can perception deal with changing
environments and the open world?

Robust Open-World Learning

» Past: Semi and self-supervised,
few-shot, continual learning

» Open-world learning and Vision-
Language Models

 Robust fine-tuning of VMs/VLMs

School of Interactive Computing
Georgia Institute of Technology

Research Interests: Intersection of deep learning and robotics,
focusing on robustness and decision-making in an open world

& RIPL

Robotics Perception and Learning

intent: | need something like
this for my apartment. Can you
add one to my wishlist?

N |
How can we scale robotics in DL era?

Scaling up Robotics
 Better simulation w/ NeRFs/3D
» Self-supervised and pre-training
« Combinations with large language
and multi-modal models
» Long-Context Models
« Vision-Language Action Models

How can we use VLMs for Learning,
Planning, and Reasoning Agents
Planning, Reasoning, Memory

» VLMs for reasoning/planning

» Long-form videos and memory
» Grounding
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The great shift

* Modality-specific pipelines
» DL
» Transformers

 Scale + Self/semi-supervised learning FTW!
 Web P Language Models P»Knowledge
 DINO/MAE/CLIP/SAM  $cene Understanding
* Multi-Modal Models

[ Where does robotics go from here? J




The Reality

Perception is still tied to
known categories or poor
open-vocabulary methods
during training

Brittle to out-of-distribution
data

Limited Open-World
abilities

Even large-scale datasets
(RT-X) limited in
generalization

= //,/ ‘v.':'
7 S

% success rates

Unseen
Method Seen Layouts Objects Receptacles
MonolithicRL 91.7 +1.1 86.3 +1.4 74.7 +1.8 52.7 +2.0
SPA 70.2 £1.9 72.7 £1.8 72.7 £1.8  60.3 £2.0
SPA-Priv 77.0 1.7 80.0 +1.6 79.2 1.7  60.7 +2.0

) Habitat 2.0

Degradation over novelty...

Work by Andrew Szot,
Dhruv Batra, and Meta




Challenges in Robotics

Data flywheel
e Hard to gather
* Potentially dangerous
* Huge heterogeneity

Robusness
* In-the-wild data
* Long-tail (see self-driving cars)
* Long-horizon decision-making
* Physics!

Reliability 24/7

Cost?




R
Robotic Foundation Models
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Foundation Models for Robotics

Info

More Modular
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Vision and Language
Foundation Models

Zero-Shor, Prompring

Robotic Foundation Models
Train, Finetune

More End-to-end

Environment Feedbacks
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Hu et al., Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis

and Primitives

Task Specification

Movre types
of embodiments

. fi} o

Cross embodiment
transfer

&= ﬁ!

World Dynamics Models

Q&

Grounding

Continnal Learning
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Open-World Learning (w/ FMs and VLASs)

Long-
Horizon/Long Robust Fine-
-Context,

Reproducible Generalization

Robotics -> to an Open
Simulation

[NeurlPS 2023 OVMM Challenge, [ICLR 2018/2019,
ICML 2023, Neurips 2021] arXiv:2305.10420, ECCV [CVPR 2023, NeurlPS 2023/2024]
(w/ Dhruv Batra) 2022]
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Multimodal Large Language Models

Bing’s A.l. Chat: ‘l Want to Be GPT-40 (
: ' OPENAI'S '
Alive. @ LATEST MODEL
lry & tworhaosar conmveorse Wh e | M
Dadbeot saeed it would likee 10 Be human, hiad & dosine 1o be
§ hthe § }
H r_ )
S P e Multimodal Large

Language Model

ChatGPT is about to revolutionize the
economy. We need to decide what that looks

like.

N
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Multimodal Large Language Models

[ J RT-1 etc.

i N
. ProgPrompt, etc.
ng;‘d;ag'e m====) | Multimodal Large —> [ J
Task Language Model
\ v

What about VLMS for direct task to action?




Vision-Language Action Models

r' T - .
CALVIN (34 tasks) | [Meta-World (45 tasks) Action Space Adapter Comparison

Multimodal Large
Language Model

D
L <

' e r En
B - B P s i a
_ 28

Continuous Actions Discrete Actions

2 ._ Action Space
o o ‘ ‘ Adapter

| Q P - _J '
BabyAl (6 tasks) Habitat (30 tasks) [0.72, 0.24, -0.21, ...] “Pick apple”

Overall Success (%)
W
o

Semantic

o

Lots of great concurrent work! OpenVLA, LLARVA, etc. p

u Andrew
= advised with

Szot
Szot et al., Grounding Multimodal Large Language Models in Actions, NeurlPS 2024 Dhruv Botro




Vision-Language Action Models

s

* Advantages:

 Policies driven by textual
description of the task! \

Multimodal Large
Language Model

* Leverage common sense reasoning
inside model

e Can learn with RL and IL

V7

 Questions:

Action Space
Adapter

* How should we represent
(tokenize) output actions?

* Concurrent work tends to just pick
one and go with it

Szot et al., Grounding Multimodal Large Language Models in Actions. NeurlPS 2024.

Action Space Adapter Comparison

D
L <

Overall Success (%)
W
(en]

o

[0.72, 0.24, -0.21, ...]

Semantic

[~
1285
s

Discrete Actions

3
4

Tok.

“Pick apple”
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Action Tokenization

Action is a continuous vector

Action is a selection from a

Example: end effector control set of discrete choices

[dx, dy, dz]

[0.72, 0.24,-0.21, ...] | “Pick apple”

Learned Tokenization Semantic Tokenization

Residual VQ-VAE for discrete action tokenization " )
pick apple

, |
dx dx
dy :. :- -_— — dy’ [278,276]
dz
|

dz’
: : : Describe action with language and
Trained with action

28 73 , tokenize with LLM vocabulary
reconstruction

Szot et al., Grounding Multimodal Large Language Models in Actions. NeurlPS 2024.




Continuous ASA i 1 2 m
Discrete ASA , U, U Uy | —> Adapter Decoder
Action Tokens - L
. ] = MLP pick apple [ NEG_zGNG
egression [dx, dy, dz] ey < pick pear [ f f 1
Classification =
Uniform oo O :
Tokenization  dx dy dz Semal_mc_ "pick apple” [ Adapt&r Head ]
Tokenization [5839, 26163] f f 1 at
dx i
Learngd s dy —> i — Non-Semantic “pick apple” ) LLM Final } 1 / 2 s . -
Tokenization Tokenization [278,276] Hidden State | /¢ Ly t Action for Environment
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.
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\ -
(Visual Encoder J

t t

( Language Embed J

1 Task Goal + Prompt 1

ll lk'.

We finetune the ASAs, downsampler, and MLLM

Szot et al., Grounding Multimodal Large Language Models in Actions

t t

 Adapter Embed | | () Pretrained MLLM

t 1t o

utl u;n-l

Action Space Adapter

Andrew
Szot

ML Ph.D. (co-
advised with

Dhruv Batra)




VLA Results & Findings

CALVIN Meta-World

Rotate the pink block towards Push a button on the coffee
the right machine

Success Rate (%)

AN

| |
I see

HabPick BabyAl

Pick a lemon Open the biue door Bring something to pour hot
coffee in to the TV stand

o
=

o
o

it
=

CALVIN Meta-World

B Residual VQ
e vaQ

B Continuous Pred.
B Uniform

0 Semantic Tokenization
I Categorical Pred.
I Non-Semantic Tokenization

51

42 40

Habitat Pick /

Continuous Actions

angRearrange BabyAl /

Discrete Actions




VLA: Results across Spectrum of Generalization

BabyAl

CALVIN

amF“

v ~ ..o

Rotate the pink block towards
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Meta-World

B

Push a button on the coffee

Open the blue door

LangR

Bring something to pour hot
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Agporegated

Behavior
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Rephrasing
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Multiple Referring  Context
Rearrange Expressions
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Instructs

SemLang
Lang
Pred
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Many tasks we want an agent to take actions to autonomously complete

“Find an apple and put it away in the
fridge”

S —
: “Navigate to the refrigerator” “Move right to find the goal” ' “Book a flight to JFK”

Weather

aaaaaaaaaaaa

uuuuu

Robotic Navigation Games
Manipulation Ul Control

Can we have one policy that does all of these?




How can we create a generalist agent capable of excelling in
diverse interactive tasks?

Generalist Agent

e — e —
“Find an apple and put it away in the ‘ “Navigate to the refrigerator” “Move right to find the goal” ' “Book a flight to JFK”
I fridge” g— L 5
/ v i
- - — ’__* — e ‘1- '31- sse s
’ . l ‘ = Q._-:;“ -~ - — - = ‘ 3 g s
-, - _ ._. - 2 F

o

®P, <

T

=

oot 3 =, < -~
Robotic —_—

Navigation Games
Ul Control




Adapt a pre-trained Multimodal LLM

Multimodal LLM :
Interactlve Data

“Find an apple and put it away in the ‘ “Navigate to the refrigerator” “Move right to find the goal” '
fridge”
g —
- ”‘ ]
(TR —aho =

Generalist Agent

e ——,
“Book a flight to JFK”

vvvvvvvvvvvv

Lights

Robotic Navigation Games

Ul Control




Step 1: Collect expert demonstrations in diverse domains for
training

From diverse sources, like scripted policies, humans, or RL policies




Data - Static Manipulation

“Use the block to pull the handle sideways” “Move the purple block next to the blue block”




Data - Mobile Manipulation

“Unload the plates from the dishwasher and

place them on the rack” Pick up the banana




Data - Ul Control
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Static Manipulation Nvigatin ~

Mobile Manipulation Ul Control Real Robots

Put the rubber bond on the cup

) il N 2




Static Manipulation

Mobile Manipulation

4M trajectories for training (~500M image/actions)
90 embodiments
Over 1000 distinct tasks




Evaluation

New Tasks New Embodiments New Environments
Find an apple and put it away in New control spaces and robot types New platform with limited data
the fridge.

Novel Objects

Find a pear and put it away in the fridge.

Context
I am hungry for something sweet and healthy. Put
a snack for me on the table.

Spatial Relationships
Find an apple and put it in the receptacle to the
right of the kitchen counter.

)
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Results - New Tasks

Mobile
Manipulation

Static Manipulation

Navigation Control

GEA (Ours) 65% 54% 66% 47% 32%

Eaceling. 58% 49% 1% 36% 99%

Results are for adapting LLaVA-1.5 7B
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Results - New Embodiments

1\

Generalize to new arm lengths

0.4

—
w

Embodiment Prompt

Success Rate
o
)

Agent: Fetch Robot. Actions: delta joint position.
Agent arm length=0.8m. Group: mobile manipulation. 0.1
Simulator: Habitat. Camera: head camera. Instruction: Pick

an apple.

All Data Only Fetch Pick
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Future Work

* Adaption to new environments by investigating:
* # of new demonstrations vs. success rate with supervised fine-tuning
 # of experiences vs. success rate with reinforcement learning

* |nvestigating how online data collection can boost performance

* Insights from model training




. SScchyLéarning.
s Generalization Solved? Are We Done?

* Positive View:
e Bypass distribution shift!

* Train on as much “in-distribution
data” as possible ?

* Nothing is OOD any more




. SScchyLéarning.
s Generalization Solved? Are We Done?

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision]

e Positive View:
Kinetics700
e Bypass distribution shift! U397

HatefulMemes

CIFAR10

2. Create dataset classifier from label text
CIFAR100
STL1O

car —
a photo of Text
a {object}. Encoder
FER2013

. . 2.8 )
* Train on as much “in- catecniot 2 e

OxfordPets

1 1 1 ” PascalvVOC2007
distribution data” as ascalVOCX(
. MNIST 3. Use for zero-shot prediction
possible ovChircrat I N I I
Flowers102

DTD
CLEVRCounts
GTSRB

-19. PatchCamelyon
-34.0 KITTI Distance
EuroSAT

Image
Encoder

* Nothing is OOD any more ' .
—40 —30 —20 —10 0 10 20 30 40
A Score (%) adog.
Zero-Shot CLIP vs. Linear Probe on ResNet50
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s Generalization Solved? Are We Done?

 Skeptical View:
* This is a “brute-force” approach —is it really scalable?

e Lots of “sub-distributions” without sufficient statistical

support.
* This could be the data you care about!

* Practically, clearly still under-performs and biased
e US-centric, not “in-the-wild” distributions, etc.

* How much do we need to soak up “literally all” the distributions
we care about?

* Generalist vision models still resist

* Something we might want to do: Finetune to our data!
* Above robotics work is an example!



How to Improve Robustness?
_ Out-of-Distribution

IN IN-V2 IN-Adversarial IN-Rendition IN-Sketch
CLIP Zero-Shot 67.68 61.41 30.60 56.77 45.33
Vanilla FT 83.66 I 73.82 I 21.40 l 43.06 l 45.22 l

Zero-Shot and fine-tuned classification accuracy of CLIP ViT-B on ImageNet (IN) and its variants.
The fine-tuning dataset is ImageNet.

Unconstrained optimization only encourages fitting to the new data

min L(x,yv;W
W|(x,y)ED¢rqin ( Y )

40



Pre-trained Robustness

* Pre-trained models do have great generalization capability
 Some OOD-detection and robustness capabilities

* Question: How do we preserve this during finetuning?




Preservation of Pre-trained Robustness

e [2-SP
* Imposes L2 regularization on the difference between the fine-tuned model
and the pre-trained model. L(6) = L(0) + % ||9 — 90||§

* WISE-FT
* Linearly interpolate between a fine-tuned model and its pre-trained
initialization.

* Works very well for vision-language models

Hypothesis: unconstrained optimization to target leads to worse robustness.

Xuhong, L. 1., Yves Grandvalet, and Franck Davoine. "Explicit inductive bias for transfer learning with convolutional networks.” ICML, 2018. 42



Projected Gradient Method

min L, y;W)s.t.|IW—-W,l| <
W1(x,y)€D¢train ( Y ) “ 0” |4

* Projected Gradient Descent

Wt = SGD(x,y|W_1)

C D "
Unconstrained
_ TA7 . Gradient
w,=1(W,Wgy)

Descent

[1 defines a (differentiable) projection function and y is the projection radius

43
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Trainable Projected Gradient Method

* Open Questions

* Trainable Projected Gradient Method (TPGM)  Which layers to
fine-tune?
 How much to fine-
Fine-tuned W, . O tune?

* Not feasible to
specify a different
constraint for each

A layer .

s
C y(o) p:'y(N_l) V y(N)

Projected W,

Pre-trained W

Param. 0 Param. N —1 Param. N

Tian, Junjiao, et al. "Trainable projected gradient method for robust fine-tuning." CVPR 2023. 44



Our Prior Work: TPGM and FTP

TPGM and FTP use outer loop bi-level optimization for robust training

min min L(xz,y;0, A\, S.t. 0—0 <
A1(2,y) €Duat 0|()EDer (2, 4:0,2,7) 16— Boll« <

Step 2 Step 1 Step 3

Algorithm 1: TPGM

Data: D.,., D,

Result: 6

Initialize 65 = 0o, y0 = €

fort ={0,...., T — 1} do
Stepl | 61 = argming L(z,y;07) z,y € Dy,
Step 2 v¢+1 = ProjectTune(Dy a1, 0o, O: 11, V)
steps | i1 = (00, Or1, vet1)

Time (it/s)

Painting

b) Image Classification ¢) Semantic Segmentation ~ 1
®) & © & L;2(6o,6,,7) : 0 = G+

|6t 9{]”2
& Junjiao max (1, y
Tian
Robotics
Ph.D.

. . i . . -
Tian et al. CVPR 2023 / NeurlPS 2023 Can we simplify this to reduce complexity/computation:

(@, —6y).




Selective Projection Decay

Learning the New Without Forgetting the Old Even More Efficiently

Junjiao Chengyue
Tian Huang
Robaotics ML Ph.D.
Fh.D.
Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning®, NeurlPS 2024. 46



Observations

* TPGM/FTP grows and shrinks the
projection radius.

* When the radius grows, it often provides no
regularization (no projection).

* The regularization effect mainly comes from

the shrinkage of the projection radius. y: constraints
wy: Initialization

Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning®, NeurlPS 2024. 47



Hypothesis

* No need to explicitly maintain a set of projection radii.
* No need to know when to grow.

* Just need to know when to shrink/apply regularization.
* Do this per layer/iteration
 When: Alignment between gradient and direction to original weights

* How much: y; = ||Wt _W0||2

Tian, Junjiao, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning“, NeurlPS 2024. 48



Selective Projection Decay (SPD)

Selecting criterion
+ 12-5P: L(6) = L(6) +2|16 — 6ol

- af (8 _ af(8p" o
* Hyper-optimize 1: VA = Mt = agt a—; =ax*x—gl, (0, —0y)

* This was the gradient calculation in Fast Trainable Projection Vy « g/ (68,_; — 6,)

project
01

e Selection condition: ¢; = ¢;_; — gf (8,—1 — 0y) <0

Y. constraints
8, initialization
8. unconstrained update




Selective Projection Decay (SPD)

Projection coefficient

* L2-SPis a projection: 8, = 6, — (1 — Y * (0 — 69)
maX{%H@t—@on} Y. constraints
- 0, initialization
* Deviation:y; = ||0; — 0 0
Ve “ ‘ 0”2 8. unconstrained update
max{0,ye—vt—1}

YVt

e Deviation ratio: 1 =

* 0, <0, — Amax{o'g_n_l} (6 — 6)




Selective Projection Decay

Algorithm 1: Adam with L2-Regularization

Gt < Gt — )\2(9,3 — 90)

Algorithm 2: Adam with Selective L2-Reg.

Learning rate

Ct = Ct—1 — Qg(et—i ;.90)

e <0

9t < Gt — A'T't (9t — 90)

1, Condition

2, Deviation Ratio

52



Algorithm 2: Adam with SPD

Algorithm 1: Adam with L2-SP Initialize mq < 0, vo < 0, t < O,c < 0
Initialize mo < 0, vo < 0,t < 0 While #; not converged
While 6; not converged t+—t+1
t—t+1 gt Vth(gt_l)
gt < Vo fi(0:-1) me < Bime—1 + (1 — B1)ge
my — Bimy—1 + (1 — B1)g: v < Bovi—1 + (1 — Ba2)gi
vy Pavg_1 + (1 — B2)g? Bias Correction
Bias C/(lrrection ~ My 1’_”—23{, Uy lf—jeé
M 1T—f3§a Ut = 11&55 Update
Update . 0y +— 0,1 — \;’%@ie
Op = 011 — Ve ce = ci—1 — g (0i—1 — bp)

9t<—9t—)\a(9t—90) IfCt<OI
Ht < Ht — /\rt(Ht — 90)

More intuitive hyper-parameter (A1) tuning
* No regularization (A = 0): the projection radius is 1.

* Weak regularization (1 = A > 0): the projection radius lies
between |0, — 90||2 and |6, — 90||2. Within this range,
layers will expand.

» Strong regularization (A > 1): the projection radius lies
between 0 and ||9t_1 — 90||2. In this range, it’s possible that
regularized layers can contract.



Experiments

 Selective regularization is on par with predecessors and outperforms
other methods.

Table 3: ImageNet Fine-Tuning Result using CLIP ViT-Base. SPD outperforms more complicated
algorithms and beats L2-SP by 8.8% by selectively imposing regularization.

ID OOD Statistics
Im Im-V2 Im-Adversarial Im-Rendition Im-Sketch | OOD Avg. Avg.
Zero-Shot | 67.68 | 6141 30.60 56.77 45.53 48.58 52.40
vanilla FT | 83.66 | 73.82 21.40 43.06 45.52 46.98 54.29
Linear Prob. | 78.25 | 67.68 26.54 52.57 48.26 48.76 54.66
LP-FT [19 82.99 | 72.96 21.08 44.65 47.56 46.56 53.85
L2-SP [13 83.44 | 73.2 20.55 43.89 46.60 46.06 53.54
FTP [11] 84.19 | 74.64 26.50 47.23 50.23 49.65 56.56 \
Adam-SPD | 84.21 | 74.83 25.42 49.09 51.18 50.13 56.95
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Compatible with Parameter-Efficient Fine-Tuning

* Our method reduces to selective weight decay when working with
Parameter Efficient Fine-Tuning (PEFT) methods.

Full Fine-Tuning PEFT Fine-Tuning

D (6,) Pre-trained model
ﬁ 146,

A sy D (6,) Fine-tuned model

/D\u@_%u /D\ \ A i D 40, PEFT mode

“Zero” model




- “¥bhilearnng
LLaMA PEFT Fine-Tuning Experiments

Full Fine-Tuning PEFT Fine-Tuning

D (Wy) Pre-trained model
a oWl
— D (W;) Fine-tuned model
5 W = W"”g D (AW,) PEFT model

“Zero” model

PEFT | LLM | Optimizer | BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA | Avg.
NP Adaraw 630 792 763 67.9 757 745 571 724 | 708
eres 7B | Adam-SPD (1.0) | 683 804 774 81.6 79.7 794 635 784 | 76.1
AdamW 679 764 788 698 78.9 737 5713 752 | 723

Parallel | LLaMA7p | 4. SPD(1.0) | 688  80.9 783 82.0 80.8 8.0 631 780 | 765
AdamW 689 807 774 781 78.8 778 613 748 | 747

LoRA | LLaMA75 | \4am SPD(07) | 691  82.8  78.9 84.8 80.7 809 658 792 | 778
AdamW 721 835 805 80,5 83.7 828 683 824 | 805

LoRA | LLaMA1sB | Aqam-SPD (12) | 729 856 807 92.0 83.7 85.6 716 856 | 822

Compatibility with PEFT methods
* SPD regularizes ||9t — 90||2 for full fine-tuning and ||A0t||2 for PEFT fine-tuning

* SPD can also improve the performance of PEFT methods (e.g. LoRA, series adapters, parallel adapters)
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What about Vision-Language Models (VLMSs)?

* Robustness and distribution shift is much more complicated!

* Distribution Shifts to Images
* |V-VQA

* Many types of shift possible CVVaA

* Distribution Shifts to Questions
* VQA-Rephrasings
* VQA-LOL

e Distribution Shifts to Answers
* VQA-CP

* Distribution Shifts to Multi-modalities.
* VQA-GEN
* VQA-CE
* VQA-VS Adversarial Distribution Shifts
* AVQA

* Adversarial
« AdVQA

* Far OOD: TextVQA, VizWiz, OK-VQAv2



Visual Question Answering (VQA) Fine-Tuning Experiments

| ID | Near OOD | Far OOD
Vision Question Answer Multimodal | Adversarial
VQAV2 | IV-VQA CV-VQA | VQA-Rephrasings | VQA-CPv2 | VQA-CE AdVQA | TextVQA VizWiz OK-VQA

Zero-Shot 54.42 63.95 44.72 50.10 54.29 30.68 30.46 14.86 16.84 28.60
Vanilla FT(LoRA) 86.29 94.43 69.36 78.90 86.21 71.73 49.82 42.08 22.92 48.30
Linear Prob. 78.24 87.83 63.87 69.61 78.48 61.66 42.90 29.61 18.80 42.27
LP-FT(LoRA) 85.97 93.30 65.93 76.49 86.16 7273 45.68 31.41 19.01 43.27
WiSE-FT(LoRA 71.36 85.06 64.55 66.42 70.89 48.74 43.95 36.98 22.41 42 .35

Adam-SPD(LoRA 95.25 68.85 79.48 87.27 73.52 50.90

New setting: robust fine-tuning for VQA
 |D dataset: VQAvV2
 OOD datasets
* Distribution shifts to images: IV-VQA, CV-VQA
e Distribution shifts to questions: VQA-Rephrasings
e Distribution shifts to multi-modalities: VQA-CE
e Adversarial distribution shifts: AdVQA
* Far OODs: TextVQA, VizWiz, OK-VQAv2

SPD shows competitiveness across ID, near OOD, and far OOD datasets on multimodal tasks.
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Finetuning and Forgetting are common!

We anticipate a number of places for this to be useful!
* Training vision-language-action models for robotics!
* Some can afford to co-finetune with VQA, etc. but difficult!

* Finetuning to large open-vocabulary corpora (e.g. Wikipedia)

* Multi-task finetuning from pre-trained model
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Conclusions

* Distribution shift is still a problem
* Private, in-the-wild data

* One approach: Finetune!
e Question: How to do so robustly? Per-layer/iteration constraint of gradient update
* Not the only choice: Retrieval/RAG, etc.

* Lots of other “distributions” of data!
* Reasoning, planning, etc.
e Current approach (01): Show it the distribution
e Other approaches?



Conclusions
« Already getting benefits of language!

Long-

Reproducible Discovering : Robust
- Natural task specification Rohoticns Horizon / B
Long-

- Semantic actions, Embodiment prompt Simulation
Context

tuning

« Some other projects:

- Long-form videos and memory

- Fast 3D reconstruction for simulation

- 3D question/answering agents

- Minecraft — Learning from unstructured demos

- Web GUI Agents

 Focus on:

- Generalization

- Long-Horizon / Long Context

- Planning, Reasoning, Memory

- Robustness
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S
Open VLM/Multi-Modal Works?




S
Open VLM/Multi-Modal Works?

* Tokenization!
* Images? Videos/Compressed Representations?

* Where to spend parameters and compute?
e Unimodal encoders
* Interaction / Fusion
e Decoding

* Inference-time compute for MLLMs
* Ala OpenAl 01 model

* Interleave everything:
* Full/partial modality data, “thought tokens”, decoding
* Both at the input and output

12/3/2024 68
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