Multi-Modal Vision-Language-Action Foundation Models for Generalizable Robotics

Zsolt Kira A s s o c i a t e P r o f e s s o r School of Interactive Computing G e o r g i a Te c h

 $\frac{1}{2}$

. .

Administrative

- CIOS: Fill out the CIOS!<https://b.gatech.edu/CIOS>
- **Project:** Project report rubrics and templates out
	- Due **Dec. 12th 11:59pm**
- **Video:** Will be out soon, but mostly it will be to have fun with it (YouTube video!)

Georgia **Machine**

Zsolt Kira

zkira@gatech.edu Associate Professor School of Interactive Computing Georgia Institute of Technology

Research Interests: Intersection of deep learning and robotics, focusing on robustness and decision-making in an open world

How can perception deal with changing environments and the open world?

Robust Open-World Learning

- Past: Semi and self-supervised, few-shot, continual learning
- Open-world learning and Vision-Language Models
- Robust fine-tuning of VMs/VLMs

Planning, Reasoning, Memory How can we use VLMs for Learning, Planning, and Reasoning Agents

- VLMs for reasoning/planning
- Long-form videos and memory
- Grounding

Robotics Perception and Learning

How can we scale robotics in DL era?

Scaling up Robotics

- Better simulation w/ NeRFs/3D
- Self-supervised and pre-training
- Combinations with large language and multi-modal models
	- Long-Context Models
- Vision-Language Action Models

 $l_i = \left(\frac{1}{\alpha} \left| |f| \right|_2 + \frac{\beta}{\alpha} \right) \left| |w_i| \right|_2 \cos \phi_i$

Out-of-distribution detection, calibration, open-set

Continual Learning [ICCV 2021, Nature 2022]

SoftMax

 \boldsymbol{P}

The great shift

• Modality-specific pipelines

 \blacktriangleright DL

 \blacktriangleright Transformers

- Scale + Self/semi-supervised learning FTW!
	- Web \blacktriangleright Language Models \blacktriangleright Knowledge
	- DINO/MAE/CLIP/SAM **Scene Understanding**
	- **Multi-Modal Models**

Where does robotics go from here?

The Reality

- Perception is *still* tied to *known* categories or poor open-vocabulary methods during training
- Brittle to out-of-distribution data
- Limited Open-World abilities
- Even large-scale datasets (RT-X) limited in generalization

% success rates

Degradation over novelty…

Habitat 2.0 Work by Andrew Szot, Dhruv Batra, and Meta

Challenges in Robotics

- Data flywheel
	- Hard to gather
	- Potentially dangerous
	- Huge heterogeneity
- Robusness
	- In-the-wild data
	- Long-tail (see self-driving cars)
	- Long-horizon decision-making
	- Physics!
- Reliability 24/7
- Cost?

Robotic Foundation Models

Hu et al., Toward General-Purpose Robots via Foundation Models: A Survey and Meta-Analysis

Open-World Learning (w/ FMs and VLAs)

Reproducible Robotics -> **Simulation**

Generalization to an Open **World**

Long-Horizon/Long -Context, Memory

Robust Finetuning

[ICLR 2018/2019,

2022]

arXiv:2305.10420, ECCV

Main Task

[ECCV 2024, on-going]

pture Embroidery

[ImageNet-R]

[CVPR 2023, NeurIPS 2023/2024]

[NeurIPS 2023 OVMM Challenge, ICML 2023, Neurips 2021] (w/ Dhruv Batra)

[Middle two images by Stable Diffusion]

Habitat 2.0 & 3.0

Train Pick Policy on Large Scale Randomization

IRIM Symposium $Z_{\rm solt\,Nira}$. The contract of $Z_{\rm solt\,Nira}$ and $Z_{\rm solt\,Nra}$. The contract of $Z_{\rm bol}$ $Z_{\rm OZ}$ $Z_{\rm OZ}$. The contract of $Z_{\rm bol}$ $Z_{\rm OZ}$ $Z_{\rm bol}$ $Z_{\rm OZ}$. The contract of $Z_{\rm bol}$ $Z_{\rm bol}$ $Z_{$

.

.

Multimodal Large Language Models

Bing's A.I. Chat: 'I Want to Be Alive.

In a two-hour conversation with our columnist, Microsoft's new chatbot said it would like to be human, had a desire to be destructive and was in love with the person it was chatting with. Here's the transcript.

Ministerior A D Due

https://www.nytimes.com/article/ai-artificial-intelligencechattick himi

ARTEFICIAL INTELLIGENCE

ChatGPT is about to revolutionize the economy. We need to decide what that looks like.

https://www.technologyreview.com/2023/03/25/1070275/chatgot-revolutionize-economy-decide-what-looks-like/

Multimodal Large Language Model

Gemini 1.5

LLAMA2

Multimodal Large Language Models

What about VLMS for direct task to action?

Vision-Language Action Models

Lots of great concurrent work! OpenVLA, LLARVA, etc.

Szot et al., Grounding Multimodal Large Language Models in Actions, NeurIPS 2024

Vision-Language Action Models

• Concurrent work tends to just pick one and go with it

Action Tokenization

Action is a continuous vector

Example: end effector control [dx, dy, dz]

Learned Tokenization

Residual VQ-VAE for discrete action tokenization

Action is a selection from a set of discrete choices

Szot et al., Grounding Multimodal Large Language Models in Actions*.* NeurIPS 2024.

We finetune the ASAs, downsampler, and MLLM

Szot et al., Grounding Multimodal Large Language Models in Actions

. 18

VLA: Results across Spectrum of Generalization

Push a button on the coffee

machine

Rotate the pink block towards

the right

Pick a lemon

Open the blue door

Bring something to pour hot
coffee in to the TV stand

HabPick

Many tasks we want an agent to take actions to autonomously complete

Can we have *one* policy that does all of these?

Manipulation

Adapt a pre-trained Multimodal LLM

Robotic Manipulation

UI Control

. 22

Step 1: Collect expert demonstrations in diverse domains for training

From diverse sources, like scripted policies, humans, or RL policies

Data - Static Manipulation

"Use the block to pull the handle sideways" "Move the purple block next to the blue block"

Data - Mobile Manipulation

"Unload the plates from the dishwasher and place them on the rack" "Pick up the banana"

Data - UI Control

"Find me a standing desk for my laptop from the GlobalSources app"

Static Manipulation

Games

Navigation

Mobile Manipulation

Character Control

UI Control

\vec{r} erityur as df q h j k z x c v b n m k

Planning

Static Manipulation

Games

Navigation

Mobile Manipulation

4M trajectories for training (~500M image/actions) **90 embodiments Over 1000 distinct tasks**

 \bullet H \circ

Evaluation

Find an apple and put it away in the fridge.

Find a pear and put it away in the fridge. Novel Objects

I am hungry for something sweet and healthy. Put a snack for me on the table. Context

Find an apple and put it in the receptacle to the right of the kitchen counter. Spatial Relationships

New control spaces and robot types $\|\cdot\|$ New platform with limited data

New Tasks New Low Embodiments New Environments

Results - New Tasks

Results are for adapting LLaVA-1.5 7B

Results - New Embodiments

Generalize to new arm lengths

Embodiment Prompt

Agent: Fetch Robot. Actions: delta joint position. **Agent arm length=0.8m**. Group: mobile manipulation. Simulator: Habitat. Camera: head camera. Instruction: Pick an apple.

Future Work

- Adaption to new environments by investigating:
	- # of new demonstrations vs. success rate with supervised fine-tuning
	- # of experiences vs. success rate with reinforcement learning
- Investigating how online data collection can boost performance
- Insights from model training

Is Generalization Solved? Are We Done?

?

- Positive View:
	- Bypass distribution shift!
	- Train on as much "in-distribution data" as possible
	- Nothing is OOD any more

Is Generalization Solved? Are We Done?

- Positive View:
	- Bypass distribution shift!
	- Train on as much "indistribution data" as possible
	- Nothing is OOD any more

[Radford et al., Learning Transferable Visual Models From Natural Language Supervision]

2. Create dataset classifier from label text

Is Generalization Solved? Are We Done?

- Skeptical View:
	- This is a "brute-force" approach is it really scalable?
	- Lots of "sub-distributions" without sufficient statistical support.
		- This could be the data you care about!
	- Practically, clearly still under-performs and biased
		- US-centric, not "in-the-wild" distributions, etc.
		- How much do we need to soak up "literally all" the distributions we care about?
		- Generalist **vision** models still resist
	- **Something we might want to do:** Finetune to our data!
		- Above robotics work is an example!

How to Improve Robustness?

Zero-Shot and fine-tuned classification accuracy of CLIP ViT-B on ImageNet (IN) and its variants. The fine-tuning dataset is ImageNet.

Unconstrained optimization only encourages *fitting* to the new data

$$
\min_{\mathbf{W} | (x,y) \in \mathcal{D}_{train}} \mathcal{L}(x, y; \mathbf{W})
$$

Wortsman, Mitchell, et al. "Robust fine-tuning of zero-shot models." CVPR 2022.

Pre-trained Robustness

- Pre-trained models do have great generalization capability
	- Some OOD-detection and robustness capabilities
- **Question:** How do we preserve this during finetuning?

Preservation of Pre-trained Robustness

- L2-SP
	- Imposes L2 regularization on the difference between the fine-tuned model and the pre-trained model. $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2}$ $\frac{\pi}{2}||\theta - \theta_0||_2^2$ 2
- WiSE-FT
	- Linearly interpolate between a fine-tuned model and its pre-trained initialization.
	- Works very well for vision-language models

Hypothesis: unconstrained optimization to target leads to worse robustness.

Projected Gradient Method

$$
\min_{W|(x,y)\in\mathcal{D}_{train}} \mathcal{L}(x,y;W) \, s.t. \, \big| |W - W_0| \big| \leq \gamma
$$

 Π defines a (differentiable) *projection function* and $γ$ is the projection radius

Trainable Projected Gradient Method

• Trainable Projected Gradient Method (TPGM)

- Open Questions
	- *Which* layers to fine-tune?
	- *How much* to finetune?
	- Not feasible to specify a different constraint for each layer .

⁴⁴ **Tian, Junjiao**, et al. "Trainable projected gradient method for robust fine-tuning." *CVPR 2023.*

Our Prior Work: TPGM and FTP

TPGM and FTP use *outer loop bi-level optimization* for robust training

 $\min_{\lambda, \gamma | (x,y) \in \mathcal{D}_{val}} \min_{\theta | (x,y) \in \mathcal{D}_{tr}} \mathcal{L}(x,y;\theta,\lambda,\gamma) \quad \text{s.t.} \quad \|\theta - \theta_0\|_* \leq \gamma$ Step 2 Step 1 Step 3 **Algorithm 1: TPGM** Data: $\mathcal{D}_{tr}, \mathcal{D}_{val}$ **Result:** θ Initialize $\theta_0^* = \theta_0, \gamma_0 = \epsilon$ for $t = \{0, ..., T-1\}$ do $\theta_{t+1} = \arg \min_{\theta} \mathcal{L}(x, y; \theta_t^*) \quad x, y \in \mathcal{D}_{tr}$ Step 1 Step 2 γ_{t+1} = ProjectTune $(\mathcal{D}_{val}, \theta_0, \theta_{t+1}, \gamma_t)$ $\theta_{t+1}^* = \Pi(\theta_0, \theta_{t+1}, \gamma_{t+1})$ Step 3 $\Pi_{l2}(\theta_0, \theta_t, \gamma): \tilde{\theta} = \theta_0 + \frac{1}{\max\left(1, \frac{\|\theta_t - \theta_0\|_2}{\gamma}\right)}(\theta_t - \theta_0).$

Than et al., CVPR 2023 / NeurIPS 2023 Can we simplify this to reduce complexity/computation?

Selective Projection Decay

Learning the New Without Forgetting the Old Even More Efficiently

⁴⁶ **Tian, Junjiao**, Chengyue Huang, and Zsolt Kira. "Selective Projection Decay for Robust Fine-Tuning", **NeurIPS** *2024.*

Observations

- TPGM/FTP **grows** and **shrinks** the projection radius.
	- When the radius grows, it often provides no regularization (no projection).
	- The regularization effect mainly comes from the shrinkage of the projection radius.

 γ : constraints w_0 : Initialization

Hypothesis

- No need to explicitly maintain a set of projection radii.
- No need to know when to grow.
- Just need to know when to shrink/apply regularization.
	- Do this per layer/iteration
	- **When:** Alignment between gradient and direction to original weights
	- **How much:** $\gamma_t = ||w_t w_0||_2$

Selective Projection Decay (SPD)

Selecting criterion

- L2-SP: $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2}$ $\frac{\pi}{2}$ || $\theta - \theta_0$ || $\frac{\pi}{2}$ 2
- Hyper-optimize λ : $\nabla \lambda = \frac{\partial f(\theta_t)}{\partial \lambda}$ $\partial \lambda$ $=\frac{\partial f(\theta_t)}{\partial \theta_t}$ $\partial \theta$ T_{θ_t} $\frac{\theta_t}{\partial \lambda} = \alpha * -g_{t+1}^T(\theta_t - \theta_0)$
	- This was the gradient calculation in Fast Trainable Projection $\,\nabla\gamma \propto g_t^T(\theta_{t-1}-\theta_0\,$
- Selection condition: $c_t = c_{t-1} g_t^T (\theta_{t-1} \theta_0) < 0$

 ${\gamma}_t$: constraints θ_0 : initialization $\tilde{\theta}_t$: unconstrained update

Selective Projection Decay (SPD)

Selecting criterion

- L2-SP: $L(\theta) = \tilde{L}(\theta) + \frac{\lambda}{2}$ $\frac{\pi}{2} ||\theta - \theta_0||_2^2$ 2
- Hyper-optimize $\lambda: \nabla \lambda = \frac{\partial f(\theta_t)}{\partial \lambda}$ $\partial \lambda$ $=\frac{\partial f(\theta_t)}{\partial \theta_t}$ $\partial \theta$ T_{θ_t} $\frac{\theta_t}{\partial \lambda} = \alpha * -g_{t+1}^T(\theta_t - \theta_0)$
- Selection condition: $c_t = c_{t-1} g_t^T (\theta_{t-1} \theta_0) < 0$

Projection coefficient

• L2-SP is a projection:
$$
\theta_p = \theta_t - \left(1 - \frac{\gamma}{\max\{\gamma, ||\theta_t - \theta_0||_2\}}\right) * (\theta_t - \theta_0)
$$

- Deviation: $\gamma_t = ||\theta_t \theta_0||_2$
- Deviation ratio: $r_t = \frac{\max\{0, \gamma_t \gamma_{t-1}}{\gamma_t}\}$ γ_t

•
$$
\theta_t \leftarrow \theta_t - \lambda \frac{\max\{0, \gamma_t - \gamma_{t-1}\}}{\gamma_t} (\theta_t - \theta_0)
$$

 ${\gamma}_t$: constraints θ_0 : initialization $\tilde{\theta}_t$: unconstrained update

Selective Projection Decay

Algorithm 1: Adam with L2-Regularization

Initialize $m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0$ **While** θ_t not converged $t \leftarrow t + 1$ $q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ **Bias Correction** $\widehat{m_t} \leftarrow \frac{m_t}{1-\beta_t^t}, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_t^t}$ **Update** $\theta_t \leftarrow \theta_{t-1} - \frac{\alpha \widehat{m}_t}{\sqrt{\widehat{v}_t} + \epsilon}$ $\theta_t \leftarrow \theta_t - \lambda \alpha (\theta_t - \theta_0)$

Algorithm 2: Adam with Selective L2-Reg.

```
Initialize m_0 \leftarrow 0, v_0 \leftarrow 0, t \leftarrow 0, c_0 \leftarrow 0While \theta_t not converged
 t \leftarrow t + 1q_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_tv_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2) g_t^2Bias Correction
            \widehat{m_t} \leftarrow \frac{m_t}{1-\beta_1^t}, \widehat{v_t} \leftarrow \frac{v_t}{1-\beta_2^t}Update
             \theta_t \leftarrow \theta_{t-1} - \frac{\alpha m_t}{\sqrt{\hat{v}_t} + \epsilon}c_t = c_{t-1} - g_t^{\mathsf{T}}(\theta_{t-1} - \theta_0)1, Condition
If c_t < 0:
            \theta_t \leftarrow \theta_t - \lambda r_t (\theta_t - \theta_0)
```


More intuitive hyper -parameter () tuning

- No regularization ($\lambda = 0$): the projection radius is 1.
- Weak regularization ($1 \geq \lambda > 0$): the projection radius lies between $\left|\left|\theta_{t}-\theta_{0}\right|\right|_{2}$ and $\left|\left|\theta_{t-1}-\theta_{0}\right|\right|_{2}$. Within this range, layer s will expand.
- Strong regularization ($\lambda > 1$): the projection radius lies between 0 and $\left|\left|\theta_{t-1}-\theta_0\right|\right|_2$. In this range, it's possible that regularized layers can contract.

Experiments

• Selective regularization is on par with predecessors and outperforms other methods.

Table 3: ImageNet Fine-Tuning Result using CLIP ViT-Base. SPD outperforms more complicated algorithms and beats L2-SP by 8.8% by selectively imposing regularization.

Compatible with Parameter-Efficient Fine-Tuning

• Our method reduces to selective weight decay when working with Parameter Efficient Fine-Tuning (PEFT) methods.

LLaMA PEFT Fine-Tuning Experiments

Compatibility with PEFT methods

- SPD regularizes $\big|\vert\theta_t-\theta_0\vert\big|_2$ for full fine-tuning and $\big|\vert\Delta\theta_t\vert\big|_2$ for PEFT fine-tuning
- SPD can also improve the performance of PEFT methods (e.g. LoRA, series adapters, parallel adapters)

What about Vision-Language Models (VLMs)?

- Robustness and distribution shift is much more complicated!
	- **Distribution Shifts to Images**
- Many types of shift possible
- IV-VQA
- CV-VQA
- **Distribution Shifts to Questions**
	- VQA-Rephrasings
	- VQA-LOL
- **Distribution Shifts to Answers**
	- VQA-CP
- **Distribution Shifts to Multi-modalities.**
	- VQA-GEN
	- VQA-CE
	- VQA-VS Adversarial Distribution Shifts
	- AVQA
- **Adversarial**
	- **AdVQA**
- **Far OOD:** TextVQA, VizWiz, OK-VQAv2

Visual Question Answering (VQA) Fine-Tuning Experiments

New setting: robust fine-tuning for VQA

- ID dataset: VQAv2
- OOD datasets
	- Distribution shifts to images: IV-VQA, CV-VQA
	- Distribution shifts to questions: VQA-Rephrasings
	- Distribution shifts to multi-modalities: VQA-CE
	- Adversarial distribution shifts: AdVQA
	- Far OODs: TextVQA, VizWiz, OK-VQAv2

SPD shows competitiveness across ID, near OOD, and far OOD datasets on multimodal tasks.

Finetuning and Forgetting are common!

We anticipate a number of places for this to be useful!

- Training vision-language-action models for robotics!
	- Some can afford to co-finetune with VQA, etc. but difficult!
- Finetuning to large open-vocabulary corpora (e.g. Wikipedia)
- Multi-task finetuning from pre-trained model

Conclusions

- Distribution shift is *still* a problem
	- Private, in-the-wild data
- One approach: Finetune!
	- Question: How to do so robustly? **Per-layer/iteration constraint of gradient update**
	- Not the only choice: Retrieval/RAG, etc.
- Lots of other "distributions" of data!
	- Reasoning, planning, etc.
	- Current approach (o1): Show it the distribution
	- Other approaches?

Conclusions

- Already getting benefits of language!
	- Natural task specification
	- Semantic actions, Embodiment prompt
- Some other projects:
	- Long-form videos and memory
	- Fast 3D reconstruction for simulation
	- 3D question/answering agents
	- Minecraft Learning from unstructured demos
	- Web GUI Agents
- Focus on:
	- Generalization
	- Long-Horizon / Long Context
	- Planning, Reasoning, Memory
	- Robustness

Acknowledgement and Questions

Yusuf Ali CS Ph.D.

Shaunak Halbe ML Ph.D.

Chengyue **Huang** ML Ph.D.

SAMSUNG

RESEARCH AMERICA

Ram Ramrakhya CS Ph.D. (coadvised with Dhruv Batra)

Andrew Szot ML Ph.D. (coadvised with Dhruv Batra)

Karmesh Yadav CS Ph.D. (coadvised with Dhruv Batra)

Brisa Maneechotesuwan Undergrad **Student**

Shivang Chopra M.S. Student

Open VLM/Multi-Modal Works?

Open VLM/Multi-Modal Works?

- Tokenization!
	- Images? Videos/Compressed Representations?
- Where to spend parameters and compute?
	- Unimodal encoders
	- Interaction / Fusion
	- Decoding
- Inference-time compute for MLLMs
	- A la OpenAI o1 model
- Interleave everything:
	- Full/partial modality data, "thought tokens", decoding
	- Both at the input and output