
Machine Learning Applications

CS 8803-VLM
ZSOLT KIRA

Topics:

• Transformers

Many slides by Justin Johnson



• Read over the website!

• Read up on Deep Learning, Transformers

• Sign up for presenting a paper!

• See the schedule for dates of project proposal, mid-project update, and final presentations. 

• Reminder: Please sign up for one session for now. Depending on how it shapes out, there may 
be an opportunity to do an optional second one. 

• Sessions are topic-focused. If there are other papers you recommend or want to present in 
addition to or instead of, let us know! We will take a look at the quality/relevance and approve. 

• The first one is next thursday 08/29 so it would be great to have someone sign up for that one 
ASAP! 

• There are a few that are still not filled in (dataset/eval, which will likely be presented by me, s 
well as survey papers). The survey papers will be put in later today. 

https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs8803vlm_fall/index.html
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VLM for Robotics
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
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Derivatives

⬣ We can find the steepest descent direction by 

computing the derivative (gradient):

⬣ Steepest descent direction is the negative 

gradient

⬣ Intuitively: Measures how the function changes 

as the argument a changes by a small step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 

loss function changes as weights are varied

⬣ Can consider each parameter separately 

by taking partial derivative of loss 

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from: 

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙



The same two-layered neural network 

corresponds to adding another weight 

matrix

⬣ We will prefer the linear algebra 

view, but use some terminology from 

neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝒙 𝑾𝟏 𝑾𝟐

=

𝒇 𝒙,𝑾𝟏,𝑾𝟐 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )



To develop a general algorithm for 

this, we will view the function as a 

computation graph

Graph can be any directed acyclic 

graph (DAG)

⬣ Modules must be differentiable to 

support gradient computations for 

gradient descent

A training algorithm will then 

process this graph, one module at a 

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Task: Sequence to Sequence Modeling



Machine Translation

we are eating bread estamos comiendo pan



Some Important Concepts

• Propagation of information (forward)

– Mixing!

– Two entangled things: Encoded input, 
state of decoding

• Propagation of gradients backwards



RNN DecoderRNN Encoder

Machine Translation

we are eating bread

estamos comiendo pan



Model: Recurrent Neural Network

h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT
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Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0 = h4



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s1

[START]

y0

y1

estamos

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0

Decoder: st = gU(yt, st-1)



Machine Translation with RNNs

we
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[START]
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Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson



Machine Translation with RNNs

we
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x1

are

h2

x2

eating

h3

x3

bread
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[START]

y0 y1

y1 y2
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pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Problem: si is used to 
encode input and 
maintain decoder state



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

h0

Solution: add a 
context vector c = h4 

and predict s0 from h4

c

Decoder: st = gU(yt, st-1, c)

Slide credit: Justin Johnson



Machine Translation with RNNs
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Solution: add a 
context vector c = h4 

and predict s0 from h4



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2
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pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Problem: Input sequence 
bottlenecked through 
fixed-sized vector.

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are
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Slide credit: Justin Johnson

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Idea: use new context 
vector at each step of 
decoder!



we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state: 
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14
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Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+
s1

y0

y1

estamos

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

[START]

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+
s1

y0

y1

estamos

This is all differentiable! Do not 
supervise attention weights – 
backprop through everythingBahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

Intuition: Context vector 
attends to the relevant 
part of the input sequence
“estamos” = “we are”

s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

a11=0.45, a12=0.45, a13=0.05, a14=0.05

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

This is all differentiable! Do not 
supervise attention weights – 
backprop through everything

Slide credit: Justin Johnson



we are eating
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+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson
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softmax
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+

s2
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compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Intuition: Context vector 
attends to the relevant part 
of the input sequence
“comiendo” = “eating”

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Use c2 to 
compute s2, y2

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at” 

different parts of the input sequence

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Diagonal attention means 
words correspond in 
order

Diagonal attention means 
words correspond in 
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Attention figures 
out different word 
orders

Diagonal attention means 
words correspond in 
order

Diagonal attention means 
words correspond in 
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

e21 e22 e23 e24

softmax

a21 a22 a23 a24

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson
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Idea: Can we use attention 
as a fundamental building 
block for a generic sequence 
(input) to sequence (output) 
layer?

?

x1 x2 x3 x4

y1 y2 y3 y4



Attention Layer
Inputs: 
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(st-1, hi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(q, Xi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi

Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Changes: 
- Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Changes: 
- Use dot product for similarity
- Multiple query vectors
- Separate key and value 

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1
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X3
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K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3
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E3,1

E4,3

E4,2

E4,1

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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A4,1

Softmax(    )

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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X1

X2

X3

K1

K2

K3
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Softmax(    )

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1
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A1,1 A2,1
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A2,3 A3,3
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A4,2

A4,1

Softmax(    )

V1

V2

V3

Y1 Y2 Y3 Y4

Product(     ),   Sum(    )

Slide credit: Justin Johnson



Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

One query per input vector

Self-Attention Layer

Slide credit: Justin Johnson



Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),   Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Queries and Keys will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Similarities will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Attention weights will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Values will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1
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E3,2
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A3,1
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V2
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V3

Product(→),   Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting 
the input vectors:

Outputs will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3
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E1,1

E1,3

E2,2

E2,1
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A3,2

A3,1

A3,3
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V2
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Product(→),   Sum(↑)

Softmax(↑)

Y3 Y1 Y2
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Consider permuting 
the input vectors:

Outputs will be the 
same, but permuted

Self-attention layer is 
Permutation 
Equivariant
f(s(x)) = s(f(x))

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Product(→),   Sum(↑)

Softmax(↑)
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Self-Attention Layer
Self attention doesn’t “know” 
the order of the vectors it is 
processing!

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Product(→),   Sum(↑)

Softmax(↑)
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Self attention doesn’t “know” 
the order of the vectors it is 
processing!

In order to make processing 
position-aware, concatenate 
input with positional encoding

E can be learned lookup table, 
or fixed function

E(1) E(2) E(3)

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Masked Self-Attention Layer

Don’t let vectors “look 
ahead” in the sequence

Used for language 
modeling (predict next 
word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2
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0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),   Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Multihead Self-Attention Layer
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Product(→),			Sum(↑)

Softmax(↑)
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Product(→),			Sum(↑)

Softmax(↑)
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Split

Concat

Use H independent 
“Attention Heads” in 
parallel

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3
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K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3
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Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After 
one RNN layer, hT ”sees” the 
whole sequence
(-) Not parallelizable: need to 
compute hidden states 
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need 
to stack many conv layers for 
outputs to “see” the whole 
sequence
(+) Highly parallel: Each output 
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after 
one self-attention layer, each 
output “sees” all inputs!
(+) Highly parallel: Each output 
can be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact 
with each other

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently 
on each vector
(weight shared!)

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact 
with each other

MLP independently 
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

x1 x2 x3 x4

All vectors interact 
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN     (Shape: D)
scale: 𝛾                  (Shape: D)
shift: 𝛽                   (Shape: D)
𝜇i = (1/D)∑j hi,j          (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2  (scalar)
zi = (hi - 𝜇i) / 𝜎i 
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide credit: Justin Johnson

MLP independently 
on each vector

y1 y2 y3 y4

MLP MLP MLP MLP



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

x1 x2 x3 x4

All vectors interact 
with each other

Residual connection

MLP independently 
on each vector

Slide credit: Justin Johnson
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Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact 
with each other

Residual connection

MLP independently 
on each vector

Residual connection

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only 
interaction between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

x1 x2 x3 x4

Slide credit: Justin Johnson



The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

A Transformer is a 
sequence of transformer 
blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only 
interaction between vectors!

Layer norm and MLP work 
independently per vector

Highly scalable, highly 
parallelizable

Slide credit: Justin Johnson



Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Details: 
• Tokenization is messy! 

Trained chunking 
mechanism

• Position encoding
• sin/cos: Normalized, 

nearby tokens have 
similar values, etc.

• Added to input 
embedding

• When to use decoder-only 
versus encoder-decoder 
model is open problem

• GPT is decoder only! 
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