
Machine Learning Applications

CS 8803-VLM
ZSOLT KIRA

Topics:

• Transformers

Many slides by Justin Johnson

• Read over the website!

• Read up on Deep Learning, Transformers

• Sign up for presenting a paper!

• See the schedule for dates of project proposal, mid-project update, and final presentations.

• Reminder: Please sign up for one session for now. Depending on how it shapes out, there may
be an opportunity to do an optional second one.

• Sessions are topic-focused. If there are other papers you recommend or want to present in
addition to or instead of, let us know! We will take a look at the quality/relevance and approve.

• The first one is next thursday 08/29 so it would be great to have someone sign up for that one
ASAP!

• There are a few that are still not filled in (dataset/eval, which will likely be presented by me, s
well as survey papers). The survey papers will be put in later today.

https://faculty.cc.gatech.edu/~zk15/teaching/AY2024_cs8803vlm_fall/index.html

Deep Learning

Fundamentals

Linear classification

Loss functions

Optimization

Optimizers

Backpropagation

Computation Graph

Multi-layer

Perceptrons

Neural Network

Components and

Architectures

Hardware & software

Convolutions

Convolution Neural

Networks

Pooling

Activation functions

Batch normalization

Transfer learning

Data augmentation

Architecture design

RNN/LSTMs

Attention &

Transformers

Applications & Learning

Algorithms

Semantic & instance

Segmentation

Reinforcement Learning

Large-language Models

Variational Autoencoders

Diffusion Models

Generative Adversarial Nets

Self-supervised Learning

Vision-Language Models

VLM for Robotics

Deep Learning

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function changes

as the argument a changes by a small step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

The same two-layered neural network

corresponds to adding another weight

matrix

⬣ We will prefer the linear algebra

view, but use some terminology from

neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝒙 𝑾𝟏 𝑾𝟐

=

𝒇 𝒙,𝑾𝟏,𝑾𝟐 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

To develop a general algorithm for

this, we will view the function as a

computation graph

Graph can be any directed acyclic

graph (DAG)

⬣ Modules must be differentiable to

support gradient computations for

gradient descent

A training algorithm will then

process this graph, one module at a

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Task: Sequence to Sequence Modeling

Machine Translation

we are eating bread estamos comiendo pan

Some Important Concepts

• Propagation of information (forward)

– Mixing!

– Two entangled things: Encoded input,
state of decoding

• Propagation of gradients backwards

RNN DecoderRNN Encoder

Machine Translation

we are eating bread

estamos comiendo pan

Model: Recurrent Neural Network

h0 fW h1 fW h2 fW h3

x3

yT

…

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0 = h4

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s1

[START]

y0

y1

estamos

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0

Decoder: st = gU(yt, st-1)

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

estamos

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Problem: si is used to
encode input and
maintain decoder state

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

h0

Solution: add a
context vector c = h4

and predict s0 from h4

c

Decoder: st = gU(yt, st-1, c)

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

Slide credit: Justin Johnson

Solution: add a
context vector c = h4

and predict s0 from h4

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Problem: Input sequence
bottlenecked through
fixed-sized vector.

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Slide credit: Justin Johnson

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Idea: use new context
vector at each step of
decoder!

we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state:
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get

attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Set context vector c to a linear

combination of hidden states

ct = ∑iat,ihi

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get

attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+
s1

y0

y1

estamos

Set context vector c to a linear

combination of hidden states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

[START]

Machine Translation with RNNs and Attention

Normalize to get

attention weights

0 < at,i < 1 ∑iat,i = 1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+
s1

y0

y1

estamos

This is all differentiable! Do not
supervise attention weights –
backprop through everythingBahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

Set context vector c to a linear

combination of hidden states

ct = ∑iat,ihi

Normalize to get

attention weights

0 < at,i < 1 ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

Intuition: Context vector
attends to the relevant
part of the input sequence
“estamos” = “we are”

s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state:
Initial decoder state s0

a11=0.45, a12=0.45, a13=0.05, a14=0.05

Set context vector c to a linear

combination of hidden states

ct = ∑iat,ihi

Normalize to get

attention weights

0 < at,i < 1 ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi) (fatt is an MLP)

Machine Translation with RNNs and Attention

This is all differentiable! Do not
supervise attention weights –
backprop through everything

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Use c2 to
compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Intuition: Context vector
attends to the relevant part
of the input sequence
“comiendo” = “eating”

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Use c2 to
compute s2, y2

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at”

different parts of the input sequence

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures
out different word
orders

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

e21 e22 e23 e24

softmax

a21 a22 a23 a24

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Slide credit: Justin JohnsonSlide credit: Justin Johnson

Slide credit: Justin Johnson

Slide credit: Justin Johnson

Slide credit: Justin Johnson

Slide credit: Justin Johnson

Slide credit: Justin Johnson

Slide credit: Justin Johnson

Idea: Can we use attention
as a fundamental building
block for a generic sequence
(input) to sequence (output)
layer?

?

x1 x2 x3 x4

y1 y2 y3 y4

Attention Layer
Inputs:
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(st-1, hi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(q, Xi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi

Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes:
- Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX) ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes:
- Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer
Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Changes:
- Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Changes:
- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1V1

V2

V3

Softmax()

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Slide credit: Justin Johnson

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

One query per input vector

Self-Attention Layer

Slide credit: Justin Johnson

Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Queries and Keys will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Similarities will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Attention weights will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Values will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant
f(s(x)) = s(f(x))

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self attention doesn’t “know”
the order of the vectors it is
processing!

In order to make processing
position-aware, concatenate
input with positional encoding

E can be learned lookup table,
or fixed function

E(1) E(2) E(3)

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Masked Self-Attention Layer

Don’t let vectors “look
ahead” in the sequence

Used for language
modeling (predict next
word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2

E3,1

0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Multihead Self-Attention Layer

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Y1 Y2 Y3

X1 X2 X3

Split

Concat

Use H independent
“Attention Heads” in
parallel

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact
with each other

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector
(weight shared!)

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide credit: Justin Johnson

MLP independently
on each vector

y1 y2 y3 y4

MLP MLP MLP MLP

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Residual connection

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

A Transformer is a
sequence of transformer
blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide credit: Justin Johnson

Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Details:
• Tokenization is messy!

Trained chunking
mechanism

• Position encoding
• sin/cos: Normalized,

nearby tokens have
similar values, etc.

• Added to input
embedding

• When to use decoder-only
versus encoder-decoder
model is open problem

• GPT is decoder only!

	Slide 1: CS 8803-VLM Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Task: Sequence to Sequence Modeling
	Slide 9: Machine Translation
	Slide 10: Some Important Concepts
	Slide 11: Machine Translation
	Slide 12: Model: Recurrent Neural Network
	Slide 13: Machine Translation with RNNs
	Slide 14: Machine Translation with RNNs
	Slide 15: Machine Translation with RNNs
	Slide 16: Machine Translation with RNNs
	Slide 17: Machine Translation with RNNs
	Slide 18: Machine Translation with RNNs
	Slide 19: Machine Translation with RNNs
	Slide 20: Machine Translation with RNNs
	Slide 21: Machine Translation with RNNs
	Slide 22: Machine Translation with RNNs
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Attention Layer
	Slide 48: Attention Layer
	Slide 49: Attention Layer
	Slide 50: Attention Layer
	Slide 51: Attention Layer
	Slide 52: Attention Layer
	Slide 53: Attention Layer
	Slide 54: Attention Layer
	Slide 55: Attention Layer
	Slide 56: Attention Layer
	Slide 57: Attention Layer
	Slide 58: Attention Layer
	Slide 59: Self-Attention Layer
	Slide 60: Self-Attention Layer
	Slide 61: Self-Attention Layer
	Slide 62: Self-Attention Layer
	Slide 63: Self-Attention Layer
	Slide 64: Self-Attention Layer
	Slide 65: Self-Attention Layer
	Slide 66: Self-Attention Layer
	Slide 67: Self-Attention Layer
	Slide 68: Self-Attention Layer
	Slide 69: Self-Attention Layer
	Slide 70: Self-Attention Layer
	Slide 71: Self-Attention Layer
	Slide 72: Self-Attention Layer
	Slide 73: Self-Attention Layer
	Slide 74: Self-Attention Layer
	Slide 75: Masked Self-Attention Layer
	Slide 76: Multihead Self-Attention Layer
	Slide 77: Three Ways of Processing Sequences
	Slide 78: The Transformer
	Slide 79: The Transformer
	Slide 80: The Transformer
	Slide 81: The Transformer
	Slide 82: The Transformer
	Slide 83: The Transformer
	Slide 84: The Transformer
	Slide 85: The Transformer
	Slide 86: The Transformer
	Slide 87: The Transformer

