Topics:

• Transformers

CS 8803-VLM ZSOLT KIRA

Many slides by Justin Johnson

- Read over the <u>website</u>!
- Read up on Deep Learning, Transformers
- Sign up for presenting a paper!
 - See the schedule for dates of project proposal, mid-project update, and final presentations.
 - Reminder: Please sign up for one session for now. Depending on how it shapes out, there may be an opportunity to do an optional second one.
 - Sessions are topic-focused. If there are other papers you recommend or want to present in addition to or instead of, let us know! We will take a look at the quality/relevance and approve.
 - The first one is next thursday 08/29 so it would be great to have someone sign up for that one ASAP!
 - There are a few that are still not filled in (dataset/eval, which will likely be presented by me, s well as survey papers). The survey papers will be put in later today.

Deep Learning Fundamentals

Linear classification Loss functions Optimization Optimizers Backpropagation Computation Graph Multi-layer Perceptrons

Neural Network Components and Architectures

Hardware & software Convolutions **Convolution Neural** Networks Pooling Activation functions **Batch normalization** Transfer learning Data augmentation Architecture design **RNN/LSTMs** Attention & **Transformers**

Applications & Learning Algorithms Semantic & instance Segmentation **Reinforcement Learning** Large-language Models Variational Autoencoders **Diffusion Models Generative Adversarial Nets** Self-supervised Learning Vision-Language Models VLM for Robotics

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Stretch pixels into column

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

We can find the steepest descent direction by computing the derivative (gradient):

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
 - As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
 - Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter

The same two-layered neural network corresponds to adding another weight matrix

 We will prefer the linear algebra view, but use some terminology from neural networks (& biology)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic** graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Task: Sequence to Sequence Modeling

Machine Translation

we are eating bread

estamos comiendo pan

Some Important Concepts

- Propagation of information (forward)
 - Mixing!
 - Two entangled things: Encoded input, state of decoding
- Propagation of gradients backwards

Machine Translation

estamos comiendo pan

we are eating bread

Model: Recurrent Neural Network

Encoder: $h_t = f_W(x_t, h_{t-1})$

Encoder: $h_t = f_W(x_t, h_{t-1})$

 $s_0 = h_4$

From final hidden state: Initial decoder state s₀

Compute **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Compute **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

Normalize to get **attention weights** $0 < a_{ti} < 1 \quad \sum_i a_{ti} = 1$

Compute **alignment scores** $e_{t,i} = f_{att}(s_{t-1}, h_i)$ (f_{att} is an MLP)

> Normalize to get **attention weights** $0 < a_{ti} < 1 \quad \sum_{i} a_{ti} = 1$

Set context vector **c** to a linear combination of hidden states

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Slide credit: Justin Johnson

supervise attention weights -

backprop through everything

a₁₁=0.45, a₁₂=0.45, a₁₃=0.05, a₁₄=0.05

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Slide credit: Justin Johnson

supervise attention weights -

backprop through everything

Repeat: Use s₁ to compute new context vector c₂

Use a different context vector in each timestep of decoder

 h_4

 X_4

- Input sequence not bottlenecked through single vector -
- At each timestep of decoder, context vector "looks at" different parts of the input sequence

[START] estamos comiendo pan

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

h₃

 X_3

eating

 h_2

 X_2

are

h₁

 X_1

we

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Visualize attention weights a_{ti} agreement European Economic signed August <end> 992 Area was The the uo Ľ accord sur la zone économique européenne а été signé en août 1992 <end>

Visualize attention weights a_{ti} agreement **Example**: English to French European Economic signed August <end; translation 1992 Area was The the uo **Diagonal attention means** Input: "The agreement on accord words correspond in sur the European Economic order la Area was signed in August zone **Attention figures** économique 1992." out different word européenne orders a été Output: "L'accord sur la signé zone économique en août européenne a été signé en **Diagonal attention means** 1992 août 1992." words correspond in order <end>
Machine Translation with RNNs and Attention

Bahdanau et al, "Neural machine translation by jointly learning to align and translate", ICLR 2015

Use a CNN to compute a grid of features for an image

Cat image is free to use under the Pixabay License

Use a CNN to compute a grid of features for an image

Use a CNN to compute a grid of features for an image

[START]

Idea: Can we use **attention** as a fundamental building block for a generic sequence (input) to sequence (output) layer?

x ₁ x ₂	x ₃	x ₄
-------------------------------	-----------------------	----------------

Attention Layer

State vector: s_i (Shape: D_Q) Hidden vectors: h_i (Shape: $N_X \times D_H$) Similarity function: f_{att}

<u>Computation</u>: **Similarities**: e (Shape: N_X) $e_i = f_{att}(s_{t-1}, h_i)$ **Attention weights**: a = softmax(e) (Shape: N_X) **Output vector**: $y = \sum_i a_i h_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q) **Input vectors**: **X** (Shape: N_X x D_X) **Similarity function**: f_{att}

<u>Computation</u>: **Similarities**: e (Shape: N_X) $e_i = f_{att}(\mathbf{q}, \mathbf{X}_i)$ **Attention weights**: a = softmax(e) (Shape: N_X) **Output vector**: $y = \sum_i a_i \mathbf{X}_i$ (Shape: D_X)

Inputs:

Query vector: **q** (Shape: D_Q) Input vectors: **X** (Shape: $N_X \times D_Q$) Similarity function: dot product

<u>Computation</u>: **Similarities**: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i$ **Attention weights**: a = softmax(e) (Shape: N_X) **Output vector**: $y = \sum_i a_i \mathbf{X}_i$ (Shape: D_X)

Changes:

- Use dot product for similarity

Attention Layer

Query vector: **q** (Shape: D_Q) Input vectors: **X** (Shape: $N_X \times D_Q$) Similarity function: scaled dot product

<u>Computation</u>: **Similarities**: e (Shape: N_X) $e_i = \mathbf{q} \cdot \mathbf{X}_i / \operatorname{sqrt}(D_Q)$ **Attention weights**: a = softmax(e) (Shape: N_X) **Output vector**: $y = \sum_i a_i \mathbf{X}_i$ (Shape: D_X)

Changes:

- Use **scaled** dot product for similarity

Attention Layer

Query vectors: Q (Shape: N_Q x D_Q) **Input vectors**: **X** (Shape: N_X x D_Q)

<u>Computation</u>: Similarities: $E = QX^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot X_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AX (Shape: $N_Q \times D_X$) $Y_i = \sum_j A_{i,j}X_j$

Changes:

- Use dot product for similarity
- Multiple query vectors

Attention Layer

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_{K}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $V = XW_{V}$ (Shape: $N_{X} \times D_{V}$) Similarities: $E = QK^{T}$ (Shape: $N_{Q} \times N_{X}$) $E_{i,j} = Q_{i} \cdot K_{j} / sqrt(D_{Q})$ Attention weights: A = softmax(E, dim=1) (Shape: $N_{Q} \times N_{X}$) Output vectors: Y = AV (Shape: $N_{Q} \times D_{V}$) $Y_{i} = \sum_{j} A_{i,j} V_{j}$

Changes:

- Use dot product for similarity
- Multiple query vectors
- Separate key and value

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j}V_j$ X₁ X₂ X₃

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_{K}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $V = XW_{V}$ (Shape: $N_{X} \times D_{V}$) Similarities: $E = QK^{T}$ (Shape: $N_{Q} \times N_{X}$) $E_{i,j} = Q_{i} \cdot K_{j} / sqrt(D_{Q})$ Attention weights: A = softmax(E, dim=1) (Shape: $N_{Q} \times N_{X}$) Output vectors: Y = AV (Shape: $N_{Q} \times D_{V}$) $Y_{i} = \sum_{j} A_{i,j} V_{j}$

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_Q \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_Q \times N_X$) Output vectors: Y = AV (Shape: $N_Q \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

Inputs:

Query vectors: Q (Shape: $N_Q \times D_Q$) Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Computation:

Key vectors: $K = XW_{K}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $V = XW_{V}$ (Shape: $N_{X} \times D_{V}$) Similarities: $E = QK^{T}$ (Shape: $N_{Q} \times N_{X}$) $E_{i,j} = Q_{i} \cdot K_{j} / sqrt(D_{Q})$ Attention weights: A = softmax(E, dim=1) (Shape: $N_{Q} \times N_{X}$) Output vectors: Y = AV (Shape: $N_{Q} \times D_{V}$) $Y_{i} = \sum_{j} A_{i,j} V_{j}$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$ Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$) Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

X₁ **X**₂ **X**₃

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_X \times D_Q$) Value vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_X \times D_V$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_X \times N_X$) $\mathbf{E}_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$ Attention weights: $A = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_X \times N_X$) Output vectors: $Y = A\mathbf{V}$ (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} \mathbf{V}_j$

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_X \times D_Q$) Value vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_X \times D_V$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_X \times N_X$) $\mathbf{E}_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$ Attention weights: $A = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_X \times N_X$) Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} \mathbf{V}_j$

Consider **permuting** the input vectors:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Queries and Keys will be the same, but permuted

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Similarities will be the same, but permuted

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Attention weights will be the same, but permuted

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Values will be the same, but permuted

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Computation:

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_{X} \times D_{V}$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_{X} \times N_{X}$) $\mathbf{E}_{i,j} = \mathbf{Q}_{i} \cdot \mathbf{K}_{j} / \operatorname{sqrt}(D_{Q})$ Attention weights: $\mathbf{A} = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_{X} \times N_{X}$) Output vectors: $\mathbf{Y} = \mathbf{AV}$ (Shape: $N_{X} \times D_{V}$) $\mathbf{Y}_{i} = \sum_{j} A_{i,j} \mathbf{V}_{j}$

Consider **permuting** the input vectors:

Outputs will be the same, but permuted

Self-attention layer is **Permutation Equivariant** f(s(x)) = s(f(x))

Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$) Self attention doesn't "know" the order of the vectors it is processing!

Computation:

Query vectors: $Q = XW_Q$ Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$) Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $\mathbf{Q} = \mathbf{XW}_{\mathbf{Q}}$ Key vectors: $\mathbf{K} = \mathbf{XW}_{\mathbf{K}}$ (Shape: $N_{X} \times D_{Q}$) Value vectors: $\mathbf{V} = \mathbf{XW}_{\mathbf{V}}$ (Shape: $N_{X} \times D_{V}$) Similarities: $\mathbf{E} = \mathbf{QK}^{\mathsf{T}}$ (Shape: $N_{X} \times N_{X}$) $\mathbf{E}_{i,j} = \mathbf{Q}_{i} \cdot \mathbf{K}_{j} / \operatorname{sqrt}(D_{Q})$ Attention weights: $\mathbf{A} = \operatorname{softmax}(\mathbf{E}, \operatorname{dim}=1)$ (Shape: $N_{X} \times N_{X}$) Output vectors: $\mathbf{Y} = \mathbf{AV}$ (Shape: $N_{X} \times D_{V}$) $\mathbf{Y}_{i} = \sum_{j} A_{i,j} \mathbf{V}_{j}$

Self attention doesn't "know" the order of the vectors it is processing!

In order to make processing position-aware, concatenate input with **positional encoding**

E can be learned lookup table, or fixed function

Masked Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Don't let vectors "look ahead" in the sequence

Used for language modeling (predict next word)

Computation:

Query vectors: $Q = XW_Q$ Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$) Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

Multihead Self-Attention Layer

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$) Query matrix: W_Q (Shape: $D_X \times D_Q$)

Use H independent "Attention Heads" in parallel

 Y_3

 Y_2

Concat

Computation:

Query vectors: $Q = XW_Q$ Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$) Value vectors: $V = XW_V$ (Shape: $N_X \times D_V$) Similarities: $E = QK^T$ (Shape: $N_X \times N_X$) $E_{i,j} = Q_i \cdot K_j / sqrt(D_Q)$ Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$) Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j}V_j$

Slide credit: Justin Johnson

Three Ways of Processing Sequences

Recurrent Neural Network

1D Convolution

Self-Attention

Works on Ordered Sequences (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence (-) Not parallelizable: need to compute hidden states sequentially Works on Multidimensional Grids (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence

(+) Highly parallel: Each output can be computed in parallel

Works on Sets of Vectors

(+) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
(+) Highly parallel: Each output can be computed in parallel
(-) Very memory intensive

Vaswani et al, "Attention is all you need", NeurIPS 2017

Slide credit: Justin Johnson

All vectors interact with each other

Vaswani et al, "Attention is all you need", NeurIPS 2017

Slide credit: Justin Johnson

MLP independently on each vector (weight shared!)

All vectors interact with each other

Vaswani et al, "Attention is all you need", NeurIPS 2017

X₂

 X_1

X₃

Recall Layer Normalization:

Vaswani et al, "Attention is all you need", NeurIPS 2017

X₄

Vaswani et al, "Attention is all you need", NeurIPS 2017

Transformer Block:

Input: Set of vectors x **Output**: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

Transformer Block:

Input: Set of vectors x **Output**: Set of vectors y

Self-attention is the only interaction between vectors!

Layer norm and MLP work independently per vector

Highly scalable, highly parallelizable

A **Transformer** is a sequence of transformer blocks

Details:

- Tokenization is messy! Trained chunking mechanism
- Position encoding
 - sin/cos: Normalized, nearby tokens have similar values, etc.
 - Added to input embedding
- When to use decoder-only versus encoder-decoder model is open problem
 - GPT is decoder only!

Encoder-Decoder