
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• CNNs Continued

• Regularization & Augmentation

• Transfer Learning



Administrivia

• Assignment 2 – Due Feb. 17th 

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf 

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf 

• HW2 Tutorial (@176) 

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• GPU resources: PACE-ICE announced

• Google Cloud coming soon

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0


Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112
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AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Inception Architecture

From: Szegedy et al. Going deeper with convolutions



Inception Architecture

From: Szegedy et al. Going deeper with convolutions



Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1 

convolutions

3x3 

convolutions

5x5 

convolutions

3x3 max 

pooling

Previous layer



Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

Why?
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Revolution of Depth



The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition 

Optimizing very deep networks is challenging!



Skip Conections



Skip Connections



ResNet Details



ResNet Details



Skip Conections



Bottleneck Layers



ResNet Details



Training ResNets 



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications



Wide Residual Networks



DenseNet



ConvNeXt (2022)

• To bridge the gap between the Conv Nets and Vision 
Transformers (ViT)
• ViT, Swin Transformer has been the SOTA visual model backbone

• Is convolutional networks really not as good as transformer models?

• Investigation
• The author start with ResNet-50 and reimplement the CNN networks 

with modern designs

• The results showing that ConvNeXt achieves beat the ViT models, 
again.

2024-01-16 Slides created for CS886 at UWaterloo 30



ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 31

•Modern designs added:

•Use ResNeXt

• Apply Inverted Bottleneck

•Use larger kernel size

• Training strategy:
• 90 epochs -> 300 epochs

• AdamW optimizer

• Data augmentation like Mixup, CutMix

• Regularization Schemes like label smoothing

• …



ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 32

•Modern designs added:

•Macro Design
• Changing stage compute ratio

• Changing stem to “patchify”

•Micro Design
• ReLU -> GELU

• Fewer activation functions

• Fewer normalization layers

• BatchNorm -> LayerNorm

• Separate downsampling layers



Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html 

Several ways to learn 

architectures:

Evolutionary learning 

and reinforcement 

learning

Prune over-

parameterized 

networks

Learning of 

repeated blocks 

typical



Evolving Architectures and AutoML



Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction, 

diversity of features, number of parameters/capacity, etc.



Transfer 

Learning & 

Generalization



Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic 

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reality

Generalization

model class
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FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generalization

model class
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From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality



Transfer Learning – Training on Large Dataset

What if we don’t have 

enough data?

Step 1: Train on large-scale 

dataset

Convolutional Neural

Networks

Input

Image
Predictions



Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights 

trained in Step 1

Replace last layer with new fully-connected for 

output nodes per new category



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 

enough data)

Replace last layer with new fully-connected for 

output nodes per new category



Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding 

Baseline for Recognition

This works 

extremely well! It 

was surprising upon 

discovery.

Features learned 

for 1000 object 

categories will 

work well for 

1001st!

Generalizes even 

across tasks 

(classification to 

object detection)



But it doesn’t always work that 

well!

If the source dataset you train on 

is very different from the target 

dataset, transfer learning is not as 

effective

If you have enough data for the 

target domain, it just results in 

faster convergence

See He et al., “Rethinking 

ImageNet Pre-training”

Learning with Less Labels



Effectiveness of More Data

From: Hestness  et al., Deep Learning Scaling Is 

Predictable
From: Revisiting the Unreasonable 

Effectiveness of Data 

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift



Regularization



Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2:  𝑳 = 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀 𝑾|𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝜶 𝑾|𝟐 + 𝜷|𝑾|

Regularization

Many standard regularization methods still apply!

L1 Regularization

𝑳 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀|𝑾|

where |𝑾| is element-wise 



Problem: Network can learn to rely strong on a few features that work 

really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

An idea: For each node, keep its output with probability p

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

𝒑 = 𝟎. 𝟓

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



⬣ In practice, implement 

with a mask calculated 

each iteration

⬣ During testing, no 

nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.
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⬣ During training, each node has an 

expected 𝒑 ∗ 𝒇𝒂𝒏_𝒊𝒏 nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have 

similar train and test-time 

input/output distributions! 

Solution: During test time, scale 

outputs (or equivalently weights) by 𝒑 

⬣ i.e. 𝑾𝒕𝒆𝒔𝒕 = 𝒑𝑾

⬣ Alternative: Scale by 
𝟏 

𝒑
 at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.
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Interpretation 1: The model should 

not rely too heavily on particular 

features

⬣ If it does, it has probability 𝟏 − 𝒑 

of losing that feature in an 

iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.
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Interpretation 1: The model should 

not rely too heavily on particular 

features

⬣ If it does, it has probability 𝟏 − 𝒑 

of losing that feature in an 

iteration

Interpretation 2: Training 𝟐𝒏 

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-

batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
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layer 1
hidden 
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output 
layer
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