Topics:

- CNNs Continued
- Regularization & Augmentation
- Transfer Learning

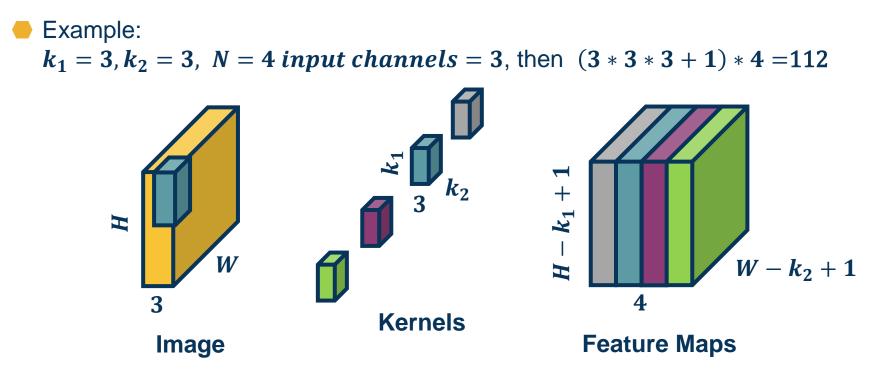
CS 4644-DL / 7643-A ZSOLT KIRA

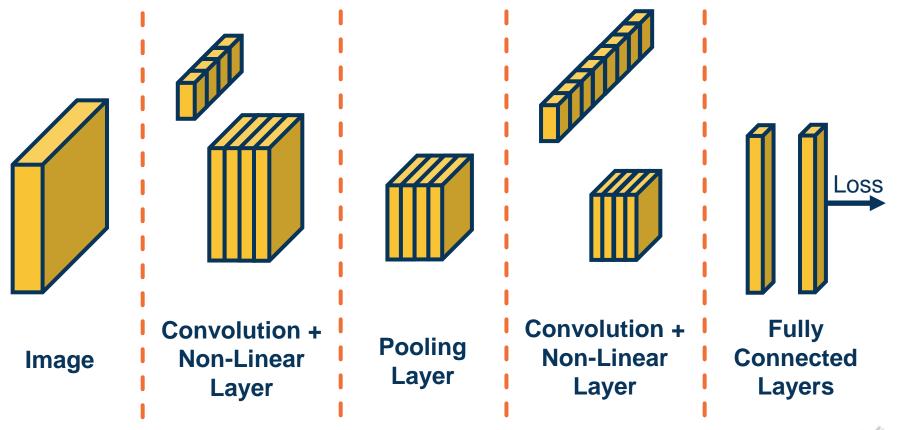
- Assignment 2 Due Feb. 17th
 - Implement convolutional neural networks
 - Resources (in addition to lectures):
 - DL book: Convolutional Networks
 - CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10_cnns_notes.pdf
 - Backprop notes
 <u>https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf</u>
 - HW2 Tutorial (@176)
 - Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) (https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

- **GPU resources**: PACE-ICE announced
 - Google Cloud coming soon

Number of parameters with N filters is: $N * (k_1 * k_2 * 3 + 1)$

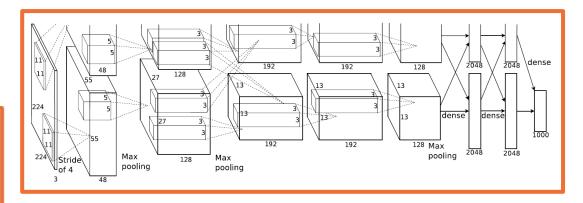
Number of Parameters





Georga

Full (simplified) AlexNet architecture: [224x224x3] INPUT [55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3x3 filters at stride 2 [27x27x96] NORM1: Normalization layer [27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3x3 filters at stride 2 [13x13x256] NORM2: Normalization layer [13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 [13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 [13x13x256] MAX POOL3: 3x3 filters at stride 1, pad 1 [13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 [6x6x256] MAX POOL3: 3x3 filters at stride 2 [4096] FC6: 4096 neurons [4096] FC7: 4096 neurons [1000] FC8: 1000 neurons (class scores)



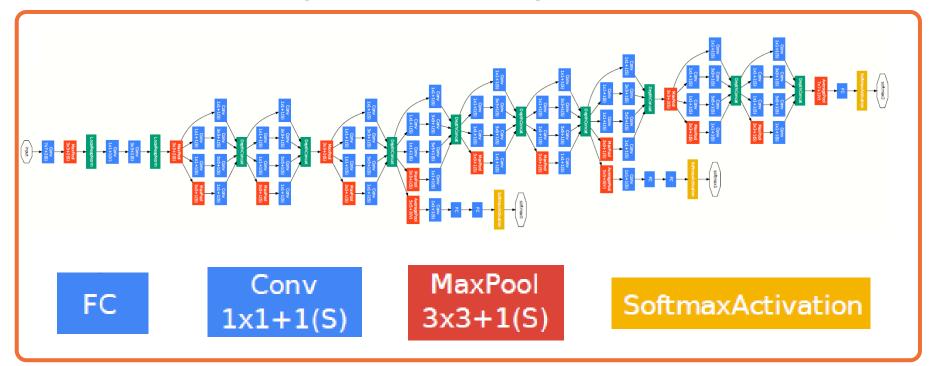
Key aspects:

- ReLU instead of sigmoid or tanh
- Specialized normalization layers
- PCA-based data augmentation
- Dropout
- Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet – Layers and Key Aspects

But have become deeper and more complex



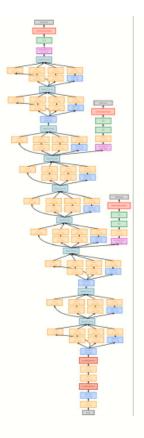
From: Szegedy et al. Going deeper with convolutions

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers



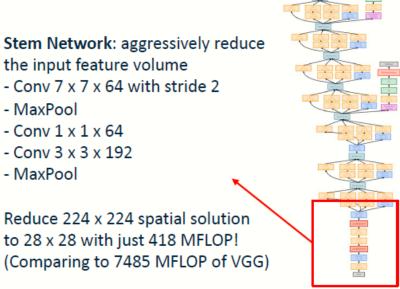
From: Szegedy et al. Going deeper with convolutions

Case Study: GoogLeNet

[Szegedy et al., 2014]

Deeper networks, focus on computational efficiency

- ILSVRC'14 classification winner (6.7% top 5 error)
- 22 layers
- Only 5 million parameters!
 12x less than AlexNet
 27x less than VGG-16
- Efficient "Inception" module
- No FC layers

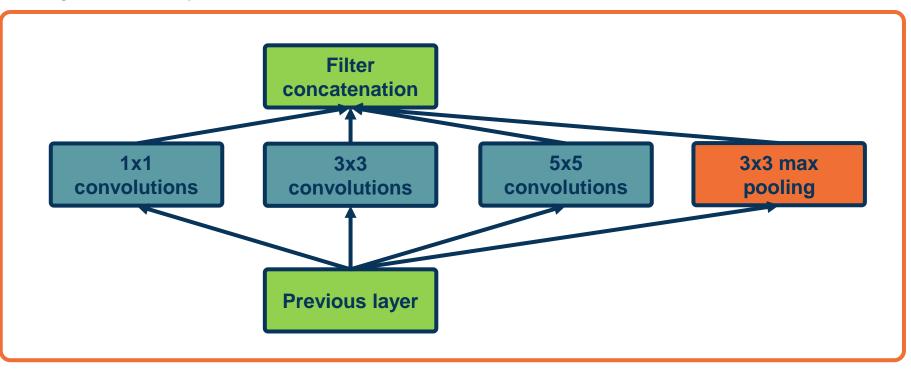


MaxPod 3x3+2(S LocalResoNorm Conv 3x3+1(5) Conv 1x1+1(V)LocalResoNorm MaxPool 3x3+2(5) Conv 7x7+2(S)

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

Key idea: Repeated blocks and multi-scale features



From: Szegedy et al. Going deeper with convolutions

0

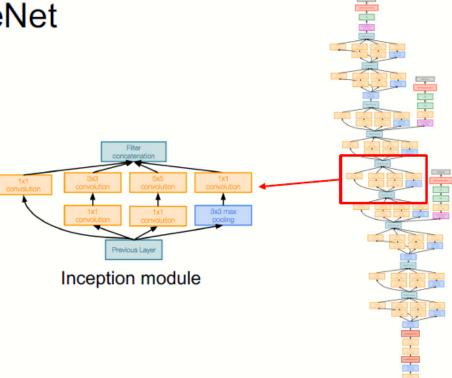
Geo

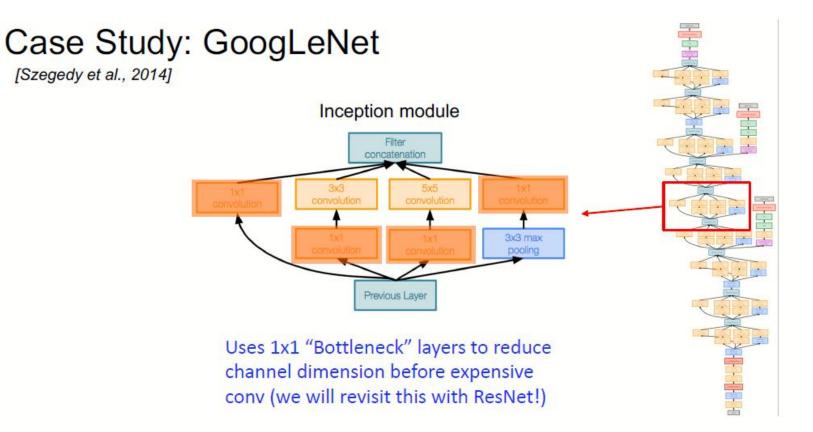
Case Study: GoogLeNet

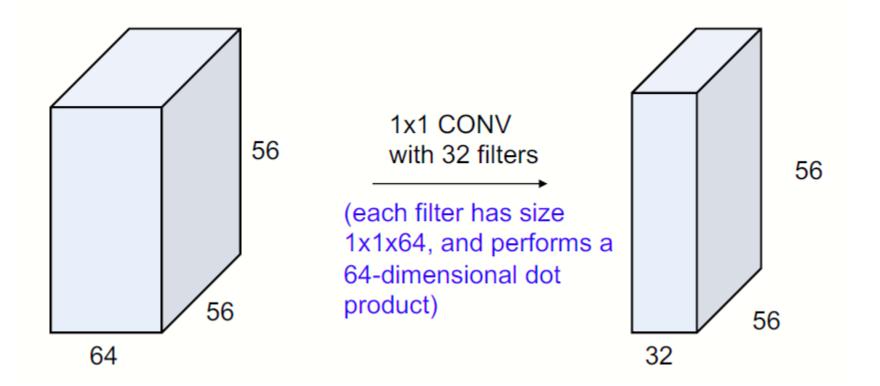
[Szegedy et al., 2014]

"Inception module": design a good local network topology (network within a network) and then stack these modules on top of each other

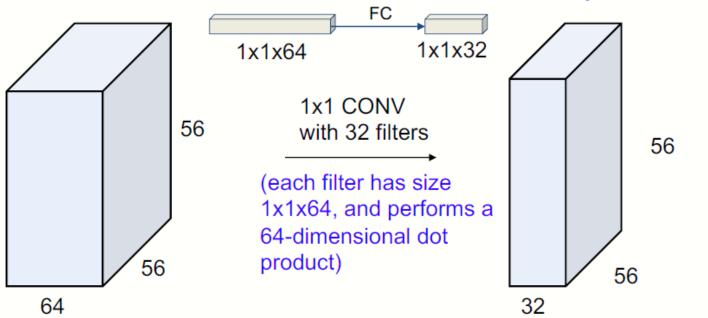
Multiple conv filter size diversifies learned features

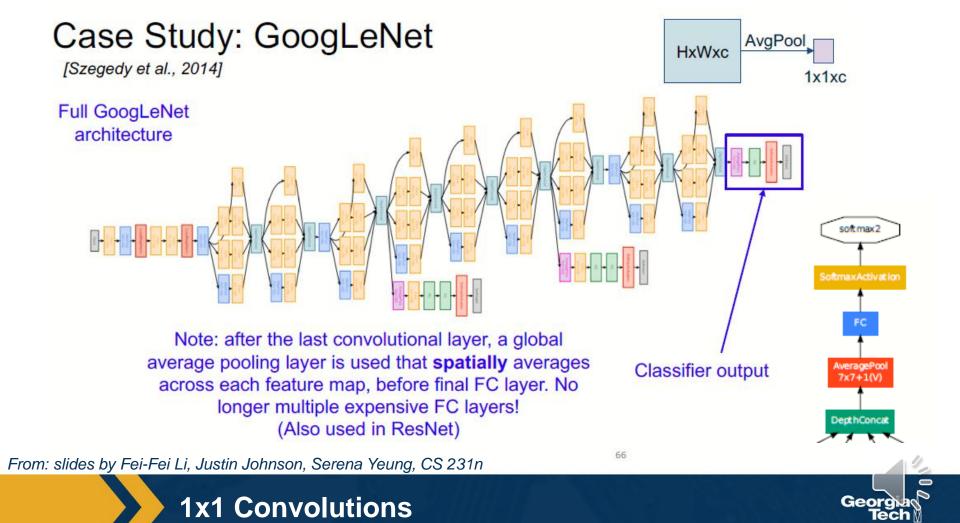






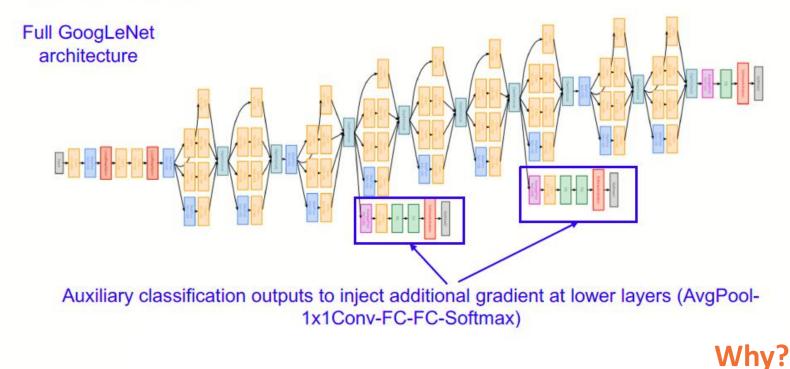
Alternatively, interpret it as applying the same FC layer on each input pixel





Case Study: GoogLeNet

[Szegedy et al., 2014]

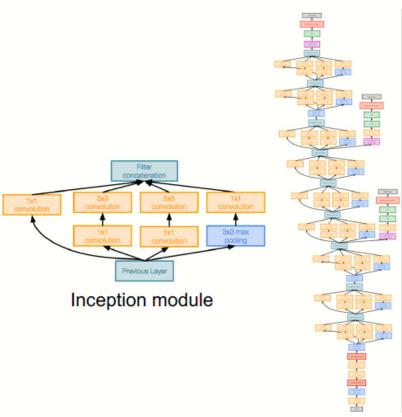


Case Study: GoogLeNet

[Szegedy et al., 2014]

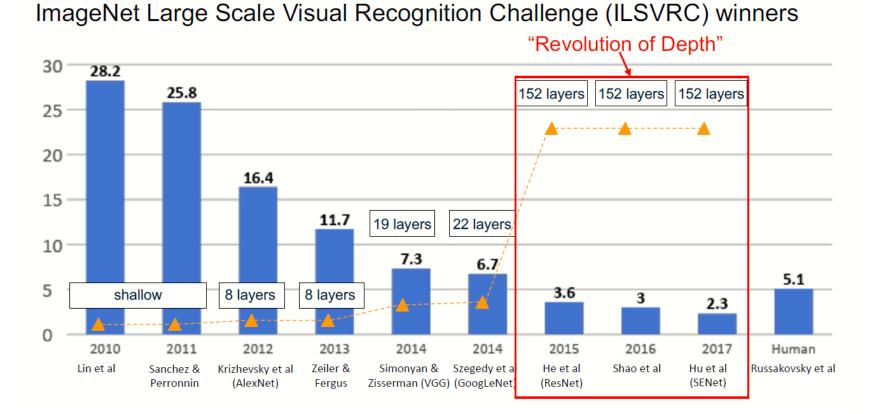
Deeper networks, with computational efficiency

- 22 layers
- Efficient "Inception" module
- Avoids expensive FC layers
- 12x less params than AlexNet
- 27x less params than VGG-16
- ILSVRC'14 classification winner (6.7% top 5 error)



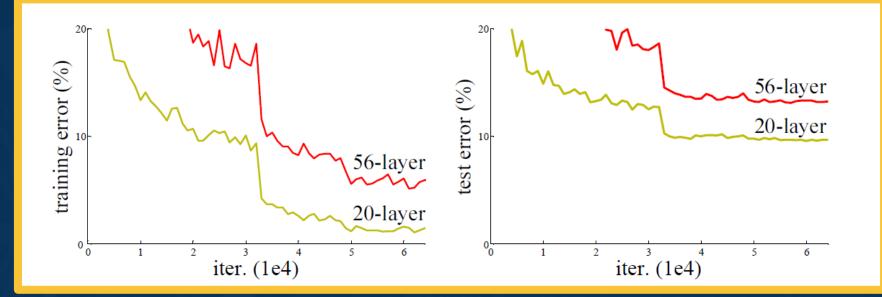
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

69



Revolution of Depth

The Challenge of Depth



From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

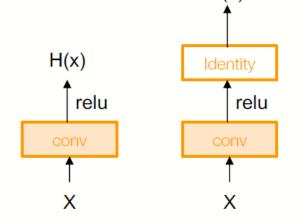
[He et al., 2015]

A deeper model can **emulate** a shallower model: copy layers from shallower model, set extra layers to identity

Thus deeper models should do at least <u>as good as</u> shallow models

Deeper models are harder to optimize. They don't learn identity functions (no-op) to emulate shallow models

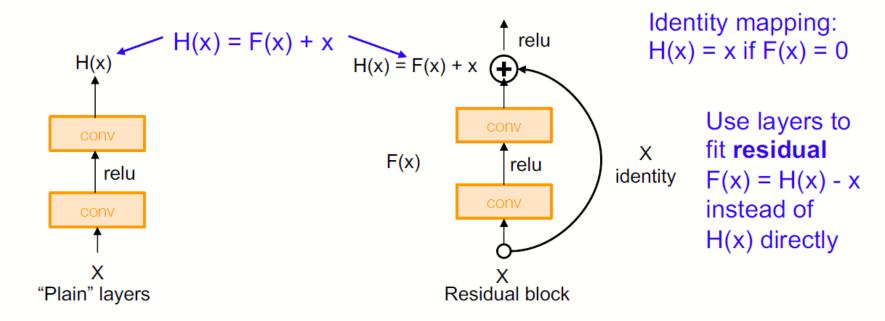
Solution: Change the network so learning identity functions (no-op) as extra layers is easy



H(x)

[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

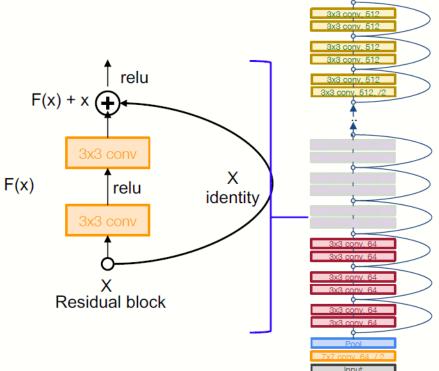


Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers



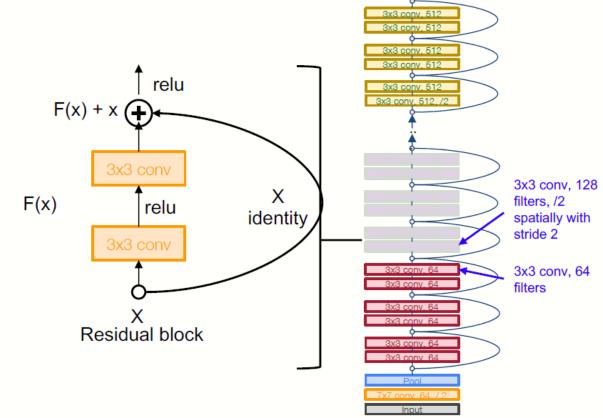
FC 1000

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.



oftmax

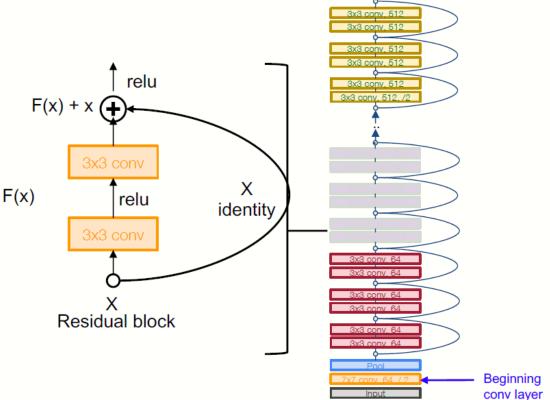
FC 1000

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks
- Every residual block has two 3x3 conv layers
- Periodically, double # of filters and downsample spatially using stride 2 (/2 in each dimension) Reduce the activation volume by half.
- Additional conv layer at the beginning (stem)

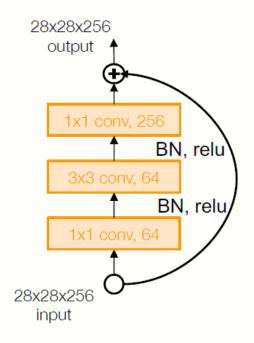


FC 1000

Skip Conections

[He et al., 2015]

For deeper networks (ResNet-50+), use "bottleneck" layer to improve efficiency (similar to GoogLeNet)



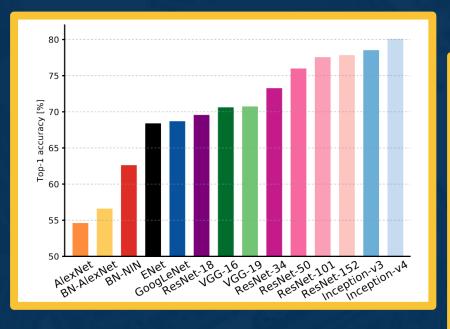
				>>> model = resnet18	n.models import resnet18 3() (3, 224, 224), device='	
layer name	output size	18-layer	34-layer	Layer (type)) Output S	Shape Param #
conv1	112×112			Conv2d-1	[-1, 64, 112,	112]
conv2_x	56×56			BatchNorm2d-2	2 [-1, 64, 112,	112] 128
		$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	ReLU-3		
				MaxPool2d-4	L , , ,	·
				Conv2d-5		
				BatchNorm2d-6	· [=] = ·] = -]	-
conv3_x	28×28	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,128\\ 3\times3,128\end{array}\right]\times4$	ReLU-7 Conv2d-8		·
				BatchNorm2d-9	· [_] _ ·]]	
				ReLU-10		
				BasicBlock-11		
				Conv2d-12		· -
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	BatchNorm2d-1		
				ReLU-14		
				Conv2d-15	5 [-1, 64, 56,	, 56] 36,864
				BatchNorm2d-16	5 [-1, 64, 56,	, 56] 128
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512\end{array}\right]\times3$	ReLU-17		-
				BasicBlock-18	· · · · · · · · · · · · · · · · · · ·	
				Conv2d-19		
				BatchNorm2d-20	L 7 7 7	
	1×1		av	ReLU-21		
		1.0 1.09				201 256
FLOPs		1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10 ⁹	11.3×10^{9}

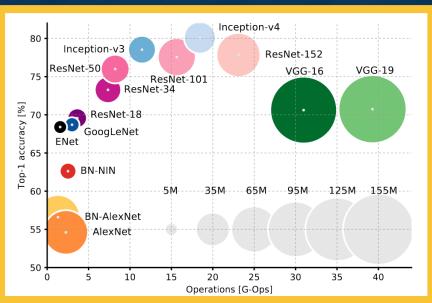
import torc

Training ResNet in practice:

- Batch Normalization after every CONV layer
- Xavier initialization from He et al.
- SGD + Momentum
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used

Computational Complexity





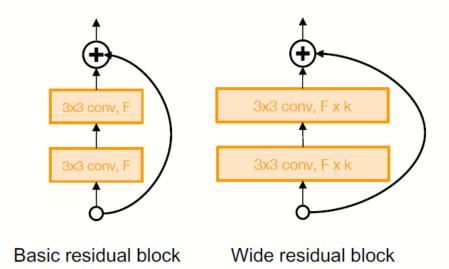
0

From: An Analysis Of Deep Neural Network Models For Practical Application

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the important factor, not depth
- Use wider residual blocks (F x k filters instead of F filters in each layer)
- 50-layer wide ResNet outperforms
 152-layer original ResNet
- Increasing width instead of depth more computationally efficient (parallelizable)

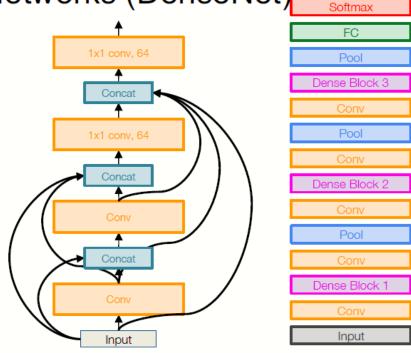


Densely Connected Convolutional Networks (DenseNet)

[Huang et al. 2017]

- Dense blocks where each layer is connected to every other layer in feedforward fashion
- Alleviates vanishing gradient, strengthens feature propagation, encourages feature reuse
- Showed that shallow 50-layer network can outperform deeper 152 layer ResNet

DenseNet



Dense Block

ConvNeXt (2022)

• To bridge the gap between the Conv Nets and Vision Transformers (ViT)

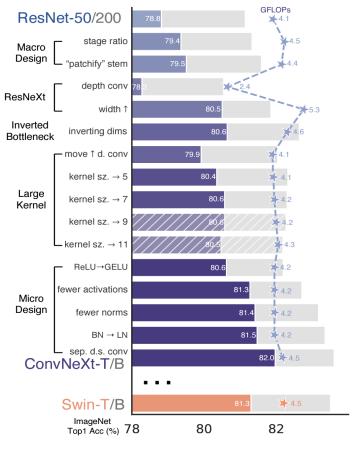
- ViT, Swin Transformer has been the SOTA visual model backbone
- Is convolutional networks really not as good as transformer models?
- Investigation
 - The author start with ResNet-50 and reimplement the CNN networks with modern designs
 - The results showing that ConvNeXt achieves beat the ViT models, again.

ConvNeXt (2022)

- Modern designs added:
- Use ResNeXt
- Apply Inverted Bottleneck
- Use larger kernel size
- Training strategy:

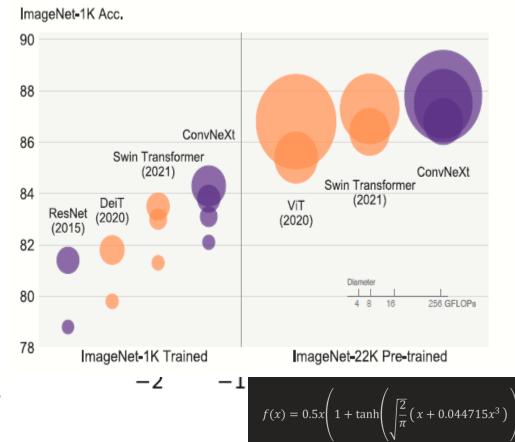
...

- 90 epochs -> 300 epochs
- AdamW optimizer
- Data augmentation like Mixup, CutMix
- Regularization Schemes like label smoothing



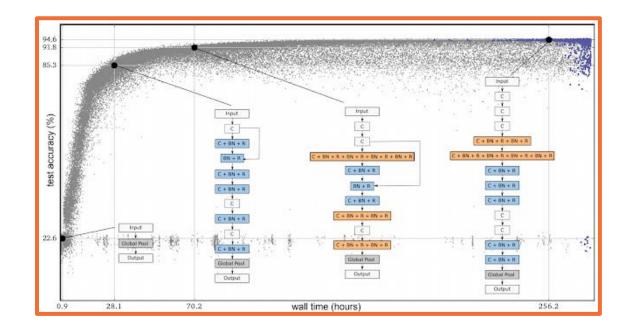
ConvNeXt (2022)

- Modern designs added:
- Macro Design
 - Changing stage compute ratio
 - Changing stem to "patchify"
- Micro Design
 - ReLU -> GELU
 - Fewer activation functions
 - Fewer normalization layers
 - BatchNorm -> LayerNorm
 - Separate downsampling layers



Several ways to *learn* architectures:

- Evolutionary learning and reinforcement learning
- Prune overparameterized networks
- Learning of repeated blocks typical

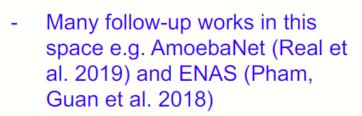


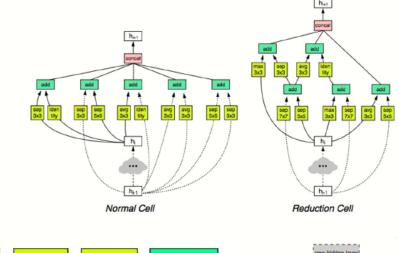
From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

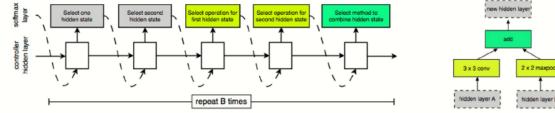
Learning Transferable Architectures for Scalable Image Recognition

[Zoph et al. 2017]

- Applying neural architecture search (NAS) to a large dataset like ImageNet is expensive
- Design a search space of building blocks ("cells") that can be flexibly stacked
- NASNet: Use NAS to find best cell structure on smaller CIFAR-10 dataset, then transfer architecture to ImageNet







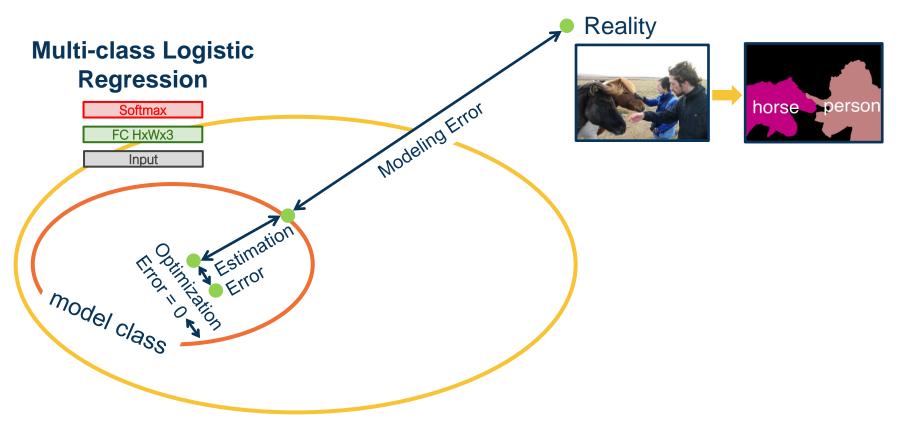
Evolving Architectures and AutoML

 Convolutional neural networks (CNNs) stack pooling, convolution, nonlinearities, and fully connected (FC) layers

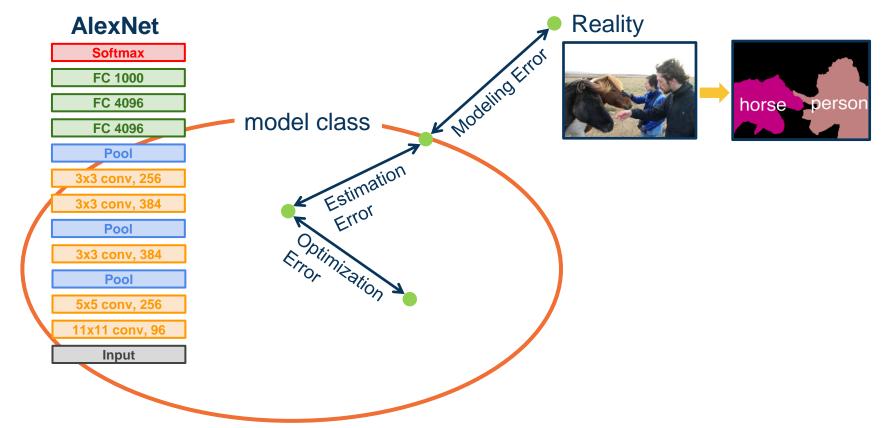
Feature engineering => architecture engineering!

- Tons of small details and tips/tricks
- Considerations: Memory, compute/FLO, dimensionality reduction, diversity of features, number of parameters/capacity, etc.

Transfer Learning & Generalization

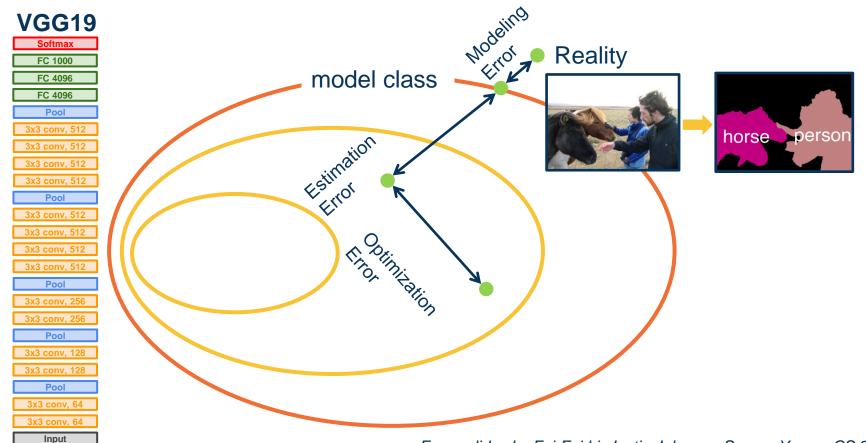


From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

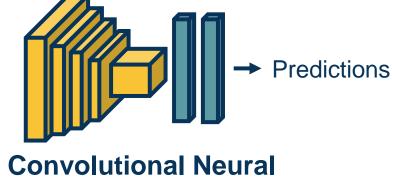
Georgia Tech



From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

What if we don't have enough data?

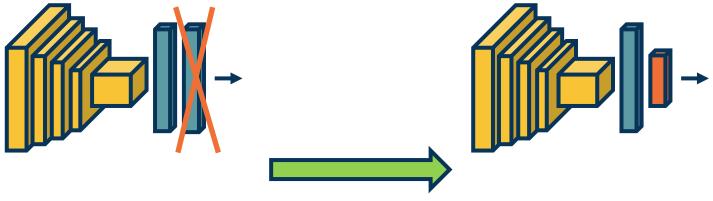
Step 1: Train on large-scale dataset



Networks

Transfer Learning – Training on Large Dataset

Step 2: Take your custom data and **initialize** the network with weights trained in Step 1



Replace last layer with new fully-connected for output nodes per new category

Initializing with Pre-Trained Network

Step 3: (Continue to) train on new dataset

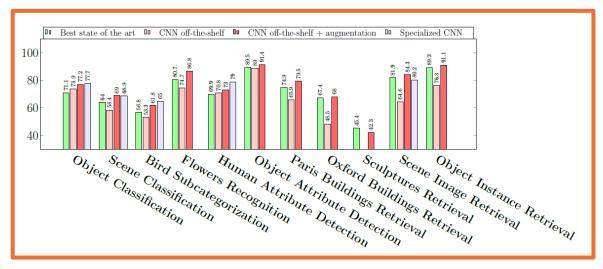
- Finetune: Update all parameters
- Freeze feature layer: Update only last layer weights (used when not enough data)

Replace last layer with new fully-connected for output nodes per new category

Finetuning on New Dataset

This works extremely well! It was surprising upon discovery.

- Features learned for 1000 object categories will work well for 1001st!
- Generalizes even across tasks (classification to object detection)



From: Razavian et al., CNN Features off-the-shelf: an Astounding Baseline for Recognition

Surprising Effectiveness of Transfer Learning

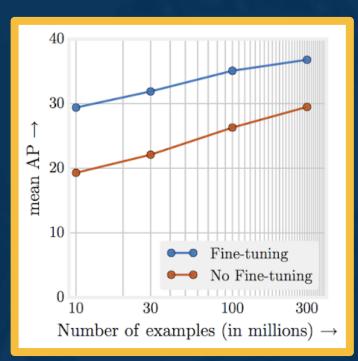
Learning with Less Labels

But it doesn't always work that well!

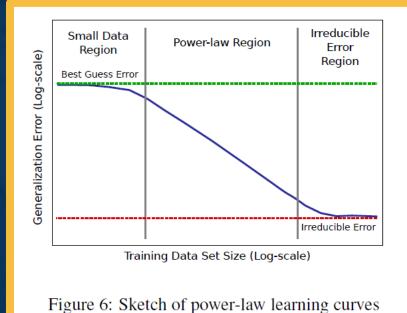
- If the source dataset you train on is very different from the target dataset, transfer learning is not as effective
- If you have enough data for the target domain, it just results in faster convergence

See He et al., "Rethinking ImageNet Pre-training"

Effectiveness of More Data



From: Revisiting the Unreasonable Effectiveness of Data https://ai.googleblog.com/2017/07/revisitingunreasonable-effectiveness.html



From: Hestness et al., Deep Learning Scaling Is

Predictable

There is a large number of different low-labeled settings in DL research

Setting	Source	Target	Shift Type
Semi-supervised	Single labeled	Single unlabeled	None
Domain Adaptation	Single labeled	Single unlabeled	Non-semantic
Domain Generalization	Multiple labeled	Unknown	Non-semantic
Cross-Task Transfer	Single labeled	Single unlabeled	Semantic
Few-Shot Learning	Single labeled	Single few-labeled	Semantic
Un/Self-Supervised	Single unlabeled	Many labeled	Both/Task

Semantic Shift

Dealing with Low-Labeled Situations

Regularization

Many standard regularization methods still apply!

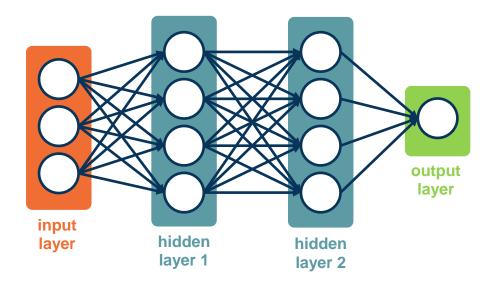
$$L = |y - Wx_i|^2 + \lambda |W|$$

where |W| is element-wise

Example regularizations:

- L1/L2 on weights (encourage small values)
- L2: $L = |y Wx_i|^2 + \lambda |W|^2$ (weight decay)
- Elastic L1/L2: $|y Wx_i|^2 + \alpha |W|^2 + \beta |W|$

Regularization

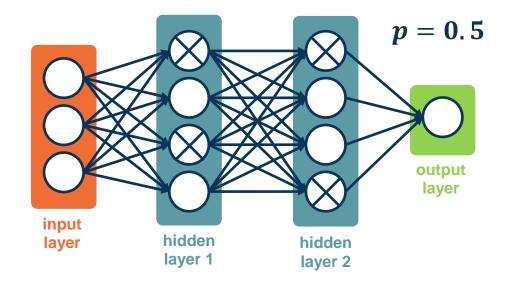


Problem: Network can learn to rely strong on a few features that work really well

• May cause **overfitting** if not representative of test data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Preventing Co-Adapted Features



An idea: For each node, keep its output with probability *p*

Activations of deactivated nodes are essentially zero

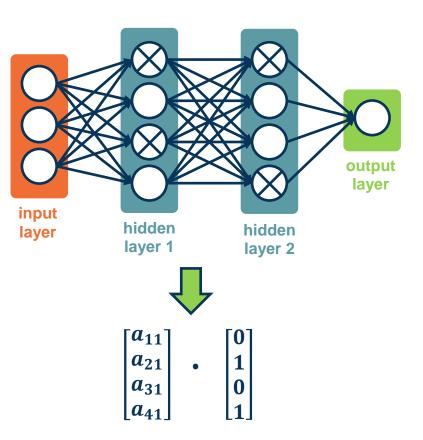
Choose whether to mask out a particular node each iteration

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Dropout Regularization

In practice, implement with a mask calculated each iteration

 During testing, no nodes are dropped



From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

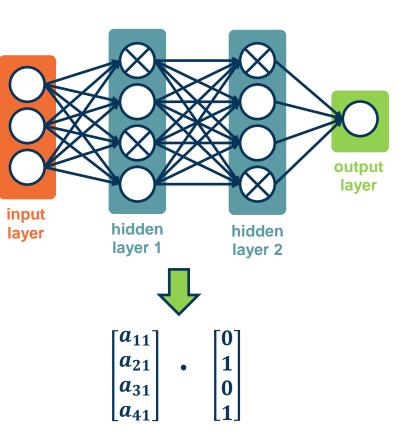
- During training, each node has an expected *p* * *fan_in* nodes
- During test all nodes are activated
- Principle: Always try to have similar train and test-time input/output distributions!

Solution: During test time, scale outputs (or equivalently weights) by p

• i.e. $W_{test} = pW$

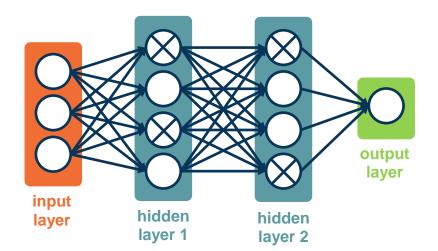
From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Inference with Dropout



Interpretation 1: The model should not rely too heavily on particular features

 If it does, it has probability 1 – p of losing that feature in an iteration



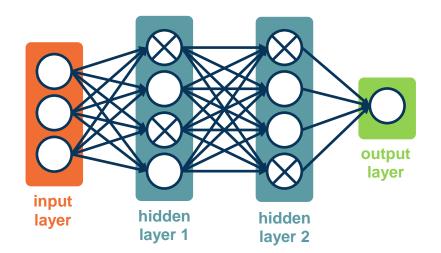
From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

Interpretation 1: The model should not rely too heavily on particular features

 If it does, it has probability 1 – p of losing that feature in an iteration

Interpretation 2: Training 2^n networks:

- Each configuration is a network
- Most are trained with 1 or 2 minibatches of data



From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

