
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• CNNs Continued

• Regularization & Augmentation

• Transfer Learning

Administrivia

• Assignment 2 – Due Feb. 17th

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial (@176)

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

• GPU resources: PACE-ICE announced

• Google Cloud coming soon

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

Adding a Fully Connected Layer

Image
Pooling

Layer

Fully

Connected

Layers

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Loss

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling

Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

From: Szegedy et al. Going deeper with convolutions

Inception Architecture

From: Szegedy et al. Going deeper with convolutions

Inception Module

Key idea: Repeated blocks and multi-scale features

From: Szegedy et al. Going deeper with convolutions

Filter

concatenation

1x1

convolutions

3x3

convolutions

5x5

convolutions

3x3 max

pooling

Previous layer

Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Module

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

Why?
From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Revolution of Depth

The Challenge of Depth

From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging!

Skip Conections

Skip Connections

ResNet Details

ResNet Details

Skip Conections

Bottleneck Layers

ResNet Details

Training ResNets

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications

Wide Residual Networks

DenseNet

ConvNeXt (2022)

• To bridge the gap between the Conv Nets and Vision
Transformers (ViT)
• ViT, Swin Transformer has been the SOTA visual model backbone

• Is convolutional networks really not as good as transformer models?

• Investigation
• The author start with ResNet-50 and reimplement the CNN networks

with modern designs

• The results showing that ConvNeXt achieves beat the ViT models,
again.

2024-01-16 Slides created for CS886 at UWaterloo 30

ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 31

•Modern designs added:

•Use ResNeXt

• Apply Inverted Bottleneck

•Use larger kernel size

• Training strategy:
• 90 epochs -> 300 epochs

• AdamW optimizer

• Data augmentation like Mixup, CutMix

• Regularization Schemes like label smoothing

• …

ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 32

•Modern designs added:

•Macro Design
• Changing stage compute ratio

• Changing stem to “patchify”

•Micro Design
• ReLU -> GELU

• Fewer activation functions

• Fewer normalization layers

• BatchNorm -> LayerNorm

• Separate downsampling layers

Evolving Architectures and AutoML

From: https://ai.googleblog.com/2018/03/using-evolutionary-automl-to-discover.html

Several ways to learn

architectures:

Evolutionary learning

and reinforcement

learning

Prune over-

parameterized

networks

Learning of

repeated blocks

typical

Evolving Architectures and AutoML

Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,

diversity of features, number of parameters/capacity, etc.

Transfer

Learning &

Generalization

Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Transfer Learning – Training on Large Dataset

What if we don’t have

enough data?

Step 1: Train on large-scale

dataset

Convolutional Neural

Networks

Input

Image
Predictions

Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights

trained in Step 1

Replace last layer with new fully-connected for

output nodes per new category

Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

Replace last layer with new fully-connected for

output nodes per new category

Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding

Baseline for Recognition

This works

extremely well! It

was surprising upon

discovery.

Features learned

for 1000 object

categories will

work well for

1001st!

Generalizes even

across tasks

(classification to

object detection)

But it doesn’t always work that

well!

If the source dataset you train on

is very different from the target

dataset, transfer learning is not as

effective

If you have enough data for the

target domain, it just results in

faster convergence

See He et al., “Rethinking

ImageNet Pre-training”

Learning with Less Labels

Effectiveness of More Data

From: Hestness et al., Deep Learning Scaling Is

Predictable
From: Revisiting the Unreasonable

Effectiveness of Data

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html

Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift

Regularization

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2: 𝑳 = 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀 𝑾|𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝜶 𝑾|𝟐 + 𝜷|𝑾|

Regularization

Many standard regularization methods still apply!

L1 Regularization

𝑳 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀|𝑾|

where |𝑾| is element-wise

Problem: Network can learn to rely strong on a few features that work

really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input
layer hidden

layer 1
hidden
layer 2

output
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

An idea: For each node, keep its output with probability p

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

𝒑 = 𝟎. 𝟓

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

⬣ In practice, implement

with a mask calculated

each iteration

⬣ During testing, no

nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

⋅

input
layer hidden

layer 1
hidden
layer 2

output
layer

⬣ During training, each node has an

expected 𝒑 ∗ 𝒇𝒂𝒏_𝒊𝒏 nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have

similar train and test-time

input/output distributions!

Solution: During test time, scale

outputs (or equivalently weights) by 𝒑

⬣ i.e. 𝑾𝒕𝒆𝒔𝒕 = 𝒑𝑾

⬣ Alternative: Scale by
𝟏

𝒑
 at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

⋅

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should

not rely too heavily on particular

features

⬣ If it does, it has probability 𝟏 − 𝒑

of losing that feature in an

iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should

not rely too heavily on particular

features

⬣ If it does, it has probability 𝟏 − 𝒑

of losing that feature in an

iteration

Interpretation 2: Training 𝟐𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-

batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: ConvNeXt (2022)
	Slide 31: ConvNeXt (2022)
	Slide 32: ConvNeXt (2022)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

