Topics:

* CNNs Continued

* Regularization & Augmentation
* Transfer Learning

CS 4644-DL / 7643-A
ZSOLT KIRA

e Assignment 2 — Due Feb. 17t

Implement convolutional neural networks

Resources (in addition to lectures):

DL book: Convolutional Networks

CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf

HW2 Tutorial (@176)

Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizXOnPa?dI=0)

GPU resources: PACE-ICE announced

Google Cloud coming soon

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Number of parameters with N filtersis: N * (kq* ko * 3 + 1)

Example:
ki =3k, =3, N=4input channels = 3,then (3*3%*3+1)*4 =112

w ﬂ = W—k,+1
3 4

Kernels
Image Feature Maps

Number of Parameters

[[[[

[[[[

[[[[

[[[[

[m [[[A

[[[[

I I | /7 /4 | Loss
[[[’ [

j _/ |) j

| T | | |

|) | T

I Convolution + | _ I Convolution + | Fully

| Non-Linear ! Pooling 1 Non-Linear | Connected
| Layer | lLayer Layer : Layers

[[l

Adding a Fully Connected Layer

Full (simplified) AlexNet architecture:

[224%224x3] INPUT

[55x55x96) CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96]) MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096) 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

=8 204 Zogs \dense

dense dense)

B

1000

\s 128 Max
28\\listride Max 128 Max pooling
“of 4 pooling pooling

204 2048

Key aspects:
RelLU instead of sigmoid or tanh
Specialized normalization layers
PCA-based data augmentation
Dropout
Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet — Layers and Key Aspects

But have become deeper and more complex

Conv MaxPool
1x1+1(S) 3x3+1(S)

From: Szegedy et al. Going deeper with convolutions

Georg l:

Inception Architecture

Case Study: GooglLeNet =
[Szegedy et al., 2014] _":’
Deeper networks, focus on %
computational efficiency T E

- ILSVRC’14 classification winner j =
(6.7% top 5 error) 3 =

- 22 layers S

- Only 5 million parameters! “£5E
12x less than AlexNet e
27X less than VGG-16 B

- Efficient “Inception” module ﬁ’

- No FC layers ::.

) Inception Architecture

Case Study: GooglLeNet >
[Szegedy et al., 2014] R
T =
Deeper networks, focus on - -
computational efficiency E 0 o
Stem Network: aggressively reduce Z u =
- |ILSVRC'14 classification winner the input feature volume T
(6.7% top 5 error) - Conv 7 x 7 x 64 with stride 2 B =
- 22 layers - MaxPool ; -
- Only 5 million parameters! -Conv1x1x64 ==l
-Conv3x3x192
12x less than AlexNet - MaxPool TEET
27x less than VGG-16 e
- Efficient “Inception” module Reduce 224 x 224 spatial solution ;ﬁﬂ
- No FC layers to 28 x 28 with just 418 MFLOP! 2
(Comparing to 7485 MFLOP of VGG) &

Inception Architecture

Key idea: Repeated blocks and multi-scale features

Filter
concatenation

Previous layer

From: Szegedy et al. Going deeper with convolutions

Inception Module

Case Study: GoogLeNet ES

[Szegedy et al., 2014] I "" =
“Inception module™: design a | \—::“— -
good local network topology : ——
(network within a network) and =5
then stack these modules on sr=mle
top of each other =
| | _ Inception module “RED
Multiple conv filter size =
diversifies learned features ﬁ“
=5

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Inception Module Georsh

Tech]

Case Study: GooglLeNet

[Szegedy et al., 2014]

Inception module topme S
Filter B]
concatenation e 1=
Previous Layer ==
Uses 1x1 “Bottleneck” layers to reduce e
. - - Lo]
channel dimension before expensive :
x H S : . =
conv (we will revisit this with ResNet!) .

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Inception Module

1x1 CONV

o6 with 32 filters 56

>

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

o6

64 32

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

Alternatively, interpret it as applying
the same FC layer on each input pixel

| i fC
1x1x64 1x1x32

1x1 CONV
56 with 32 filters

-
-

(each filter has size
1x1x64, and performs a
64-dimensional dot

56 product)

o6

56

64 32

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

Case Study: GooglLeNet

[Szegedy et al., 2014]

Hx W AvgPool

1x1xc

Full GoogLeNet
architecture

FHE

M}ﬂ(
+

Note: after the last convolutional layer, a global
average pooling layer is used that spatially averages
across each feature map, before final FC layer. No
longer multiple expensive FC layers!

(Also used in ResNet)

Classifier output mﬂm

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) 1x1 Convolutions

Case Study: GooglLeNet

[Szegedy et al., 2014]

Full GoogLeNet
architecture

u*ﬂ*ﬂé :

A —
N

Auxiliary classification outputs to inject additional gradient at lower layers (AvgPool-
1x1Conv-FC-FC-Softmax)

Why?

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n ‘
> 1x1 Convolutions Georgh:

Case Study: GooglLeNet

[Szegedy et al., 2014]

Deeper networks, with computational
efficiency

- 22 layers

- Efficient “Inception” module

- Avoids expensive FC layers

- 12x less params than AlexNet

- 27x less params than VGG-16 Inception module \"‘
- ILSVRC'14 classification winner .
(6.7% top 5 error) w—.J

=

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

1x1 Convolutions

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

“‘Revolution of Depth”

30 282
152 layers| |152 layers| [152 layers
25
20
16.4
15
11.7 |19 layers| |22 layers
10
7.3
5.1
5 3.6
HEm =B
2010 2011 2012 2013 2014 2014 2015 2016 2017 Human
Lin et al Sanchez & Krizhevskyetal Zeiler & Simonyan & Szegedy et a He et al Shao et al Hu et al Russakovsky et al

Perronnin (AlexNet) Fergus Zisserman (VGG) (GoogleNet (ResNet) (SENet)

Revolution of Depth

The Challenge of Depth

S6-layer

20-layer

—
[=]
T

56-layer

test error (%)

—
=
o~

S
o
=
D

20
o
=
<
=

20-layer

3 4 5 6 2 3

p
iter. (1e4) iter. (led)
From: He et al., Deep Residual Learning for Image Recognition

Optimizing very deep networks is challenging! ﬂ
Geor

'.9
[]
Techﬁb

[He et al., 2015]

A deeper model can emulate a shallower model: copy
layers from shallower model, set extra layers to identity

Thus deeper models should do at least as good as shallow H(x)
models

Deeper models are harder to optimize. They don’t learn
identity functions (no-op) to emulate shallow models

T
relu T relu

f

X

Solution: Change the network so learning identity 1
functions (no-op) as extra layers is easy X

) Skip Conections

[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

HX) = FQ) + T | |dentity mapping:
— X)= X X relu = ¥ | =
o) m: F00 + x H(x) = xif F(x) =0
T Use layers to
X fit residual
[relu ") Jrt dentity F(x) = H(x) - X
instead of
$ H(x) directly
X X
“Plain” layers Residual block

Geo S

) Skip Connections Tech))

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:
Stack residual blocks
Every residual block has
two 3x3 conv layers

F(x) AIrelu

X
Residual block

) ResNet Detalls

X
identity

Case Study: ResNet

[He et al., 2015]

L_3x3 cony _b12

— _3x3 cony, 512
O

Full ResNet architecture:
- Stack residual blocks
- Every residual block has
two 3x3 conv layers
- Periodically, double # of

3x3 conv, 128

filters and downsample F(x) Trelu - X fiters, /2
spatially using stride 2 identity Spaialy with
(/2 in each dimension)

3x3 conv, 64

Reduce the activation
volume by half.

filters

Residual block

) ResNet Detalls

Case Study: ResNet

[He et al., 2015]

Full ResNet architecture:

- Stack residual blocks

- Every residual block has
two 3x3 conv layers

- Periodically, double # of
filters and downsample F(x) Trelu X
spatially using stride 2 identity
(/2 in each dimension)
Reduce the activation
volume by half.

- Additional conv layer at Residual block
the beginning (stem)

‘«——— Beginning

 —ra— conv layer

) Skip Conections Ge%:.

[He et al., 2015]

28x28x256
output

For deeper networks (ResNet-
50+), use “bottleneck” layer to
improve efficiency (similar to
GoogLeNet)

28x28x256
input

) Bottleneck Layers

>>> import torch

>>> from torchvision.models import resnetl8

>>> model = resnet18()

>>> summary(model2, (3, 224, 224), device="cpu')

layer name | output size 18-layer 34-layer Layer (type) Output Shape e
convl 2 ST e e e
Conv2d-1 [-1, 64, 112, 112] 9,408

BatchNorm2d-2 [-1, 64, 112, 112] 128

ReLU-3 [-1, 64, 112, 112])

conv2_x 5656 3% 3, 64 33, 64 MaxPool2d-4 [-1, 64, 56, 56] 0
e) ’ Conv2d-5 [-1, 64, 56, 56] 36,864

BatchNorm2d-6 [-1, 64, 56, 56] 128

ReLU-7 [-1, 64, 56, 56] %)

Conv2d-8 [-1, 64, 56, 56] 36,864

BatchNorm2d-9 [-1, 64, 56, 56] 128

ReLU-10 [-1, 64, 56, 56])

BasicBlock-11 [-1, 64, 56, 56] (%]

Conv2d-12 [-1, 64, 56, 56] 36,864

w3 9 %3, 2 BatchNorm2d-13 [-1, 64, 56, 56] 128

conv4_x x 14 IO P IO 3 RelLU-14 [-1, 64, 56, 56])
Y X3 YX 3, 2D Conv2d-15 [-1, 64, 56, 56] 36,864

BatchNorm2d-16 [-1, 64, 56, 56] 128

RelU-17 [-1, 64, 56, 56])

BasicBlock-18 [-1, 64, 56, 56] (7]

Conv2d-19 [-1, 128, 28, 28] 73,728

BatchNorm2d-20 [-1, 128, 28, 28] 256

RelU-21 [-1, 128, 28, 28] %)

Conv2d-22 [-1

, 128, 28, 28] 147,456

.

- av
FLOPs 3.6x10°
ResNet Detalls

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xawvier initialization from He et al.

- SGD + Momentum

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

) Training ResNets

Computational Complexity

Inception-v4
Inception-v3
ResNet-50

ResNet-101
. ResNet-34
ﬂ ResNet-18

GoogLeNet
ENet

" BN-NIN

ResNet-152
VGG-16

g
>
9
©
“
3
V)
V)
]
—
o
(o]
=

>
=
>
o
[
[
=
=
o
1]
—
o
o
fit

125M 155M
>0 2% N\ RS D A0 A9
“gﬁﬁ'ﬁ$ S ‘f;e'ﬁgaszfigﬂe
0 Q@ ??' L

BN-AlexNet
AlexNet

15 20 25
Operations [G-Ops]

From: An Analysis Of Deep Neural Network Models For Practical Applicati 7'

(=]

Geor §
Tech|]

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
important factor, not depth
- Use wider residual blocks (F x k filters
instead of F filters in each layer) 1 1
- 50-layer wide ResNet outperforms
152-layer original ResNet
- Increasing width instead of depth
more computationally efficient Basic residual block Wide residual block
(parallelizable)

) Wide Residual Networks

Densely Connected Convolutional Networks (DenseNet)———
[Huang et al. 2017] 4 | FC

I Pool

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

- Showed that shallow 50-layer
network can outperform deeper
152 layer ResNet

| DenseBlock 3

I Pool I

| Dense Block 2 |

| Pool |

| Dense Block 1 |

| Input |

Dense Block

- WS
) DenseNet Geqath)

ConvNeXt (2022)

* To bridge the gap between the Conv Nets and Vision
Transformers (ViT)
* ViT, Swin Transformer has been the SOTA visual model backbone
* |s convolutional networks really not as good as transformer models?

* Investigation

* The author start with ResNet-50 and reimplement the CNN networks
with modern designs

* The results showing that ConvNeXt achieves beat the ViT models,
again.

202401)

GFLOPs

ResNet-50/200

Macro

ConvNeXt (2022) e

— depth conv gl

ResNeXt
®* Modern designs added: o
Bottleneck inverting dims

® Use ResNeXt —move 1 d.conv

kernel sz. - 5

® Apply Inverted Bottleneck g | e,
® Use larger kernel size et o2 11 YR

— RelLU—GELU

® Training strategy: |
® 90 epochs -> 300 epochs Doin | towerroms
* AdamW optimizer e oo
® Data augmentation like Mixup, CutMix
® Regularization Schemes like label smoothing /B

ImageNet

) Top1 Acc (%) 78 80 82

) Georgia |
2024-01-16 e '1_'

fewer activations

L sep.d.s. conv

ConvNeXt-T/B

Nonlinearities
ImageNet=1K Acc,

ConvNeXt (2022) o

® Modern designs added: 88
® Macro Design o6 ConvNeXt |
® Changing stage compute ratio) L conen
* Changing stem to “patchify” 8 DT ' e ey
. . ng?‘;‘ (2020) (2020)
® Micro Design 8 .
* RelU -> GELU @ N
® Fewer activation functions 80 | i: T Zmcrons
® Fewer normalization layers ¢
® BatchNorm -> LayerNorm L ImageNet-1K Trained ImageNet=22K Pre-trained —

® Separate downsampling layers

) 2 .
f(x) = 0.5x(1 + tanh(‘[; (x+0.044715x)))

Georgia "
2024-01-16 Tech ||

Several ways to learn
architectures:

Evolutionary learning
and reinforcement
learning

test accuracy (%)

Prune over-
parameterized
networks

Learning Of 0.9 28.1 70.2 wall ime (hours)
repeated blocks
typical

From: https://ai.googleblog.com/2018/03/using-evolutionary-automil-to-discover.html

) Evolving Architectures and AutoML

Learning Transferable Architectures for Scalable Image

Recognition
[Zoph et al. 2017]

Applying neural architecture search (NAS) to
a large dataset like ImageNet is expensive
Design a search space of building blocks
(“cells”) that can be flexibly stacked

- NASNet: Use NAS to find best cell structure
on smaller CIFAR-10 dataset, then transfer Normal Cel
architecture to ImageNet

Many follow-up works in this gﬁ%\ et \| e]\‘lmmﬂmmnmu oot g e
space e.g. AmoebaNet (Real et & _\ e B s B s B O
al. 2019) and ENAS (Pham, S L N S N
Guan et al. 2018) : [epest B mes

) Evolving Architectures and AutoML

Convolutional neural networks (CNNSs) stack pooling, convolution, non-
linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!
Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,
diversity of features, number of parameters/capacity, etc.

) Summary

Transfer

Learning &
Generalization

Georgia
groia |

Reality

Multi-class Logistic

Regression
l Softmax | horse perﬂ
| FCHxwx3 |
[Input |

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Generalization Ge%g.ggg

AlexNet

Softmax

FC 1000

FC 4096

FC 4096

Pool

)~ -

Pool

Pool

Input

) Generalization

Reality

horse “person

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia &
Tech

=

VGG19 6Q;\\‘\Q
= @‘;}\3‘/ Reality
model class =

horse _person

FC 4096
6.\\00 /
&

Input

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegrgia |

=

oS5
%,

What if we don’t have
enough data?

Step 1: Train on large-scale

dataset
%ll =—> Predictions

Convolutional Neural
Networks

Input
Image

Transfer Learning — Training on Large Dataset S°$g4)

Tech

=

Step 2: Take your custom data and initialize the network with weights

trained in Step 1
. ||¢
| %

Replace last layer with new fully-connected for
output nodes per new category

Initializing with Pre-Trained Network Ge°’*’""@

Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

|
) Finetuning on New Dataset Gograla |

Replace last layer with new fully-connected for

output nodes per new category

This works
extremely well! It

was surprising upon
discovery ‘U” Best state of the art 010 CNN off-the-shelf 08 CNN off-the-shelf + augmentation 00 Specialized CNN
' 100}
Features learned 0 R
for 1000 object ool H”IH HHIH HIH
categories will) H
work well for 06.,-%6‘;@,)@ ot -
1001st! s g,
C-‘abbb (57 .
Generalizes even
acrosg. _taSI_(S From: Razavian et al., CNN Features off-the-shelf: an Astounding
(classification to Baseline for Recognition

object detection)

=

) Surprising Effectiveness of Transfer Learning Gograla |

Learning with Less Labels

But it doesn’t always work that
well!

If the source dataset you train on
IS very different from the target
dataset, transfer learning is not as
effective

If you have enough data for the
target domain, it just results in
faster convergence

See He et al., “Rethinking
ImageNet Pre-training”

Georgia I&
Tech

Effectiveness of More Data

@—@ Fine-tuning
@—@ No Fine-tuning

0
10 30 100 300

Number of examples (in millions) —

From: Revisiting the Unreasonable
Effectiveness of Data
https://ai.googleblog.com/2017/07/revisiting-
unreasonable-effectiveness.htmi

)
©
o
i
o
s]
=
=
—
e
P
w
c
o
o
©
-
©
P
1]
c
(T}
&)

Small Data P | Redi Irreducible
. ower-law Region o
Region J Error

Region
Best Guess Error

Irreducible Error

Training Data Set Size (Log-scale)

Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is
Predictable

Georgla I&

There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled | Non-semantic
Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Task Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift Semantic Shift
¥ *

) Dealing with Low-Labeled Situations Ge°r9-aQ

Regularization

Many standard regularization methods still apply!

L1 Regularization

L=|y—Wx;|*>+ W]

where |W| is element-wise

Example regularizations:
L1/L2 on weights (encourage small values)
L2: L =|y—Wx;|? + 2|W|? (weight decay)
Elastic L1/L2: |y — Wx;|? + a|W|? + B|W|

) Regularization

)
Q
D

\

<
\

O N,
<A\

input _
layer hidden hidden
layer 1 layer 2

Problem: Network can learn to rely strong on a few features that work
really well

May cause overfitting if not representative of test data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Preventing Co-Adapted Features

\

J
y
)
%
X

.0 ¥
XX IREEIXRK
SR

)

input _
layer hidden hidden
layer 1 layer 2

An idea: For each node, keep its output with probability p
Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Dropout Regularization

\

5

)
)
/
e
)

: : K XS
In practice, implement 20 9, e

N
(

)

W

with a mask calculated
each iteration

layer hidden hidden
layer 1 layer 2

During testing, no @

nodes are dropped ai 0
e |1
1

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Dropout Implementation Geo S

=

During training, each node has an
expected p * fan_in nodes

During test all nodes are activated

Principle: Always try to have
similar train and test-time
input/output distributions!

Solution: During test time, scale
outputs (or equivalently weights) by p

|e Wtest == pW

Alternative: Scale by % at train time

v
o N7
N X
A/ >\’«’»‘/<
el 9 A
ZSRTASK

)
)

|ayer h|dden

hidden
layer 1 layer 2

s

aiq 0
azi| . 1
aszy 0
agq 1

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Inference with Dropout

Interpretation 1: The model should
not rely too heavily on particular
features

)
e
N

A

d
)

EXXIIRRK
: : - N> XX
If it does, it has probability 1 — p ARSI

)

of losing that feature in an

iteration input _
layer hidden hidden
layer 1 layer 2

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Why Dropout Works

Interpretation 1: The model should
not rely too heavily on particular

)
e
N

A

features Yo >4
co) XK RABRK
If it does, it has probability 1 — p P8 LS

)

of losing that feature in an

iteration input _
] o layer hidden hidden
Interpretation 2: Training 2™ layer 1 layer 2
networks:

Each configuration is a network

Most are trained with 1 or 2 mini-
batches of data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Why Dropout Works

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: ConvNeXt (2022)
	Slide 31: ConvNeXt (2022)
	Slide 32: ConvNeXt (2022)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

