Topics:
 Recurrent Neural Networks (RNNs)
* Long Short-Term Memory

CS 4644-DL / 7643-A
ZSOLT KIRA



Assignment 2 — Due TODAY! (grace period 19t")
* Implement convolutional neural networks
* Resources (in addition to lectures):

e DL book: Convolutional Networks
o CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

*  Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf

*  HW2 Tutorial (@176), Conv backward (@181)

* Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvIzXOnPa?dl=0)

FB/Meta Office hours Friday 02/21 3pm EST!
» Attention/language Models

GPU resources: PACE-ICE announced


https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0
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Adding a Fully Connected Layer



>>> import torch

>>> from torchvision.models import resnetl8

>>> model = resnet18()

>>> summary(model2, (3, 224, 224), device="cpu')

layer name | output size 18-layer 34-layer Layer (type) Output Shape e
convl 2 ST e e e
Conv2d-1 [-1, 64, 112, 112] 9,408

BatchNorm2d-2 [-1, 64, 112, 112] 128

ReLU-3 [-1, 64, 112, 112] )

conv2_x 5656 3% 3, 64 33, 64 MaxPool2d-4 [-1, 64, 56, 56] 0
e ) ’ Conv2d-5 [-1, 64, 56, 56] 36,864

BatchNorm2d-6 [-1, 64, 56, 56] 128

ReLU-7 [-1, 64, 56, 56] %)

Conv2d-8 [-1, 64, 56, 56] 36,864

BatchNorm2d-9 [-1, 64, 56, 56] 128

ReLU-10 [-1, 64, 56, 56] )

BasicBlock-11 [-1, 64, 56, 56] (%]

Conv2d-12 [-1, 64, 56, 56] 36,864

w3 9 %3, 2 BatchNorm2d-13 [-1, 64, 56, 56] 128

conv4_x x 14 IO P IO 3 RelLU-14 [-1, 64, 56, 56] )
Y X3 YX 3, 2D Conv2d-15 [-1, 64, 56, 56] 36,864

BatchNorm2d-16 [-1, 64, 56, 56] 128

RelU-17 [-1, 64, 56, 56] )

BasicBlock-18 [-1, 64, 56, 56] (7]

Conv2d-19 [-1, 128, 28, 28] 73,728

BatchNorm2d-20 [-1, 128, 28, 28] 256

RelU-21 [-1, 128, 28, 28] %)

Conv2d-22 [-1

, 128, 28, 28] 147,456

.

- av
FLOPs 3.6x10°
ResNet Detalls



Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

|
) Finetuning on New Dataset Gograla |

Replace last layer with new fully-connected for

output nodes per new category




What do

CNNSs Learn?

Georgia
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VGG Layer-by-Layer Visualization
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From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization
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From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.
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CNN101 and CNN Explainer

CNN 101 Learn Convolutional Neural Network (CNN) in your browser!

https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101




Module 3

Introduction

Georgia
graia |
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New Topic: RNNs

one to one one to many many to one many to many many to many
f t ot t t t ot

i A

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT




Why model sequences?

il &

).




Sequences are everywhere...

7’07?:(?’3‘0 M/@/ mfl  FOREIGN MINISTER.
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Sequences in Input or Output?
* |t's a spectrum...

one to one

Input: No sequence
Output: No sequence

Example: “standard”
classification /
regression problems

) Image Credit: Andrej Karpathy




Sequences in Input or Output?
* |t's a spectrum...

one to one one to many

Input: No sequence
Input: No sequence

Output: No sequence
P q Output: Sequence

Example: “standard”
classification /
regression problems

) Image Credit: Andrej Karpathy

Example: Im2Caption




Sequences in Input or Output?
* |t's a spectrum...

one to one one to many many to one

Input: No sequence

Input: No sequence Input: Sequence
Output: No sequence
P q Output: Sequence Output: No sequence
Example: “standard” . I
Example: Im2Caption Example: sentence classification,

classification /

regression problems multiple-choice question answering

Georgia "
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Image Credit: Andrej Karpathy



Sequences in Input or Output?
* |t's a spectrum...

one to one one to many many to one many to many many to many

Input: No sequence .
Input: No sequence Input: Sequence Input: Sequence
Output: No sequence
b q Output: Sequence Output: No sequence Output: Sequence
Example: “standard” . L . . . . T
Example: Im2Caption Example: sentence classification, Example: machine translation, video classification,

classification /

) inle- i i i video captioning, open-ended question answerin
regression problems multiple-choice question answering p g, op q g

Image Credit: Andrej Karpathy



What’s wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

Output Layer
Hidden Layers

Input Layer




What’s wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

Output Layer

* Problem 2: Pure feed-forward processing

Hidden Layers

— No “memory”, no feedback

)

Input Layer




3 Key Ideas

* The notion of memory (state)
— We want to propagate information across the sequence

— We will do this with state, represented by a vector
(embedding/representation)
* Key idea will be mixing new inputs with this state, to yield a new state
 All represented as vector operations

— Just as a CNN represents an image with the final hidden
vector/embedding before the final classifier

)




3 Key Ideas

* The notion of memory (state)

* Parameter Sharing

— in computation graphs = adding gradients




Computational Graph

(C) Dhruv Batra
Slide Credit: Marc Aurelio Ranzato




Gradients add at branches




3 Key Ideas

* The notion of memory (state)

* Parameter Sharing

— in computation graphs = adding gradients

e “Unrolling”

— in computation graphs with parameter sharing

)




New Words

Recurrent Neural Networks (RNNs)

Recursive Neural Networks
— General family; think graphs instead of chains

Types:
— “Vanilla” RNNs (Elman Networks)
— Long Short Term Memory (LSTMs)
— Gated Recurrent Units (GRUs)

Algorithms
— BackProp Through Time (BPTT)
— BackProp Through Structure (BPTS)




Recurrent Neural Network

* Idea: Input is a sequence and we will process it sequentially though a neural
network module with state

e For each timestep (element of sequence):

o [




Recurrent Neural Network

usually want to
predict a vector at
some time steps

=

Georgia | |
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt = Whyht + by

*
RNN

A hy = fW(ht—la il?t)
. v

hy = tanh(Wyphe 1 + Wyepay + by)

Georgia |
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(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt = Whyht + by

*
RNN
f

X

h; = tanh(Whhht 1 + thxt)

= tanh ((Whh Wha) (ht 1))
o (v (%)

Geo ia’
)




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

f
he|= fw)(Pre—1h|Z4) ME>
f

new state / old state input vector at
some time step

some function
with parameters W

Georgia ﬂ
Tech|)




Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

f
he = fw (he—1, T¢) ME>

Notice: the same function and the same set x
of parameters are used at every time step.

Georgia ﬂ
Tech|)




RNN: Computational Graph




RNN: Computational Graph




RNN: Computational Graph




RNN: Computational Graph

Re-use the same weight matrix at every time-step

—» =
-
—




RNN: Computational Graph: Many to Many

Y1 Yo Y3 YT

—» =
-
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RNN: Computational Graph: Many to Many

y. P L, Y. P L, ys P L3 yr P Ly

—» =
-
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RNN: Computational Graph: Many to Man
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RNN: Computational Graph: Many to One
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RNN: Computational Graph: One to Many

Y1 Yo Y3 YT
o S .
ho PP f —Phl—PfW—th—PfW—Pm—P. —» h;
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Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector




Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

Y1 Yo
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Example:
Character-level
Language Model

Vocabulary:

[h,e,l,0]

Example training : . - -

sequence. input layer 8 (1) (1) (1)

“hello” 0 0 0 0
input chars:  “h” e “@p |

)



Example: —
Character-level hy = tanh(Wanhe—1 + Wenai + bn)

Language Model

Vocabulary: y 0.3 1.0 0.1 | nn| 03

idden layer | -0.1 > 0.3 > 0.5 > 0.9
[h,e,l,0] 0.9 0.1 03 0.7

L T T T TW_xh

Example training 5 g 5 5
sequence: input layer | . ; :
“hello” N R E

input chars: “h” “e” I 1"

)



Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

)

target chars:

output layer

hidden layer

input layer

input chars:

“e" fr i ‘o
1.0 0.5 0.1 0.2
23 0.3 0.5 1.5
-3.0 -1.0 1.9 -0.1
4.1 1.2 11 2.2
[ER Ry
03 1.0 0.1 |w hnl-0.3
-0.1 ~ 0.3 0.5 ——>{ 0.9
0.9 0.1 -0.3 0.7
P b e
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
lih” ﬂeH “I" KKI”




Training Time: MLE / “Teacher Forcing”

target chars: “e” bilg 91 o
Example: 1.0 0.5 0.1 0.2
Character-level outputiayer | 28| | 09 0 i
Language Model 4.1 1.2 1 2.2
T 1 fwn
Vocabulary: _ 0.3 1.0 0.1 | nn| 03
hidden layer | 0.1 ~ 03 ~ -05 ~ 0.9
[h,e,l,0] 0.9 0.1 -0.3 0.7
. P b fws
Example training 1 0 0 0
Sequence: input layer 8 (1) (1) (1)
“hello” ° ° 0 °
input chars: “h” “e” I 1"

)



Test Time: Sample / Argmax / Beam Search

Example: Sample 4
Character-level
f |
Language Model Sofimax 2
Sampling A
output layer _23%
4.1
Vocabulary: '
[h ! e ! I ’O] hidden layer .(())31 —
0.9
At test-time sample I
characters one at a s———
time, feed back to .
model

Georgia |
)



Test Time: Sample

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

)

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

@ |lco-o




Test Time: Sample

Example:
Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,0]

At test-time sample
characters one at a
time, feed back to
model

)

Sample

Softmax

output layer

hidden layer | -

input layer

input chars:

.03 .25
13 .20
.00 .05
.84 .50
1.0 0.5
22 0.3
-3.0 -1.0
4.1 1:2
A A
0.3 1.0
0.1 0.3
0.9 0.1
1 0
0 1
0 0
0 0
“h “e”




Test Time: Sample

Example: sample ﬂ '[\ '/\ 7

Character-level ol ||| |u i
Softmax 00 05 68 08
Language Model o || ||| |0 %
Sampling e | o | i | o
output layer _23% g% (1)2 :(1)?
4.1 1.2 A1 2.2
Vocabulary: ‘ ! T T W_ny
[h y e y I ,O] hidden layer .(())31 (1)g -%15 W -(())g
0.9 0.1 -0.3 0.7
At test-time sample I l l lw-*“
characters one at a input ler | 9 ! 2 D
H 0 0 0 0
time, feed back to —_— AR \‘u,” \',
model

Can also feed in predictions during training (student forcing)

Georgia "
Tech|)



Multilayer RNNs 4
0 S S o o g

i
hi_1

hi = tanh W (

peRt o W] LS Sy S S S Oy §

depth




Training: A large corpus of
text from the web
- Note: No annotation
required! It’s just “the text”

Inference: Just generate me

new text
- Can condition on some
ir“tifilir]F)L]t (F)r()rr]r)t) static void stat_PC_SEC _ read mostly offsetof(struct seg_argsgqueus, )

pC>[11);

static void
os prefix(unsigned long sys)

{

PUT_PARAM RAID(2Z, sel) = get_state_state():
set pid sum((unsigned long)state, current state str(),
{(unsigned long)-=1->1r full; low;




- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e nt OW is difficult”, IEEE Transactions on Neural Networks, 1994

-1

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + th.SCt)

(o (1))

(17




Bengio et al, “Learning long-term dependencies with gradient descent

Van I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W)

s ~
hy = tanh(Wpphi—1 + Wanay)

W —» —V‘ tanh
= tanh ((Whh Wha) (hH))
h AN

ht-l_ﬁzﬁ L t
—r i (w ("))

v

Xt




Bengio et al, “Learning long-term dependencies with gradient descent

Van I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
W—-\C)—- tanh W—»C)—-— tanh W—-Q)—- el W_.C>_. tanh
A, | | AR i, L
hO o —— steIck I——-— h1 < — staIck I——-— h2 - — steIck I——-— h3 b . staIck L__., h4
AN T Y N 4 AN Y AN T 4
I I I I
Xl X2 X3 X 4

Computing gradient
of h, involves many
factors of W

(and repeated tanh)




- - Bengio et al, “Learning long-term dependencies with gradient descent
Van I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

W—-\C)—- tanh W—»C)—-— tanh W—»Q)—» tanh W—;-C)—-. tanh
! T } T ! T } L
ho P . SIEICk L—’ h1 u stlck I——-— h2 " steIck I——-— h3 o — SIETTck L: h 4
hN | oy pN | / hN | oy hN | /
Xy X, X3 X4

Oh;
Ohy 1

Georgia | |
Tech *'

= tanh’ (Whhht 7 = thwt)Whh



Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

W—" (;)Z tanh W—* C)Z tanh

W—— tanh\ { W—O— tanh\
oo [ | d

—> h1 " stack

L —T—— stack “——- o — itlck L
I R e A R e " L

b _ AN
| | |
X1 Xz X3

OL L T 8Lt 3ht . /
o = thl P h T tanh' Wynhi—1 + Wapxe )Why,

OLr OLy Ohy Ohy

oW Ohy Ohy_1 """ OW ~ Bhg t=2 9oh, , / OW

Georgia ﬂ
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Bengio et al, “Learning long-term dependencies with gradient descent

Van I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

W—-\C)—- tanh W—»C)—-— tanh W—»Q)—» tanh W—;-C)—-. tanh
| | ] i, L
hO ::" SIEICk L—. hl :—b S[FICk L_.. h2 =——b SIEICk L_. h3 :—b S[FICk L__,, h4
hN T ~ p / h T J o T Y,
I I I I
X, X, X3 X,
tanh'

oL _ \~T 0L ways <1
W — Zt:l W Vanishing gradients N

OLr __ 8Ly Oh O _ OLp rpT - Oh ) Ohy
o t=2

oW — Ohy Ohy ' OW Ohy 1/ OW

T
)
Tech *'




Vanilla RNN Gradient Flow

L,

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

W—" C) — > tanh

ho -—

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

— h, 2

TL_. hy 7—> it%ck “:—_- h,

A vy AN J L

Xz X3 Xy

With no non-linearity:

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients




Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

Ve ™ e

N | A | N g

-+

Computing gradient
of h, involves many
factors of W

(and repeated tanh)

- 4

pN / hN

W—*C)—" tanh W—*Q)—’ tanh W—*C)—" tanh

L., = L.,

X2 X3

Largest singular value > 1:
Exploding gradients

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too big
grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad norm)



Bengio et al, “Learning long-term dependencies with gradient descent

Van I I I a R N N G rad I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
W—-\C)—- tanh W—»C)—-— tanh W—-Q)—- el W_.C>_. tanh
| T | T | T | L
o P — SI%Ck L—* hy a—= Stlck L—- h, @—= SteIck |——- hy <—* st%ck L: h,
| b 7

% J - S . ~

X1 X2 X3

Largest singular value > 1:
Computing gradient  Exploding gradients
of h, involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

—» Change RNN architecture




Long Short Term Memory (LSTM)

Vanilla RNN LSTM
) c
h i: = - |V (h,fc_l)
t—1 t
—) IS

c=fOc_1+1i0g
h: = 0 ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Georgia |
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Meet LSTMs
®) ) )

t t t
~ N\ N ™
—»—(f, ——— 1 -
A A
—FL?_'\E;M > -
‘\l J J \I J
© ® ©

Intuition: “Gating” mechanism similar to residual, but more
complex memory operations (forget/read, write)




LSTMs Intuition: Memory

e Cell State / Memory

Cp1 %

)
®




LSTMs Intuition: Forget Gate

e Should we continue to remember this “bit” of information or
not?

fi ft=0Ws-[hi—1,2:] + by)

hi—1

£t




LSTMs Intuition: Input Gate

* Should we update this “bit” of information or not?
— If so, with what?

it = J(Wi'[ht_l,il?t} —+ bz)

. ét — tanh(Wc-[ht_l,a:t] -+ bc)




LSTMs Intuition: Memory Update

* Forget that + memorize this

Ciy %

@

fi

—>

ifr-%t Cy = fex Co1 +ig * Cy




LSTMs Intuition: Output Gate

* Should we output this “bit” of information to “deeper” layers?

he A
@g’ op =0 Wy, [hiz1, ] + bo)
- B3 . hi = oy * tanh (Cy)

r —




LSTMs Intuition: Additive Updates

Backpropagation from c,
to c,, only elementwise
multiplication by f, no
matrix multiply by W




LSTMs Intuition: Additive Updates
®) ®) %D

A
tlninterrupted gradipnt flow!

—- - -

T
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—FL?_'\E;M > =




LSTMs Intuition: Additive Updates

@ b ®
tlnmterrupted gradlant flow! T
< ™
> —® = >
A Ll A
—> > >
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LSTMs
* A pretty sophisticated cell




Other RNN Variants MUT!:

z = sigm(Wez +b,)
r = sigm(Wex, + Wy he +5b)
[An Empirical Exploration of heyn = tanh(Win(r © h,) + tanh(z,) + by) © 2
Recurrent Network Architectures, B O{15)
Jozefowicz et al., 2015]
MUT2:

(8]
|

= sigm(Wx, + Wi h, +b;)
r = sigm(x; + Wiyh, +b;)
hev1 = tanh(Whn(r @ he) + Wenze + bn) G
+ hO(1—2)

(5

MUT3:
z = sigm(Wyx, + Wy, tanh(h;) + b;)
r = sigm(Weze + Wihy + b))
hyyy = tanh(Wyn(r @ hy) + Wopa, +by) © 2

+ I'f'(l—:)
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