
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Attention and Transformers



• Assignment 3 out

• Due March 8th 11:59pm EST

• Meta office hours Friday 3pm ET on Attention/Language Models



Lecture Outline

• Machine Translation with RNNs

• RNNs with Attention

• From Attention to Transformers

• What can Transformers do?

Slides from Justin Johnson, modified by Arjun Madjumdar 



Image Credit: Andrej Karpathy

Sequence Modeling with RNNs



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



How can we train this on language?

• Supervised Learning: 

• Sentiment analysis (sentence -> negative/neutral/positive) 
labeled by humans

• Translation -> English and equivalent other language

• Self-supervised: Predict the next letter or word!

• This is extremely powerful!!

• In order to predict what’s next, it needs to really understand not 
just language statistics but world knowledge!

• Of course, we need scale for this level of loss reduction / understanding



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Training: A large corpus of 

text from the web 
- Note: No annotation 

required! It’s just “the text”

- Inference: Just generate me 

new text

- Can condition on some 

initial input (prompt)
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Language Model
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Vocabulary:
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characters one at a 

time, feed back to 
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax / Beam Search

Can also feed in predictions during training (student forcing)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 9

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!
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ResNet!



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Neural Image Captioning

(C) Dhruv Batra 18

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)

4096-dim



Neural Image Captioning

(C) Dhruv Batra 19

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning

(C) Dhruv Batra 20
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Neural Image Captioning

(C) Dhruv Batra 21
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Machine Translation

we are eating bread estamos comiendo pan



RNN DecoderRNN Encoder

Machine Translation

we are eating bread

estamos comiendo pan



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0 = h4



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s1

[START]

y0

y1

estamos

Encoder: ht = fW(xt, ht-1)

h0

Slide credit: Justin Johnson

s0

Decoder: st = gU(yt, st-1)



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

estamos

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Note [START]/[STOP] words. This 
can be treated as representation 
for entire sentence



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1)

h0

Slide credit: Justin Johnson

Problem: si is used to 
encode input and 
maintain decoder state



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

h0

Solution: add a 
context vector c = h4 

and predict s0 from h4

c

Decoder: st = gU(yt, st-1, c)

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

Slide credit: Justin Johnson

Solution: add a 
context vector c = h4 

and predict s0 from h4



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Problem: Input sequence 
bottlenecked through 
fixed-sized vector.

Slide credit: Justin Johnson



Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

Slide credit: Justin Johnson

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

bottleneck

Idea: use new context 
vector at each step of 
decoder!



we are eating

h1 h2 h3 s0

bread

h4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Machine Translation with RNNs and Attention

we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

From final hidden state: 
Initial decoder state s0

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

estamos

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

[START]

Machine Translation with RNNs and Attention

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+ s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

This is all differentiable! Do not 
supervise attention weights – 
backprop through everything

Can be seen as a input-dependent weighting 
(rather than MLP)



we are eating

h1 h2 h3 s0

bread

h4

e11 e12 e13 e14

softmax

a11 a12 a13 a14

c1

+

Intuition: Context vector 
attends to the relevant 
part of the input sequence
“estamos” = “we are”

s1

y0

y1

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

From final hidden state: 
Initial decoder state s0

a11=0.45, a12=0.45, a13=0.05, a14=0.05

Set context vector c to a linear 

combination of hidden states

ct = ∑iat,ihi

Normalize to get 

attention weights

0 < at,i < 1    ∑iat,i = 1

Compute alignment scores

et,i = fatt(st-1, hi)        (fatt is an MLP)

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

This is an inductive bias we think is reasonable 
for this task. Need to verify empirically though!



we are eating

h1 h2 h3 s0

bread

h4 s1

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Use c2 to 
compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Intuition: Context vector 
attends to the relevant part 
of the input sequence
“comiendo” = “eating”

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Use c2 to 
compute s2, y2

Repeat: Use s1 to 
compute new 

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Use a different context vector in each timestep of decoder
- Input sequence not bottlenecked through single vector
- At each timestep of decoder, context vector “looks at” 

different parts of the input sequence

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Diagonal attention means 
words correspond in 
order

Diagonal attention means 
words correspond in 
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French 
translation

Input: “The agreement on 
the European Economic 
Area was signed in August 
1992.”

Output: “L’accord sur la 
zone économique 
européenne a été signé en 
août 1992.”

Visualize attention weights at,i

Attention figures 
out different word 
orders

Diagonal attention means 
words correspond in 
order

Diagonal attention means 
words correspond in 
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



we are eating

h1 h2 h3 s0

bread

h4 s1 s2

[START]

y0

y1 y2

estamos comiendo

panestamos comiendo

s3 s4

y3 y4

pan [STOP]

c1 y1c2 y2c3 y3c4

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

e21 e22 e23 e24

softmax

a21 a22 a23 a24

x1 x2 x3 x4

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson



Idea: Can we use attention 
as a fundamental building 
block for a generic sequence 
(input) to sequence (output) 
layer?

?

x1 x2 x3 x4

y1 y2 y3 y4

Note: We just want a generic sequence-in, sequence-out model that will represent each 
input contextualized with rest of inputs, and encode meaning of entire sequence

We will progressively develop a generic mechanism using idea of attention. 
Don’t try to map to RNN translation example!



Attention Layer
Inputs: 
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(st-1, hi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DX)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX)   ei = fatt(q, Xi)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Slide credit: Justin Johnson

Make the module generic: 
Input (X), Query (q)

Output (Weighted sum of inputs) 



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi

Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vector: q (Shape: DQ)
Input vectors: X (Shape: NX x DQ)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NX)   ei = q · Xi / sqrt(DQ)
Attention weights: a = softmax(e)  (Shape: NX)
Output vector: y = ∑iaiXi (Shape: DX)

Changes: 
- Use scaled dot product for similarity

Slide credit: Justin Johnson



Attention Layer
Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DQ)

Computation:
Similarities: E = QXT (Shape: NQ x NX) Ei,j = Qi · Xj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AX (Shape: NQ x DX) Yi = ∑jAi,jXj

Changes: 
- Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson

Make the module generic: 
Sequence Input (X), Sequence Query (Q)

Output: Sequence (Weighted sum/mixture of 
inputs) 

 



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)

Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Changes: 
- Use dot product for similarity
- Multiple query vectors
- Separate key and value 

Slide credit: Justin Johnson

Separate concerns: 
1) Matching (similarity) -> Key, 

2) Output given weighting -> Value



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj
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A4,2

A4,1

Softmax(    )

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4
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E1,1 E2,1
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A2,3 A3,3
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A4,1V1

V2

V3

Softmax(    )

Slide credit: Justin Johnson



Attention Layer

Inputs: 
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1
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Softmax(    )
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Product(     ),   Sum(    )

Slide credit: Justin Johnson



Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

X1 X2 X3

One query per input vector

Self-Attention Layer

Slide credit: Justin Johnson

Make the module generic: 
Input: Sequence (X)

Output: Sequence (Weighted sum/mixture of 
inputs) 



Q1 Q2 Q3

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson
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E2,2

E2,1
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E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3
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E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Softmax(↑)

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Q1 Q2 Q3
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E1,1

E2,3

E2,2

E2,1
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A1,3
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A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2
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Product(→),   Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson



Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Queries and Keys will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Similarities will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3
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Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Attention weights will 
be the same, but 
permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3
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E3,1
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A3,1
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A2,2

A2,1

A2,3

V2

V1

V3

Product(→),   Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting 
the input vectors:

Values will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2
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V2
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Product(→),   Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting 
the input vectors:

Outputs will be the 
same, but permuted

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3
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Product(→),   Sum(↑)

Softmax(↑)
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Consider permuting 
the input vectors:

Outputs will be the 
same, but permuted

Self-attention layer is 
Permutation 
Equivariant
f(s(x)) = s(f(x))

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Softmax(↑)
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Self-Attention Layer
Self attention doesn’t “know” 
the order of the vectors it is 
processing!

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson
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Product(→),   Sum(↑)
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Self attention doesn’t “know” 
the order of the vectors it is 
processing!

In order to make processing 
position-aware, concatenate 
input with positional encoding

E can be learned lookup table, 
or fixed function

E(1) E(2) E(3)

Self-Attention Layer

Inputs: 
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK  (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1)  (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson



Summary
- We have made a generic sequence-in to sequence-out layer

- This is what we want for language processing!

- Each output is a contextualized representation of the 

corresponding input word

- Vector for stop word can be treated as representation of entire 

sentence (e.g. project its output to classifier and add loss)

- Unlike RNNs/LSTMs, it processes all inputs (e.g. entire sentence) at 

once

- Highly parallelizable

- -> SCALE! -> Reduction of loss -> Magic

- Next time: Entire transformer architecture that combines this new layer 

with other layers/concepts we know about (fully-connected, 

normalization, residual/skip connections)
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