Topics:
e Attention and Transformers

CS 4644-DL / 7643-A
ZSOLT KIRA

* Assignment 3 out
* Due March 8th 11:59pm EST

* Meta office hours Friday 3pm ET on Attention/Language Models

L ecture Qutline

 Machine Translation with RNNs
« RNNs with Attention
e From Attention to Transformers

e What can Transformers do?

Slides from Justin Johnson, modified by Arjun Madjumdar

Sequence Modeling with RNNs

one to one one to many many to one many to many many to many

- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

—> h | <= stack

ht = tanh(Whhht_l -+ thmt)
he—1

— tanh (Whh W]m) 4

hi—1

Lt

= tanh | W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How can we train this on language?

« Supervised Learning:

« Sentiment analysis (sentence -> negative/neutral/positive)
labeled by humans

* Translation -> English and equivalent other language

» Self-supervised: Predict the next letter or word!
* This is extremely powerful!!

* In order to predict what's next, it needs to really understand not
just language statistics but world knowledge!

« Of course, we need scale for this level of loss reduction / understanding

Training: A large corpus of

text from the web
- Note: No annotation
required! It's just “the text”

Inference: Just generate me

new text
- Can condition on some
|n|t|a| |nput (prom pt) static void stat PC SEC _ read mostly offsetof(struct seq argsqueue, \

pC>[1]):

static void
o prefix(unsigned long ays)

{

PUT_PARAM RAID(2, sel) = get_state_state();
get pid sum([unsigned long)state, current state str(),;
(unsigned long)-1=>1r full: low:

- __
Test Time: Sample

Cxample wse 2] 1]) %

Character-level ol as|| | M
Language Model Softmax: |4 || o)l s | |
. A A A A
Sampling wl| [os] | ror) | oz
output layer _23% _01% (1)2 :(1)?
4.1 12 1.1 2.2

Vocabulary: y] T tw_ny
[h,e,I,O] hidden layer .%?; > gg > .%15 W‘hrl -(?g
0.9 0.1 -0.3 0.7

At test-time sample I I l IW—X“
characters one at a input layer | 0 1 : 2
time, feed back to P \"’ \}f \“,’

model

Can also feed in predictions during training (student forcing)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

LSTMSs Intuition: Additive Updates
@) 6

ﬁninterrupted gradiAent flow! T
[<)
— ? g — —
A |<|:||c|:||ta;h||3'| \ A
\I T /_’\l o>
© ® &
N N

=
ql gg AUO: é é =>
| |0¢—/l

Q00
(o)

o)

ANEMEISNESE
= LT | AR | LS wu|%

Pl bl bl Q|2
o) o o) ol
ellor B loBiE B Lolelielo bIHE
<] =

MNE HE BB

X 3

- o5 | os [l o5 | o2

)

U Od U (C) J] LI L

Similar to i le :
s B BB
ResNet! i

finclude <asm/io.h>

finclude <asm/prom.h>

finclude <asm/aB20.h>

|’

fincluda <asm/system info.h>

finclude <asm/setew.h>

fincluda <asm/pgproto.h>

fdefine REG PG vasa slot addr pack
f#dafina PFM ROCOMP AFSR(0, load)
f#defina STACK DDR(type) {func)
fdeafina SWAF ALLOCATE (nr) (&)

fdefine emulate sigs() arch get unaligned child()

f#define access rw(IST) asm volatila| movd %%esp, %0, %3 : ¢ & (0));
if [typa & DO READ)

static void stat PC_SEC _ read mostly offsetof(struct seq argsqueus, \
pC>[1]1);

static void
os_prefix(unsigned long sys)

{

§ifdef CONMFIG PREEMPT
PUT_PARAM RAID(Z, sel) = get_state_state();
set_pid sum((unsigned long)state, current_state_ str(),
{unsigned long)-1->1r full; low;

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

lter fille ld"SWString rEpres@ntation from WSer-space
packstring(WOlid *Mbufp, s¥zel:| NrEmEm-, s¥zel: Wen)

) | TN—— -))
fmple Eied BN FEwe Ellc 1 ois S I
st lid th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

guote detection cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Cell sensitive to position in line:

The so0le importance of the crossing of the Berezina lies in the fact
that it plainly and indubitably proved the fallacy of all the plans for
cutting off the enemy's retreat and the soundness of the only possible
line of action--the one Kutuzov and the general mass of the army
demanded--namely, simply to follow the enemy up. The French crowd fled
at a continually increasing speed and all its energy was directed to
reaching its goal. It fled like a wounded animal and it was impossible
to block its path. This was shown not so much by the arrangements it
made for crossing as by what took place at the bridges. When the bridges
broke down, unarmed soldiers, people from Moscow and women with children
who were with the French transport, all--carried on by vis inertiae--
pressed forward into boats and into the ice-covered water and did not)

surrender ,

line length tracking cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

(pending, mask);

TIF_SIGPENDING) ;

if statement cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Cell that turns on inside comments and quotes:

quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

ifdef CONFIG_AUDITSYSCA
tatic inline int audit natch _class_bits(int class, u32

for (1 = ©; i”E'AudtT BITMASK
]

™l
Ll
St

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

*mask)

Y Y Y T Y
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

(C) Dhruv Batra 18

Neural Image Captioning

4096-dim
————— o
(O Q
II \\\\O 1\ \\\O
---30
L J L J oL J L]\ J
Y Y Y T Y
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP

+ Non-Linearity + Non-Linearity

(C) Dhruv Batra 19

Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

£
Hil <start> Two people and two horses.
AR q‘
&
T
Z
O
O
2
(@)}
c
=
©
@ S
-
£
L £s
w :
g
£ (C) Dhruv Batra 20

Neural Image Captioning

P(next) P(next) P(next) P(next) P(next) P(next)

A EEE
rrey

i <start> Two people and two horses.

4096-dim
P
5 T,

(C) Dhruv Batra 21

Image Embedding (VGGNet)

Machine Translation

we are eating bread » estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

hg » h, » h, h, h,
y A
X1 Xp X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s; = gy(Yy St1) estamos
Y1
hO > h1 > h2 h3 h4 S — T Sq
X X2 X3 X4 Yo

we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = gy(Y, Siq) estamos comiendo

Y1 Yo
ho > h1 > h2 h3 h4 SO T S1 S E—— Sz
X1 Xy X3 X4 Yo " Y4

we are eating bread [START] estamos

Slide credit: Justin Johnson

Note [START]/[STOP] words. This

MaChlﬂe TraﬂS|at|Oﬂ Wlth RN NS can be treated as representation

for entire sentence

Encoder: h, = f,,(x, h4)

Decoder: s, = g (Y, S.1) estamos comiendo pan [STOP]
Y1 Yo Y3 Y
A A A A
ho > h, " hy " hy " hy "So T 7St T " S22 [" Ss T " S4
A A A A A A A A
X1 Xy X3 Xy Yo Y " Y2 > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,,(x, h4)

Decoder: s, = » St
t= Ve Ser) Problem: s; is used to

encode input and
maintain decoder state

ho > h1 > h2 h3 h4 SO T S1 — 1 SZ I S3 — T S4
‘ 4)) 4
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1b C)

Solution: add a
context vectorc = h,
and predict s, from h,

hg * h, * h, h; > h, »Sog T " ST T [" Sy T ["S3 T " S4
* t t t t
C
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy Si.1, C) estamos comiendo pan [STOP]

Solution: add a
context vectorc = h, Y Y2 Y3 Y
and predict s, from h, 5 5 5 5

hg * h, * h, > hg > h, »Sog T " ST T [" Sy T ["S3 T " S4
A A A A A A A A A A A A
> C
X1 Xy X3 Xy Yo " Y4 gB %) > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy S.1, C)

bottleneck

Problem: Input sequence
hg » h; » h, h, h, Sy — bottlenecked through
- " fixed-sized vector.
C e
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1 C)

bottleneck

ldea: use new context

hO > h1 > h2 > h3 > h4 > Sg — vector at each step of
. decoder!
C T
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, > h, > hg > h, > S,
X X5 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

From final hidden state:

e €5 €13 €14 Initial decoder state s,
11 .

h, * h, " hy " hy " So

X1 X2 X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

aqq dqp dq3 dqg

t t t t

softmax

f f f I From final hidden state:
€41 €12 €3 €14 Initial decoder state s,
L |

h, > hy " hy " h, " So

X1 X2 X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
S far(Sea, M)

(f. is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

CER CEp) dq3 CEP

t t t t

soffmax
t 1 t 1 From final hidden state:
€11 €12 €13 €14 Initial decoder state s
i\ gl |

h, \h2 \h3 \h4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

:SO

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X /%@ X
dqq CEp) CEE! R
t t t t
soffmax
| | | |
€11 €3 €14

From final hidden state:
Initial decoder state s,

A

h, \h2 \h3 \h4

we are eating

bread

:SO

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos

|

:C1

|

Yo

Normalize to get
attention weights
O<a;<1 2a;=1

Set context vector ¢ to a linear
combination of hidden states
C; = 2a 0,

[START]

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

| | | | Compute alignment scores

X xR X e = (s N) (fayisan MLP)
3111 a;z a;3 a}4 estamos
soffmax Normalize to get
f f t I From final hidden state: 2 attention weights
ef 11 \ eﬂ? e‘1‘3T \ €14 Initial decoder state s ‘ O<a, <1 Sa, =1

1
h, \h2 \h3 \h4 : ¥

" So S Set context vector ¢ to a linear
] ‘ I [‘ ‘ combination of hidden states
C; = 2a 0,
X1 X2 X3 X4 Ci 1 Yo o .)
This is all differentiable! Do not

we are eating bread supervise attention weights -
backprop through everything

Can be seen as a input-dependent weighting
(rather than MLP)

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015 Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

aqq dq2 dq3 dqg
t t t t
soffmax
t 1 | t
€11 €13 €14

L

From final hidden state:
Initial decoder state s,

\[h,

h,

we are eating bread

a,;=0.45, a,,=0.45, a,3=0.05, a,,=0.05

:SO

Intuition: Context vector

attends to the relevant

part of the input sequence
“estamos” = “we are”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Compute alignment scores
e = fau(Ser, i) (f.is an MLP)

estamos
Normalize to get
Y1 attention weights
‘ O<a;<1 2a;=1
S Set context vector ¢ to a linear

|

|

Yo

combination of hidden states
C; = 2a 0,

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /* ' compute new

3121 a%z ais 3%4 estamos context vector ¢,
soffmax
f 1 \ 1 | Y1
€21 \ €22 €23 \ €24 T
1 +

X X5 Xg X, Cil|Yo| | C2

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /* ' compute new

a a a a _
121 %2 %3 %4 estamos comiendo context vector c,
1 1soﬂ!maxT : Usec,to

Y1 Y2 compute s,, Y,
€21 \ €22 €23 \ €24 4 T ‘
a S j +

h, \h2 \h3 \h4 : R

I . 1N

X1 X9 X3 X4 Ci 1 Yo Co || Yy

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s, to
g . compute new
a121 aiz %3 %4 estamos comiendo context vector ¢,
soffmax Use ¢, to
! 1 : ! Yi Y2 compute s,, Y,
€21 \ €22 €23 \ €24 | i
3 , : ‘

> Sp Sq

] ‘ I [Intuition: Context vector ‘ ‘ ‘

attends to the relevant part
X X X3 X4 of the input sequence Cil|Yo| | C2| VY1
“comiendo” = “eating”

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

|

Y2

|

pan [STOP]

I LT T
X1 X5 X3 X4 Cil Yo | Co| Yy C3 || Y2 Csll Y3
we are eating bread

[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to French 2 SE o . .
translation 2 285885 28 3§
F T o wLwwWw< 2w £ I~ Y
g
Input: “The agreement on accord
. sur
the European Economic a
Area was signed in August . zone
" economique
1992 européenne
a
"y été
Output: “L’accord sur la signé
zone économique en
’ sy s p aolt
européenne a été signé en 1992

aout 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights a;

Example: English to French 5 £
translation ° 5
Input: “The agreement on Diagonal attention means Jaccord
. words correspond in
the European Economic order
Area was signed in August - zone
” économique
1 992 européenne
Output: “L’accord sur la
zone économique
européenne a eteé signé en Diagonal attention means
aout 1992.” words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992."

Output: “L’accord sur la

a été signé en
aout 1992

Visualize attention weights a;

agreement

European
Economic
Area

The
the

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

4 4 4 4
Ay Aoy A3 Aoy

t t t t

softmax

| | | |
€91 €22 €93 €24
h, h, > h, h,
X X5 X3 X,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

estamos comiendo pan [STOP]

[START] estamos comiendo pan

Slide credit: Justin Johnson

y1 y2

Y3

Y,

estamos comiendo

1
soffmax |
EAEIE | E—
A A |

|dea: Can we use attention
= |» asafundamental building Xy || %,

we are eating bread START] estamos block for a generic sequence
(input) to sequence (output)
layer?

Note: We just want a generic sequence-in, sequence-out model that will represent each

input contextualized with rest of inputs, and encode meaning of entire sequence

We will progressively develop a generic mechanism using idea of attention.

Don't try to map to RNN translation example!

Attention Layer

Inputs:
State vector: s; (Shape: D)

Hidden vectors: h; (Shape: N, x D,))
Similarity function: f_,,

Computation:

Similarities: e (Shape: Ny) e, =f_(s..1, h))
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.ah. (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x Dy)
Similarity function: f_,,

Make the module generic:

Input (X), Query (q)
Output (Weighted sum of inputs)

Computation:

Similarities: e (Shape: Ny) e, =f_.(q, X,
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.aX, (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny, x D)
Similarity function;dot product

Computation:
Similarities: e (Shape: Ny) | ;= q - X
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector: y = >:a,X; (Shape: Dy) - Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function:|scaled dot product

Computation:
Similarities: e (Shape: Ny)| e, = q - X;/ sqrt(Dq)
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector: y = 3a,X; (Shape: Dy) - Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors:|Q (Shape: No x D)

Input vectors: X (Shape: Ny x Dg)

Make the module generic:
Sequence Input (X), Sequence Query (Q)
Output: Sequence (Weighted sum/mixture of
inputs)

Computation:

Similarities: E = OX" (Shape: No x Ny) E;; = ;- X;/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) Changes:

Output vectors: Y = AX (Shape: Ng x Dy) Y; = 3A; X, - Use dot product for similarity

- Multiple query vectors

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))
Separate concerns:
1) Matching (similarity) -> Key,
2) Output given weighting -> Value

Computation:

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW, (Shape: Ny x D) Changes:

Similarities: E = QK" (Shape: No x Ny) E;; = O; - K,/ sqrt(Dy) - Use dot product for similarity
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny) _ Multiple query vectors

Output vectors: Y = AV (Shape: N x Dy) Y; =3A,,V, . Separate key and value

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X,

Q, Q, Q; Q,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X, — K,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: No x Ny) E;; = Q; - K./ sqrt(Dy) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x Dy) Y; =3A,,V, X, — K,

Q, Q, Q; Q,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, S RS P
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)

Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky — Eqs E,. B B

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) A, A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) A Ay Az, Ay

Value matrix: W,, (Shape: D, x D,))

Softmax(])
Computation:
Key vectors: K = XW, (Shape: Ny x Dg) X; — Ky — Eq; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, — K, — Eq, E,, E., E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ngq x Ny) | ' |
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky — Eqs B B B

R R
Q, Q, Q; Q,

Slide credit: Justin Johnson

Attention Layer

Inputs:

Query vectors: O (Shape: Ny x D) "V, — A A, Az, Ay,
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) " Vo — A A, Ay Ay

Value matrix: W,, (Shape: D, x D,))

" V3] A Aoz | | Azg | Ayg
Softmax(])

Computation:
Key vectors: K = XW, (Shape: Ny x Dg) - X — Ky — Ey; E,, E;, E.,
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;; = / sqrt(Dq) X, = Ky —1|Eio| |Eyp| |Esn| | Esp
Attention weights: A = softmax(E, dim=1) (Shape: Ng x Ny)
Output vectors: Y = AV (Shape: Ng x D) Y; = AV, Xg — Ky — Eqs B B B

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;;

Attention weights: A = softmax(E, dim=1
Output vectors: Y = AV (Shape: Ny x D) Y; =

Y, Y, Y, Y,

| I I |

Product(—), Sum(t)

/ sqrt(Dq)
(Shape: N x Ny)

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)

Value matrix: W., (Shape: D, x D)

Query matrix: W, (Shape: Dy x Dy) Make the module generic:

Input: Sequence (X)
Output: Sequence (Weighted sum/mixture of
Computation: inputs)
Query vectors: O = XW
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW, K,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D) Ky
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:
Query vectors: O = XW K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson

-
Self-Attention Layer

One per input vector
Inputs: A3 Ags Ags
Input vectors: X (Shape: Ny x Dy) Al Al | Aso
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D) A (A | Ay
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t

Computation:
Query vectors: O = X K, = E;5 E,, Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = (Shape: Ny x Ny) E;; = / sqrt(Dq) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q,;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs: 1 Vs |7 A3 Ags Ags
Input vectors: X (Shape: Ny x Dy) AV, = AL, A, A
Key matrix: W, (Shape: Dy x D) ' ' '
Value matrix: W,, (Shape: Dy x D,) TV = A Ay A
Query matrix: W, (Shape: Dy x D) — r:]axq)

t

Computation:
Query vectors: O = XW, K, = E, E,» Es,
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

X, X, | X,

Slide credit: Justin Johnson

Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

v

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 E3,1
t t t
Q, Q, Q,;
) t)
X, X, X,

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t
Computation: -
Query vectors: O = XW, —
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D) -
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

-
Self-Attention Layer ot ot

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Do) Queries and Keys will
Query matrix: W, (Shape: Dy x D) permuted t
Softmax(})
t
C ian: | K2 >
omputation:
Query vectors: O = XW, -+ K,
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) [Ks [T~
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) G t +
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t +
X, X, X,
-

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D) Similarities will be the
Value matrix: W,, (Shape: Dy x D) same, but permuted -
Query matrix: W, (Shape: Dy x D) t

Softmax(})
4

Computation:

Query vectors: O = XW, Ky || Es; E,, E,,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks | T Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Attention weights will
Value matrix: W,, (Shape: Dy x D,) be the same, but
Query matrix: W, (Shape: Dy x D) permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

1 % %

Product(—), Sum(])
)

A3,3 A1 8 A2,3

T

Softmax(})
t

Q, Q, Q,
t t t

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting EVARER
Inputs: the input vectors: . Aoz | [Aiz]| [Aa
Input vectors: X (Shape: Ny x Dy) LV, A, A, A,
Key matrix: W, (Shape: Dy x D) Values will be the ‘ ' ' '
Value matrix: W,, (Shape: Dy x D) same, but permuted TVa |7 Az (A Ags
Query matrix: W, (Shape: Dy x D) t

Computation:

Query vectors: O = XW, K; = Es, E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks 1= Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Outputs will be the
Value matrix: W,, (Shape: Dy x D,) same, but permuted

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

v

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, Ez,z
E3,1 Eq - E2,1
E3,3 Eqs E2,3
t t t
Q,; Q, Q,
) t)
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

L)

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, E2,2
E3,1 Eq - E2,1
E3,3 Eqs E2,3
t t t
Q,; Q, Q,
) t)
X, X, X,
—

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”

Inputs: no
Input vectors: X (Shape: Ny x Dy) the orde.r 01: the vectorsiitis
processing!

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(])

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 E3,1
t t t
Q Q, Qs
) t)
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer ot 1 sl

, Self attention doesn't “know” Vs = A A A
Inputs: , , the order of the vectors it is S &3 >
Input vectors: X (Shape: Ny x Dy) - V, |— A A A

. , processing! 12 22 32
Key matrix: W, (Shape: Dy x D)
Value matri.x: W, (Shape: Dy x D) In order to make processing Vi 1= A Ay A
Query matrix: W, (Shape: Dx x Do) position-aware, concatenate Softr:]aX(T)

input with positional encoding

Computation:
Query vectors: O = XW
Key vectors: K = XW, (Shape: Ny x Dg)

E can be learned lookup table,
or fixed function

Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

E) [EQ@) Q)

Slide credit: Justin Johnson

Summary

- We have made a generic sequence-in to sequence-out layer
- This is what we want for language processing!
- Each output is a contextualized representation of the
corresponding input word
- Vector for stop word can be treated as representation of entire
sentence (e.g. project its output to classifier and add loss)

- Unlike RNNs/LSTMs, it processes all inputs (e.g. entire sentence) at
once
- Highly parallelizable
- => SCALE! -> Reduction of loss -> Magic

- Next time: Entire transformer architecture that combines this new layer
with other layers/concepts we know about (fully-connected,
normalization, residual/skip connections)

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Lecture Outline
	Slide 4: Sequence Modeling with RNNs
	Slide 5
	Slide 6: How can we train this on language?
	Slide 7
	Slide 8
	Slide 9: LSTMs Intuition: Additive Updates
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Neural Image Captioning
	Slide 19: Neural Image Captioning
	Slide 20: Neural Image Captioning
	Slide 21: Neural Image Captioning
	Slide 22: Machine Translation
	Slide 23: Machine Translation
	Slide 24: Machine Translation with RNNs
	Slide 25: Machine Translation with RNNs
	Slide 26: Machine Translation with RNNs
	Slide 27: Machine Translation with RNNs
	Slide 28: Machine Translation with RNNs
	Slide 29: Machine Translation with RNNs
	Slide 30: Machine Translation with RNNs
	Slide 31: Machine Translation with RNNs
	Slide 32: Machine Translation with RNNs
	Slide 33: Machine Translation with RNNs
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Attention Layer
	Slide 51: Attention Layer
	Slide 52: Attention Layer
	Slide 53: Attention Layer
	Slide 54: Attention Layer
	Slide 55: Attention Layer
	Slide 56: Attention Layer
	Slide 57: Attention Layer
	Slide 58: Attention Layer
	Slide 59: Attention Layer
	Slide 60: Attention Layer
	Slide 61: Attention Layer
	Slide 62: Self-Attention Layer
	Slide 63: Self-Attention Layer
	Slide 64: Self-Attention Layer
	Slide 65: Self-Attention Layer
	Slide 66: Self-Attention Layer
	Slide 67: Self-Attention Layer
	Slide 68: Self-Attention Layer
	Slide 69: Self-Attention Layer
	Slide 70: Self-Attention Layer
	Slide 71: Self-Attention Layer
	Slide 72: Self-Attention Layer
	Slide 73: Self-Attention Layer
	Slide 74: Self-Attention Layer
	Slide 75: Self-Attention Layer
	Slide 76: Self-Attention Layer
	Slide 77: Self-Attention Layer
	Slide 78: Summary

