Topics:
e Transformers continued
e Vision Transformers

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 3
* Due March 8th 11:59pm EST

Projects
* Project check-in due March 14th

Meta office hours Friday 3pm ET on attention models

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy, S.1b C)

Solution: add a
context vectorc = h,
and predict s, from h,

hg * h, * h, h; > h, »Sog T " ST T [" Sy T ["S3 T " S4
* t t t t
C
X X X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f,, (X, hy.q)

Decoder: s, = g,(Yy Si.1, C) estamos comiendo pan [STOP]

Solution: add a
context vectorc = h, Y Y2 Y3 Y
and predict s, from h, 5 5 5 5

hg * h, * h, > hg > h, »Sog T " ST T [" Sy T ["S3 T " S4
A A A A A A A A A A A A
> C
X1 Xy X3 Xy Yo " Y4 gB %) > Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X X X X Repeat: Use s; to
' ' /* ' compute new

a a a a _
121 %2 %3 %4 estamos comiendo context vector c,
1 1soﬂ!maxT : Usec,to

Y1 Y2 compute s,, Y,
€21 \ €22 €23 \ €24 4 T ‘
a S j +

h, \h2 \h3 \h4 : R

I . 1N

X1 X9 X3 X4 Ci 1 Yo Co || Yy

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Example: English to French
translation

Input: “The agreement on
the
was signed in August

1992."

Output: “L'accord sur la

a été signé en
aout 1992

Visualize attention weights a;

agreement

European
Economic
Area

The
the

Diagonal attention means Jaccord
words correspond in

order
Zone

économique
européenne

Diagonal attention means
words correspond in
order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Y Yo Y3 Ya

T 1
X %
3123 a?,, estamos comiendo
offmax |
-
€3 \ €94
t 1 I+
\’_hls_‘ \’_hl:‘ Sp S 2z

h h Idea: Can we use attention

| as a fundamental building X1 | X | X | Xg

we are eating bread START] estamos block for a generic sequence
(input) to sequence (output)
layer?

Attention Layer

M . . a;m a;zz a;zs T estamos comiendo pan [sTOP]
State vector: s; (Shape: D) | s |
Hidden vectors: h. (Shape: Ny x D,)) o el e e noel e
Similarity function: f, E—t ﬁ + N | |
bt e 5 E S
iRk BRI
Xq X2 X3 Xa ﬂ Yo C Y E‘ Y2 M Y3
we are eatin bread ! 1 J
° [START] estamos comiendo pan
Computation:

Similarities: e (Shape: Ny) e, =f_.(s.., h)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = >.ah. (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: O (Shape: Ny x D)

Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: D, x D,))

Computation:

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)
Similarities: E = (Shape: Ng x Ny) E;;

Attention weights: A = softmax(E, dim=1
Output vectors: Y = AV (Shape: Ny x D) Y; =

Y, Y, Y, Y,

| I I |

Product(—), Sum(t)

/ sqrt(Dq)
(Shape: N x Ny)

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x D)
Value matrix: W, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x D) t
Softmax(})
t
Computation: -
Query vectors: O = XW, —
Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: Ny x D) -
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

-
Self-Attention Layer ot ot

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) . —
Key matrix: W, (Shape: Dy x Do) Queries and Keys will
Query matrix: W, (Shape: Dy x D) permuted t
Softmax(})
t
C ian: | K2 >
omputation:
Query vectors: O = XW, -+ K,
Key vectors: K = XW, (Shape: Ny x Dg)
Value Vectors: V = XW,, (Shape: Ny x D) [Ks [T~
Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K;/ sqrt(Dy) G t +
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q; Q, Q,
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;;V, t t +
X, X, X,
-

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting , -
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: W, (Shape: Dy x D) Similarities will be the
Value matrix: W,, (Shape: Dy x Dy same, but permuted -
Query matrix: W, (Shape: Dy x D) t

Softmax(})
4

Computation:
Query vectors: O = XW, K, ||| Ess E,, E, .
Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D) Ks | T Ess Eis Ess
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K/ sqrt(D) t t t
Attention weights: A = softmax(E, dim=1) (ape Ny X Ny) Q,; Q, Q,
Output vectors: Y = AV (Shape: Ny x D) Y; = 3,A;;V, t t t

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Attention weights will
Value matrix: W,, (Shape: Dy x D,) be the same, but
Query matrix: W, (Shape: Dy x D) permuted

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

1 % %

Product(—), Sum(])
)

A3,3 A1 8 A2,3

T

Softmax(})
t

Q, Q, Q,
t t t

Slide credit: Justin Johnson

-
Self-Attention Layer ot sl

Consider permuting EVARER
Inputs: the input vectors: . Aoz | [Aiz]| [Aa
Input vectors: X (Shape: Ny x Dy) LV, A, A, A,
Key matrix: W, (Shape: Dy x D) Values will be the ‘ ' ' '
Value matrix: W,, (Shape: Dy x D) same, but permuted TVa |7 Az (A Ags
Query matrix: W, (Shape: Dy x D) t

Computation:

Query vectors: O = XW, K; = Es, E,; E,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D) Ks 1= Ess Eqs Ezs

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q,; Q, Q,

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D) Outputs will be the
Value matrix: W,, (Shape: Dy x D,) same, but permuted

Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

v

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, Ez,z
E3,1 Eq - E2,1
E3,3 Eqs E2,3
t t t
Q,; Q, Q,
) t)
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)
Value vectors: V = XW,, (Shape: N, x D)

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant

f(s(x)) = s(f(x))

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

L)

A3,2 Ay A2,2
A3,1 Aq A2,1
A3,3 A1 3 A2,3
t
Softmax(})
t
E3,2 Ei, E2,2
E3,1 Eq - E2,1
E3,3 Eqs E2,3
t t t
Q,; Q, Q,
) t)
X, X, X,
—

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”

Inputs: no
Input vectors: X (Shape: Ny x Dy) the orde.r 01: the vectorsiitis
processing!

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

Y2 Y3
1 1

Product(—), Sum(})

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E2,3 Ess
E, 2 E2,2 Es»
E, 1 E2,1 E3,1
t t t
Q Q, Qs
) t)
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer ot 1 sl

, Self attention doesn't “know” Vs = A A A
Inputs: , , the order of the vectors it is S &3 >
Input vectors: X (Shape: Ny x Dy) - V, |— A A A

. , processing! 12 22 32
Key matrix: W, (Shape: Dy x D)
Value matri.x: W, (Shape: Dy x D) In order to make processing Vi 1= A Ay A
Query matrix: W, (Shape: Dx x Do) position-aware, concatenate Softr:]aX(T)

input with positional encoding

Computation:
Query vectors: O = XW
Key vectors: K = XW, (Shape: Ny x Dg)

E can be learned lookup table,
or fixed function

Value vectors: V = XW,, (Shape: Ny x D) Ky 1= B B2 Es
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) Q, Q, Q;
Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V; t t t

E [EQ@) [EQ)

Slide credit: Justin Johnson

Self-Attention Layer

One query per input vector

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D,))
Query matrix: W, (Shape: Dy x D)

Computation:

Query vectors: O = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: N, x D)

Similarities: E = QK" (Shape: Ny x Ny) E;; = O, - K/ sqrt(Dy)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = 3A;;V;

t

Y2 Y3
1 1

Product(—), Sum(])

v

A1 ,3 A2,3 A3,3
A, 2 A2,2 A3,2
A 1 A2,1 A3,1
t
Softmax(})
t
E, 3 E;s E3,3
E, 2 E2,2 E3,2
E, 1 E2,1 E3,1
t t t
Q, Q, Q,;
) t)
X, X, X,

Slide credit: Justin Johnson

Three Ways of

Recurrent Neural Network

Y. T Yo " Ys T/ Y4

I

X X X3 X,

Works on Ordered Sequences

(+) Good at long sequences: After
one RNN layer, h; "sees” the
whole sequence

(-) Not parallelizable: need to
compute hidden states
sequentially

1D Convolution

IX XX

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence

(+) Highly parallel: Each output
can be computed in parallel

Processing Sequences

Self-Attention

Works on Sets of Vectors

(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!

(+) Highly parallel: Each output
can be computed in parallel

(-) Very memory intensive

Slide credit: Justin Johnson

The Transformer

X X X3 X,

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

Y1 Yo Y3 Y
The Transformer A e [. O
MLP independently MtP Mlt_P MtP MtP
on each vector f f 1 5
(weight shared!)
t
All vectors interact Self-Attention
with each other t t t t
1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Yo Y3 Y

t t t t

t t t t
MLP MLP MLP MLP

t t t t

4
Self-Attention

t t t t

1 1 1 1
X X X3 X,

Slide credit: Justin Johnson

The Transformer

Recall Layer Normalization:
Given h,, .., hy (Shape: D)

scale: y (Shape: D) .

shift: B (Shape: D) MLP independently

w = (1/D)3; h;, (scalar) on each vector

g, = (3 (hy;- w)»)'"? (scalar)

zi=(hi-w) / o

=v * 7.

imyrath Residual connection
All vectors interact

Baetal, 2016 with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
t t t t
t
[I I I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson

The Transformer

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Y
t t t t
t
[I [I
MLP MLP MLP MLP
|
Layer Normalization

:
Self-Attention
t t t t
I I I I
X X X3 X4

Slide credit: Justin Johnson

The Transformer

Residual connection

MLP independently
on each vector

Residual connection

All vectors interact
with each other

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Y1 Y2 Y3 Ya
I | I I
Layer Normalization
:

[[I I
MLP MLP MLP MLP
Layer Normalization

:
Self-Attention
t t t t
I I I I
X4 X X3 X4

Slide credit: Justin Johnson

The Transformer AR L e g b

Layer Normalization
Transformer Block: ‘ @1‘)

Input: Set of vectors x

Output: Set of vectors 'y I [[I
MLP MLP MLP MLP

Self-attention is the only
interaction between vectors!

Layer Normalization

Layer norm and MLP work :@:9
independently per vector

Self-Attention
Highly scalable, highly -t t t t
parallelizable 1 1 1 1
X X X3 X4

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

! ! ! !

The Transformer

‘MW“MW“MW“MW‘

I

t i t
Transformer Block: Lay‘”ﬂ““m: alation
Input: Set of vectors x i
Output: Set of vectors 'y R

1 ! ! !

Layer@iNormalization

Self-attention is the only A Transformer is a = e
interaction between vectors! seguence of transformer | T T
blocks B——
Layer norm and MLP work | T
independently per vector R R

LayertNormalization

I

Highly scalable, highly
parallelizable

‘Mm“MW“MW“MW‘

LayertNormalization

i

Self-Attention
f t 1 t

N

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurlPS 2017

Qutput
Probabilities

=)
L

Linear

A

g)
| Add & Norm l“\

Feed
Forward

Add & Norm

P emaem)
[_Add & Norm | -
Aielic Infalin Multi-Head
Feed Attention
Forward 7 Y= = Nx
—_
Nix
r—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 A J)

s J . v,
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
Inputs OQutputs
(shifted right)

Encoder-Decoder

Details:

» Tokenization is messy!
Trained chunking
mechanism

» Position encoding

* sin/cos: Normalized,
nearby tokens have
similar values, etc.

» Added to input
embedding

* When to use decoder-only
versus encoder-decoder
model is open problem

» GPT is decoder only!

e
Benchmark

GLUE

Rank Name ColLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C)J. 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C/J‘ 90.4 74.4 975 93.5/91.4 93.0/92.6 75.2/90.9 914 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google TS C)J. 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 922 91.9 96.9 928 94.5 531
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART g 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J 89.7 70.5 97.5 93.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C)J. 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 479
+ 10 Microsoft D365 Al & UMD FreeLB-RoBERTa (ensemble) C)J. 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facebook Al RoBERTa C)J 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C)J. 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 428
14 GLUE Human Baselines GLUE Human Baselines g 87.1 66.4 97.8 86.3/80.8 92.7/92.6 59.5/80.4 92.0 928 91.2 93.6 95.9 -
15 Stanford Hazy Research Snorkel MeTalL C’J 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 399

source: https://gluebenchmark.com/leaderboard

e
Benchmark

Rank Name ColA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm
1 HFLIFLYTEK MacALBERT + DKM 90.7 74.8 97.0 94.5/92.6 92.8/92.6 74.7/90.6 91.3 91.1 97.8 92.0 94.5 52.6
+ 2 Alibaba DAMO NLP StructBERT + TAPT C’J 90.6 753 97.3 93.9/91.9 93.2/92.7 74.8/91.0 90.9 90.7 97.4 91.2 94.5 491
+ 3 PING-AN Omni-Sinitic ALBERT + DAAF + NAS 90.6 73.5 97.2 94.0/92.0 93.0/92.4 76.1/91.0 91.6 91.3 97.5 91.7 94.5 51.2
4 ERNIE Team - Baidu ERNIE C)J' 90.4 74.4 97.5 93.5/91.4 93.0/92.6 75.2/90.9 91.4 91.0 96.6 90.9 94.5 51.7
5 T5Team- Google T5 [3' 90.3 71.6 97.5 92.8/90.4 93.1/92.8 75.1/90.6 92.2 91.9 96.9 92.8 94.5 53.1
6 Microsoft D365 Al & MSR Al & GATECH MT-DNN-SMART C)J' 89.9 69.5 97.5 93.7/91.6 92.9/92.5 73.9/90.2 91.0 90.8 99.2 89.7 94.5 50.2
+ 7 Zihang Dai Funnel-Transformer (Ensemble B10-10-10H1024) C’J 89.7 70.5 97.5 063.4/91.2 92.6/92.3 75.4/90.7 91.4 91.1 95.8 90.0 94.5 51.6
<+ 8 ELECTRA Team ELECTRA-Large + Standard Tricks C)J' 89.4 71.7 97.1 93.1/90.7 92.9/92.5 75.6/90.8 91.3 90.8 95.8 89.8 91.8 50.7
+ 9 Huawei Noah's Ark Lab NEZHA-Large 89.1 69.9 97.3 93.3/91.0 92.4/91.9 74.2/90.6 91.0 90.7 95.7 88.7 93.2 47.9
+ 10 Microsoft D365 Al & UMD FreelLB-RoBERTa (ensemble) C’J 88.4 68.0 96.8 93.1/90.8 92.3/92.1 74.8/90.3 91.1 90.7 95.6 88.7 89.0 50.1
11 Junjie Yang HIRE-RoBERTa C)J' 88.3 68.6 97.1 93.0/90.7 92.4/92.0 74.3/90.2 90.7 90.4 95.5 87.9 89.0 49.3
12 Facehook Al RoBERTa C)Jl 88.1 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 95.4 88.2 89.0 48.7
+ 13 Microsoft D365 Al & MSR Al MT-DNN-ensemble C’J 87.6 68.4 96.5 92.7/90.3 91.1/90.7 73.7/89.9 87.9 87.4 96.0 86.3 89.0 42.8
GLUE Human Baselines GLUE Human Baselines 5 4 .8 86.3/80.8 92.7/92.6 59.5/80.4
15 Stanford Hazy Research Snorkel MeTaL CJ 83.2 63.8 96.2 91.5/88.5 90.1/89.7 73.1/89.9 87.6 87.2 93.9 80.9 65.1 39.9

source: https://gluebenchmark.com/leaderboard

Task: Train for next-token prediction on massive web-scale corpus

SYSTEM PROMPT (HUMAN-WRITTEN)

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s
Unicorn. These four-horned, silver-white unicorns were previously unknown to
scilence.

Now, after almost two centuries, the mystery of what sparked this odd
phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and
several companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had
what appeared to be a natural fountain, surrounded by two peaks of rock and
silver snow.

Pérez and the others then ventured further into the valley. “By the time we
reached the top of one peak, the water looked blue, with some crystals on
top,” said Pérez.

Source: OpenAl, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Jean Maillard

Jean Maillard is a Research Scientist on the
Language And Translation Technologies Team
(LATTE) at Facebook Al. His research interests
within NLP include word- and sentence-level

semantics, structured prediction, and low-resource
I ﬁﬁﬁﬁﬁﬁﬁﬁﬁ DPII\P ‘l'f\ If\lr‘\ihf‘l Ef\f\f\l’\f\f\ll 1M ’)ﬂ40 I"\f\

Module 3 Lesson 12 (M3L12) on Dropbox
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_ Uy1TkpF yvizXOnPa?dI=0

) Lecturer Introduction FACEBOOK Al Ge‘-’r'égéﬁ@

Recall: language models estimate the probability of sequences of words:

p(S) — p(W17W27 R 7Wn)

More general task: Masked language modeling is a related pre-
training task — an auxiliary task, different from the final task we're really
Interested in, but which can help us achieve better performance by finding
good Initial parameters for the model.

Key idea: Mask out (ignore) some parts of the input and then have model
predict it

By pre-training on masked language modeling before training on our final
task, it is usually possible to obtain higher performance than by simply
training on the final task.

) Recap and Intro FacEBooK Al OGEER

J&

—3

Masked Self-Attention Layer e ot (D)

 We can implement prediction of next word as causal ¢ ¢ ¢
. Product(->), Sum(1)
masked language modeling f

Inputs: Vs |70 0 A
Input vectors: . (Shape: Ny, x D —
Keiz/ matrix: W, ((Shappe: Dxxx DQ);) Don’t let vectors "look - - il R
Value matrix: W,, (Shape: D, x D)) ahead” in the sequence Vi |7 A Ara Az,
Query matrix: W, (Shape: Dy x D) t

Used for language SOftmfaX(/”

. modeling (predict next K |=|[oo - £
Computation: word) = 3,3
Query vectors: Q = “W, K, |=>|| -o° E,, Es,
Key vectors: K= XW_ (Shape: Ny x D)

Value vectors: V = XW,, (Shape: N, x D) Ky = E1s Ey1 =¥
Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dy) t t t
Attention weights: A = softmax(E, dim=1) (Shape: N, x N,) Q, Q, Q,
Output vectors: Y = AV (Shape: N, x D) Y; = J/A, V, t t t

[START] Big cat

But the idea is more general!

£3 £3 E3 68 3D 68 D

Masked Language Models acesook Al Gegrgia |

UEE]SS “ seat SUEE]SS have n SUEE]SS </s>

Masked Language Models acesook Al Gegrgia |

transformer

encoder
! ! ! ! ! ! ! ! !
- (D D D D D O &3
embeddings

) Masked Language Models Facesook i Gegrgia |

—3

transformer
encoder

! ! ! ! ! ! ! ! !

- (O I) & D D & &
embeddings

+ + + + + + + + +

EBEECEEEEEE

position
embeddings

Masked Language Models acesook Al Gegrgia |

predictions

transformer
encoder

! ! ! ! ! ! ! ! !

- (O I) & D D & &
embeddings

+ + + + + + + + +

EBEECEEEEEE

position
embeddings

Self-Supervised: Masked Language Models FACEBOOK Al Ge°r9'a@

transformer
encoder

word
embeddings

! ! ! ! ! ! ! ! !
+ + + + + + + + +
&3 &5 £3 £3 £5 €3 €3 63 £B

position
embeddings

Supervised: Token-level Tasks FACEBOOK Al Georg-a@

predictions

BCOEBEECEC S
! ! ! ! ! ! ! ! I

transformer
encoder
embeddings
+ + + + + + + + +
) 1
embeddings . S ¢ > ‘

Supervised: Token-level Tasks FACEBOOK Al Georg-a@

prediction

transformer
encoder

! ! ! ! ! ! ! ! !

word
+ + + + + + + + +
EEEEEEEREDEDEDESED

position
embeddings

Supervised: Sentence-level Tasks FACEBOOK Al Georg-a@

o classification
prediction - d POSITIVE
transformer
encoder

! ! ! ! ! ! ! ! !

word
+ + + + + + + + +
EEEEEEEREDEDEDESED

position
embeddings

Supervised: Sentence-level Tasks FACEBOOK Al Georg-a@

DO o

Cross-lingual Masked Language Modeling racesooka Georg-a&

Cross-lingual Masked Language Modeling racesooka Georg-a&

predictions u

transformer
encoder

. <S> am <mask> |l <sep> J <mask> faim </s>
embeddings
+ + + + + + + + +
. 1 2 1 2 4
embeddings S °
+ + + + + + + + +

language
embeddings

Cross-lingual Masked Language Modeling racesooka Georg-a&

L cIaSS|f|cat|on
prediction ENTAILS

!

transformer
encoder

embeddings
+ + + + + + + + +
. 1 2 1 2 4
embeddings S ®
+ + + + + + + + +

language
embeddings

Cross-lingual Task: Natural Language Inference racesookal Ge°r9'a&

L cIaSS|f|cat|on
prediction ENTAILS

!

transformer
encoder

e) (I D 0 &3 BB &3 D 3
embeddings J P ¢
+ + + + + + + + +
ane- D (EHD EN (KB KB EB &3 BB &8
embeddings 3 3
+ + + + + + + + +

language
embeddings

Cross-lingual Task: Natural Language Inference racesookal Ge°r9'a&

100
T g ®ROBERTa (2019) @ T5(2019)
D prmmmmmrememesmmssesesessessesssessessesoees human baseline
)
© @ BERT (2018)
(8]
S & Types of model:
£
S ELMo (2018) shallow network
‘Sg 63 RNN

CBoW (2013) @ transformer
50
10 100 1000 10000 100000

number of parameters (millions)
Current rough guidelines:
* For self-supervised pre-training of LLMs, use causal mask (predict next word) with decoder-only model
* Note: Large language models (ChatGPT) have several stages of training after pre-training (incl. reinforcement learning)
» For classification/supervised tasks, use encoder-decoder models often trained with non-causal masked training

Model Size in Perspective FACEBOOK Al Ge°’9'a@1

Can Attention/Transformers be used
from more than text processing?

VILBERT: A Visolinguistic Transformer

Paula Bronstein

cityfiages | a=

pop artist performs at the a worker helps to clear blue sofa in the living
festival in a city. the debris. room.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

VILBERT: A Visolinguistic Transformer

Faster R-CNN Multimodal Transformer

RPNIj HEENEN

E > PROOJI Vision o Language

~— HEENEN
blue sofa in the living
room.

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurlPS. 2019.
Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurlPS. 2015.

What about for just image inputs? Without Convolution?

Preprint. Under review.

AN IMAGE 1S WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

Alexey Dosovitskiy* T, Lueas Beyer*, Alexander Kolesnikov*, Dirk Weissenborn*,
Xiaohua Zhai*, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby*!
*equal technical contribution, 'equal advising
Google Research, Brain Team
{adosovitskiy, neilhoulsby}@google.com

ABSTRACT

‘While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to [rainEl

[cs.CV] 22 Oct 2020

Slide progression inspired by Soheil Feizi

) What About Vision with just Self-Attention? Gegeth

Y1 Y, Y3 Ya

— 4)
Self-Attention
How should we
“tokenize” images?

* Pixels? Too computationally intensive O(n?)!
* Patches!

) What to do with images? Gegraia |

e How do we do
classification?

Y1 Y, Y3 Y

Transformer Encoder

wE DEOODOODE

* Extra learnable
[class] embedding Lme ar PI’O_]BCIIOH of Flattened Patches

Eﬂl |
- 0

Patches as input to Self-Attention Georg-a@

Vision Transformer (ViT) Transformer Encoder

Class

Bird MILP
Ball [
Car Head \

Transformer Encoder

i
[
[
[
I \ y
) . I
|) :
] L (4]79—‘
[]
g I 1
o G l @15 @31 | [V
|
| .
.'__ : |)
[
i

[class] embedding Linear Projection of Flattened Patches

* Extra learnable * f 4

Norm]

r
|]

N
i]
Py
b Fa £

]
i
i i B
LitEm
i

s

Embedded
Patches

Vision Transformer (ViT)

90 When trained on mid-sized datasets such
S -/ as ImageNet, such models yield modest
;; R5 - e accuracies of a few percentage points
5 below ResNets of comparablesize.

9]

q: 1 :.'\._Z:

'a. 20 _ © ?

S Why g

Z 751 BiT ® ViT-L/32

) j

& | o o ViT-B/32 ViT-L/16 . .

R -4ttt Lacks some of the inductive

o .

ImageNet ImageNet-21k JFT-300M biases:

Pre-training dataset

 Spatial locality

Figure 3: Transfer to ImageNet. While * Translation equivariance

large ViT models perform worse than BiT

ResNets (shaded area) when pre-trained on i
small datasets, they shine when pre-trained on How can we overcome this:

larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.

) ViTs and Transfer Learning

https://paperswithcode.com/sota/image-classification-on-imagenet

However, the picture changes if the
models are trained on larger datasets
(14M-300M images). We find that large
scale trainingtrumps inductive bias.

Model Layers Hiddensize) MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Ours-JFT Ours-JFT Ours-121K BiT-L Noisy Student

(ViT-H/14) (ViT-L/16) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.3040.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+006 99.424003 99.15+003 99.37+0.06 _ Can we add
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 — some
Oxford-IIIT Pets 97.56+0.03 97.324+0.11 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102 99.68 £0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 — . e
VTAB (19 tasks) 77.63+023 76.284046 72.72+0.21 76.29 +1.70 — IndUCtlve
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k biases?

ViT Results

classification

What is wrong
with this?

segmentation _ .
classification detection ... classification Ideas:

t
/ 7// ~ ////,f/i, 16
A

A

e Use smaller patches (4x4x3)

* Project them to lower
dimension (4)

* Merge tokens at deeper levels

e Full attention => Window

attention
L A _ /_/ Y o - - .
;—-ﬁy //If?/////////77/— 4x // //1_ 16 e => Shifted window
” e A attention
(a) Swin Transformer (ours) (b)y ViT

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

) Swin Transformers

https://paperswithcode.com/sota/instance-segmentation-on-coco

Layer | Layer 1+1

A local window to
perform self-attention

A patch

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

) Shifted Window Attention

https://paperswithcode.com/sota/instance-segmentation-on-coco

How can we learn
unsupervised representations?

encoder — - decoder

b i

CL T
T
P
EEEEE
T

v

BEOENL 24

input

Masked Autoencoders

https://paperswithcode.com/sota/instance-segmentation-on-coco

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Machine Translation with RNNs
	Slide 4: Machine Translation with RNNs
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Attention Layer
	Slide 9: Attention Layer
	Slide 10: Self-Attention Layer
	Slide 11: Self-Attention Layer
	Slide 12: Self-Attention Layer
	Slide 13: Self-Attention Layer
	Slide 14: Self-Attention Layer
	Slide 15: Self-Attention Layer
	Slide 16: Self-Attention Layer
	Slide 17: Self-Attention Layer
	Slide 18: Self-Attention Layer
	Slide 19: Self-Attention Layer
	Slide 20: Three Ways of Processing Sequences
	Slide 21: The Transformer
	Slide 22: The Transformer
	Slide 23: The Transformer
	Slide 24: The Transformer
	Slide 25: The Transformer
	Slide 26: The Transformer
	Slide 27: The Transformer
	Slide 28: The Transformer
	Slide 29: The Transformer
	Slide 30: The Transformer
	Slide 31: GLUE Benchmark
	Slide 32: GLUE Benchmark
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Masked Self-Attention Layer
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

