
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Transformers continued

• Vision Transformers

• Assignment 3

• Due March 8th 11:59pm EST

• Projects

• Project check-in due March 14th

• Meta office hours Friday 3pm ET on attention models

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

h0

Solution: add a
context vector c = h4

and predict s0 from h4

c

Decoder: st = gU(yt, st-1, c)

Slide credit: Justin Johnson

Machine Translation with RNNs

we

h1

x1

are

h2

x2

eating

h3

x3

bread

h4

x4

s0 s1 s2

[START]

y0 y1

y1 y2

estamos comiendo

pan

y2 y3

estamos comiendo

s3 s4

y3 y4

pan [STOP]

Encoder: ht = fW(xt, ht-1)

Decoder: st = gU(yt, st-1, c)

h0

c

Slide credit: Justin Johnson

Solution: add a
context vector c = h4

and predict s0 from h4

we are eating

h1 h2 h3 s0

bread

h4

[START]

y0

y1

estamos

c1 c2

e21 e22 e23 e24

softmax

a21 a22 a23 a24

+

s2

y2

comiendo

y1

Use c2 to
compute s2, y2

estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

x1 x2 x3 x4

Repeat: Use s1 to
compute new

context vector c2

Machine Translation with RNNs and Attention

s1

Slide credit: Justin Johnson

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Example: English to French
translation

Input: “The agreement on
the European Economic
Area was signed in August
1992.”

Output: “L’accord sur la
zone économique
européenne a été signé en
août 1992.”

Visualize attention weights at,i

Attention figures
out different word
orders

Diagonal attention means
words correspond in
order

Diagonal attention means
words correspond in
order

Machine Translation with RNNs and Attention

Slide credit: Justin Johnson

Idea: Can we use attention
as a fundamental building
block for a generic sequence
(input) to sequence (output)
layer?

?

x1 x2 x3 x4

y1 y2 y3 y4

Attention Layer
Inputs:
State vector: si (Shape: DQ)
Hidden vectors: hi (Shape: NX x DH)
Similarity function: fatt

Computation:
Similarities: e (Shape: NX) ei = fatt(st-1, hi)
Attention weights: a = softmax(e) (Shape: NX)
Output vector: y = ∑iaihi (Shape: DX)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: NQ x DQ)
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)

Computation:
Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NQ x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NQ x NX)
Output vectors: Y = AV (Shape: NQ x DV) Yi = ∑jAi,jVj

Q1 Q2 Q3 Q4

X1

X2

X3

K1

K2

K3

E1,1 E2,1

E1,2

E1,3

E2,2

E2,3 E3,3

E3,2

E3,1

E4,3

E4,2

E4,1

A1,1 A2,1

A1,2

A1,3

A2,2

A2,3 A3,3

A3,2

A3,1

A4,3

A4,2

A4,1

Softmax()

V1

V2

V3

Y1 Y2 Y3 Y4

Product(), Sum()

Slide credit: Justin Johnson

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Queries and Keys will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value Vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Similarities will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Attention weights will
be the same, but
permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

X3 X1 X2

Consider permuting
the input vectors:

Values will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Self-Attention Layer

Q3 Q1 Q2

K2

K1

K3

E3,2

E3,1

E3,3

E1,2

E1,1

E1,3

E2,2

E2,1

E2,3

A3,2

A3,1

A3,3

A1,2

A1,1

A1,3

A2,2

A2,1

A2,3

V2

V1

V3

Product(→), Sum(↑)

Softmax(↑)

Y3 Y1 Y2

X3 X1 X2

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

Self-attention layer is
Permutation
Equivariant
f(s(x)) = s(f(x))

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer
Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self attention doesn’t “know”
the order of the vectors it is
processing!

In order to make processing
position-aware, concatenate
input with positional encoding

E can be learned lookup table,
or fixed function

E(1) E(2) E(3)

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Self-Attention Layer

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

One query per input vector

Slide credit: Justin Johnson

Three Ways of Processing Sequences

y1 y2 y3 y4 y1 y2 y3 y4

Q1 Q2 Q3

K3

K2

K1

E1,3

E1,2

E1,1

E2,3

E2,2

E2,1

E3,3

E3,2

E3,1

A1,3

A1,2

A1,1

A2,3

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→),			Sum(↑)

Softmax(↑)

Y1 Y2 Y3

X1 X2 X3

Recurrent Neural Network 1D Convolution Self-Attention

Works on Ordered Sequences
(+) Good at long sequences: After
one RNN layer, hT ”sees” the
whole sequence
(-) Not parallelizable: need to
compute hidden states
sequentially

Works on Multidimensional Grids
(-) Bad at long sequences: Need
to stack many conv layers for
outputs to “see” the whole
sequence
(+) Highly parallel: Each output
can be computed in parallel

Works on Sets of Vectors
(+) Good at long sequences: after
one self-attention layer, each
output “sees” all inputs!
(+) Highly parallel: Each output
can be computed in parallel
(-) Very memory intensive

x1 x2 x3 x4x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

x1 x2 x3 x4

All vectors interact
with each other

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector
(weight shared!)

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

MLP MLP MLP MLP

All vectors interact
with each other

MLP independently
on each vector

x1 x2 x3 x4

Slide credit: Justin Johnson

y1 y2 y3 y4

+Residual connection

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

Recall Layer Normalization:
Given h1, …, hN (Shape: D)
scale: 𝛾 (Shape: D)
shift: 𝛽 (Shape: D)
𝜇i = (1/D)∑j hi,j (scalar)
𝜎i = (∑j (hi,j - 𝜇i)

2)1/2 (scalar)
zi = (hi - 𝜇i) / 𝜎i
yi = 𝛾 * zi + 𝛽

Ba et al, 2016

Slide credit: Justin Johnson

MLP independently
on each vector

y1 y2 y3 y4

MLP MLP MLP MLP

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

x1 x2 x3 x4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Slide credit: Justin Johnson

y1 y2 y3 y4

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

All vectors interact
with each other

Residual connection

MLP independently
on each vector

Residual connection

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer Normalization

+

MLP MLP MLP MLP

+

Layer Normalization

y1 y2 y3 y4

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

x1 x2 x3 x4

Slide credit: Justin Johnson

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

Self-Attention

Layer	Normalization

+

MLP MLP MLP MLP

+

Layer	Normalization

A Transformer is a
sequence of transformer
blocks

Transformer Block:
Input: Set of vectors x
Output: Set of vectors y

Self-attention is the only
interaction between vectors!

Layer norm and MLP work
independently per vector

Highly scalable, highly
parallelizable

Slide credit: Justin Johnson

Encoder-Decoder

The Transformer

Vaswani et al, “Attention is all you need”, NeurIPS 2017

Details:
• Tokenization is messy!

Trained chunking
mechanism

• Position encoding
• sin/cos: Normalized,

nearby tokens have
similar values, etc.

• Added to input
embedding

• When to use decoder-only
versus encoder-decoder
model is open problem

• GPT is decoder only!

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

source: https://gluebenchmark.com/leaderboard

GLUE Benchmark

SYSTEM PROMPT (HUMAN-WRITTEN)
In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English.

MODEL COMPLETION (MACHINE-WRITTEN, 10 TRIES)

The scientist named the population, after their distinctive horn, Ovid’s

Unicorn. These four-horned, silver-white unicorns were previously unknown to

science.

Now, after almost two centuries, the mystery of what sparked this odd

phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and

several companions, were exploring the Andes Mountains when they found a small

valley, with no other animals or humans. Pérez noticed that the valley had

what appeared to be a natural fountain, surrounded by two peaks of rock and

silver snow.

Pérez and the others then ventured further into the valley. “By the time we

reached the top of one peak, the water looked blue, with some crystals on

top,” said Pérez.

Source: OpenAI, “Better Language Models and Their Implications”
https://openai.com/blog/better-language-models/

Task: Train for next-token prediction on massive web-scale corpus

Jean Maillard

Jean Maillard is a Research Scientist on the

Language And Translation Technologies Team

(LATTE) at Facebook AI. His research interests

within NLP include word- and sentence-level

semantics, structured prediction, and low-resource

languages. Prior to joining Facebook in 2019, he

was a doctoral student with the NLP group at the

University of Cambridge, where he researched

compositional semantic methods. He received his

BSc in Theoretical Physics from Imperial College

London.

Lecturer Introduction

Module 3 Lesson 12 (M3L12) on Dropbox
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Recap and Intro

⬣ Recall: language models estimate the probability of sequences of words:

⬣ More general task: Masked language modeling is a related pre-

training task – an auxiliary task, different from the final task we’re really

interested in, but which can help us achieve better performance by finding

good initial parameters for the model.

⬣ Key idea: Mask out (ignore) some parts of the input and then have model

predict it

⬣ By pre-training on masked language modeling before training on our final

task, it is usually possible to obtain higher performance than by simply

training on the final task.

Masked Self-Attention Layer
• We can implement prediction of next word as causal

masked language modeling

Don’t let vectors “look
ahead” in the sequence

Used for language
modeling (predict next
word)

Q1 Q2 Q3

K3

K2

K1

-∞

-∞

E1,1

-∞

E2,2

E2,1

E3,3

E3,2

E3,1

0

0

A1,1

0

A2,2

A2,1

A3,3

A3,2

A3,1

V3

V2

V1

Product(→), Sum(↑)

Softmax(↑)

[START] Big cat

Big cat [END]

Inputs:
Input vectors: X (Shape: NX x DX)
Key matrix: WK (Shape: DX x DQ)
Value matrix: WV (Shape: DX x DV)
Query matrix: WQ (Shape: DX x DQ)

Computation:
Query vectors: Q = XWQ

Key vectors: K = XWK (Shape: NX x DQ)
Value vectors: V = XWV (Shape: NX x DV)
Similarities: E = QKT (Shape: NX x NX) Ei,j = Qi · Kj / sqrt(DQ)
Attention weights: A = softmax(E, dim=1) (Shape: NX x NX)
Output vectors: Y = AV (Shape: NX x DV) Yi = ∑jAi,jVj

Slide credit: Justin Johnson

But the idea is more general!

Masked Language Models

Masked Language Models

Masked Language Models

Masked Language Models

Self-Supervised: Masked Language Models

Supervised: Token-level Tasks

Supervised: Token-level Tasks

Supervised: Sentence-level Tasks

Supervised: Sentence-level Tasks

Cross-lingual Masked Language Modeling

Cross-lingual Masked Language Modeling

Cross-lingual Masked Language Modeling

Cross-lingual Task: Natural Language Inference

Cross-lingual Task: Natural Language Inference

Model Size in Perspective

Current rough guidelines:

• For self-supervised pre-training of LLMs, use causal mask (predict next word) with decoder-only model

• Note: Large language models (ChatGPT) have several stages of training after pre-training (incl. reinforcement learning)

• For classification/supervised tasks, use encoder-decoder models often trained with non-causal masked training

Can Attention/Transformers be used
from more than text processing?

ViLBERT: A Visolinguistic Transformer

blue sofa in the living
room.

a worker helps to clear
the debris.

pop artist performs at the
festival in a city.

Image and captions from: Sharma, Piyush, et al. "Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning." ACL. 2018.

RPN

CNN
RoI

Pool

Faster R-CNN

Vision Language

Multimodal Transformer

ViLBERT: A Visolinguistic Transformer

Lu et al "Vilbert: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks." NeurIPS. 2019.

Ren et al. "Faster r-cnn: Towards real-time object detection with region proposal networks." NeurIPS. 2015.

blue sofa in the living
room.

What About Vision with just Self-Attention?

What about for just image inputs? Without Convolution?

Slide progression inspired by Soheil Feizi

What to do with images?

Self-Attention

x1 x2 x3 x4

y1 y2 y3 y4

How should we
“tokenize” images?

• Pixels?
• Patches!

Too computationally intensive O(n2)!

Patches as input to Self-Attention

y1 y2 y3 y4 …

• How do we do
classification?

Vision Transformer (ViT)

https://paperswithcode.com/sota/image-classification-on-imagenetViTs and Transfer Learning

Why?

Lacks some of the inductive
biases:
• Spatial locality
• Translation equivariance

How can we overcome this?

https://paperswithcode.com/sota/image-classification-on-imagenet

ViT Results

Can we add
some
inductive
biases?

Current deep ViT

What is wrong
with this?

https://paperswithcode.com/sota/instance-segmentation-on-coco
Swin Transformers

Ideas:
• Use smaller patches (4x4x3)
• Project them to lower
dimension (4)

• Merge tokens at deeper levels
• Full attention => Window
attention

• => Shifted window
attention

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

https://paperswithcode.com/sota/instance-segmentation-on-coco

https://paperswithcode.com/sota/instance-segmentation-on-coco
Shifted Window Attention

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo

https://paperswithcode.com/sota/instance-segmentation-on-coco

https://paperswithcode.com/sota/instance-segmentation-on-coco
Masked Autoencoders

He et al., Masked Autoencoders Are Scalable Vision Learners

MAE Architecture

How can we learn
unsupervised representations?

https://paperswithcode.com/sota/instance-segmentation-on-coco

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Machine Translation with RNNs
	Slide 4: Machine Translation with RNNs
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Attention Layer
	Slide 9: Attention Layer
	Slide 10: Self-Attention Layer
	Slide 11: Self-Attention Layer
	Slide 12: Self-Attention Layer
	Slide 13: Self-Attention Layer
	Slide 14: Self-Attention Layer
	Slide 15: Self-Attention Layer
	Slide 16: Self-Attention Layer
	Slide 17: Self-Attention Layer
	Slide 18: Self-Attention Layer
	Slide 19: Self-Attention Layer
	Slide 20: Three Ways of Processing Sequences
	Slide 21: The Transformer
	Slide 22: The Transformer
	Slide 23: The Transformer
	Slide 24: The Transformer
	Slide 25: The Transformer
	Slide 26: The Transformer
	Slide 27: The Transformer
	Slide 28: The Transformer
	Slide 29: The Transformer
	Slide 30: The Transformer
	Slide 31: GLUE Benchmark
	Slide 32: GLUE Benchmark
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Masked Self-Attention Layer
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

