
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Advanced Architectures: Segmentation and Detection



• Assignment 3

• Due March 8th 11:59pm EST

• Projects

• Project check-in due March 14th

• Meta office hours Friday 3pm ET on attention models



Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)



Segmentation Tasks

Given an image, output another image

⬣ Each output contains class distribution per pixel

⬣ More generally an image-to-image problem

Semantic Segmentation
(Class distribution per pixel)

Instance Segmentation
(Class distribution per pixel with unique ID)



Input & Output

Probability distribution over 

classes for this one pixel

?

𝑯

𝑾

𝟑

𝑯

𝑾
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

Model



Idea 1: Fully-Convolutional Network

Fully connected layers no longer explicitly retain spatial information (though the 

network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Fully 

Connected 

Layers

Loss

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer



Converting FC Layers to Conv Layers

Each kernel has the size of entire input! (output is 1 scalar)

⬣ This is equivalent to Wx+b!

⬣ We have one kernel per output node

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully 

Convolutional

Hidden Layer

Loss

Fully 

Convolutional

Hidden Layer

Fully 

Convolutional

Output Layer

… … …



Same Kernel, Larger Input

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Original:

Larger:

Input Conv Kernel Output

𝑾 = 𝟕

𝑯
=

𝟕

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Fully 

Convolutional 

Layer Kernel

Fully 

Convolutional 

Layer Kernel



Inputting Larger Images

Original sized image

Larger Image

Larger Output Maps

Larger 

Output 

Size!

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

Why does this matter?

⬣ We can stride the “fully connected” classifier across larger inputs!

⬣ Convolutions work on arbitrary input sizes (because of striding)



Idea 2: “De”Convolution and UnPooling

Image
Convolution 

+

Non-Linear

Layer

Pooling

Layer

Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution 

+

Non-Linear

Layer

(Un)Pooling

Layer

(De)Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

We can develop learnable 

or non-learnable 

upsampling layers!

Encoder

Decoder



Max Unpooling

Example : Max pooling

Stride window across image but perform per-patch max operation 

X(𝟎: 𝟏, 𝟎: 𝟏)  =
𝟏𝟎𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟐𝟎𝟎

max(0:1,0:1) = 𝟐𝟎𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝑾 = 𝟓

𝑯
=

𝟓

Idea: Remember max elements in encoder! Copy value from equivalent position, 

rest are zeros

Copy value to position chosen as max 

in encoder, fill reset of this window 

with zeros

Pooling UnPooling



Max Unpooling Example (one window)

𝟐𝐱𝟐 max unpool

𝐘 =
𝟎 𝟑𝟎𝟎 −
𝟎 𝟎 −
−  −  −

𝐗 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Decoder

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

Encoder



Max Unpooling Example

𝐗𝐞𝐧𝐜 =
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘𝐞𝐧𝐜 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

𝟐𝐱𝟐 max unpool

𝐘𝐝𝐞𝐜 =
𝟎 𝟑𝟎𝟎 + 𝟒𝟓𝟎 𝟎

𝟏𝟎𝟎 𝟎 𝟐𝟓𝟎
 𝟎 𝟎 𝟎

𝐗𝐝𝐞𝐜 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Encoder

Decoder

Contributions from 

multiple windows 

are summed



Symmetry in Encoder/Decoder

We pull max indices from 

corresponding layers 

(requires symmetry in 

encoder/decoder)

Image
Convolution 

+

Non-Linear

Layer

Pooling

Layer

Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution 

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

Encoder

Decoder



“De”Convolution (Transposed Convolution) 

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

How can we upsample using convolutions and learnable kernel? 

Normal Convolution

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)

Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

𝑯
=

𝟓
𝑯

−
𝒌

𝟏
+

𝟏
 

𝑾 − 𝒌𝟐 + 𝟏



Transposed Convolution Example

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐊 =
𝟏 − 𝟏
𝟐 − 𝟐

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 𝟎 𝟎
𝟐𝟒𝟎 − 𝟐𝟒𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟎 

𝟎 𝟎 𝟎 𝟎

Contributions from 

multiple windows 

are summed

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 + 𝟏𝟓𝟎 − 𝟏𝟓𝟎 𝟎
 𝟐𝟒𝟎 − 𝟐𝟒𝟎 + 𝟑𝟎𝟎 − 𝟑𝟎𝟎 𝟎

 𝟎 𝟎 𝟎 𝟎 
𝟎 𝟎 𝟎 𝟎

Incorporate 
X(0,0)

Incorporate 
X(1,0)



Symmetry in Encoder/Decoder

We can either learn the kernels, 

or take corresponding encoder 

kernel and rotate 180 degrees 

(no decoder learning)

Image
Convolution 

+

Non-Linear

Layer

Pooling

Layer

Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution 

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution 

+

Non-Linear

Layer

Useful, lower-

dimensional 

features

Decoder



Transfer Learning

We can start with a 

pre-trained 

trunk/backbone (e.g. 

network pretrained on 

ImageNet)!

Input

Image
PredictionsCNN

CNN



U-Net

You can 

have skip 

connections 

to bypass 

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015



⬣ Various ways to get image-like outputs, for 

example to predict segmentations of input 

images

⬣ Fully convolutional layers essentially apply 

the striding idea to the output classifiers, 

supporting arbitrary input sizes 

⬣ (without output size depending on what 

the input size is)

⬣ We can have various upsampling layers that 

actually increase the size

⬣ Encoder/decoder architectures are popular 

ways to leverage these to perform general 

image-to-image tasks

Summary



Single-Stage 

Object 

Detection 



Object Detection Tasks

Given an image, output a list of bounding boxes with probability 

distribution over classes per box

Problems: 

⬣ Variable number of boxes!

⬣ Need to determine candidate regions (position and scale) first

Object Detection
(List of bounding boxes with class distribution per box)



Object Detection Tasks

We can use the same idea of fully-convolutional networks

⬣ Use ImageNet pre-trained model as backbone (e.g. taking in 224x224 

image)

⬣ Feed in larger image and get classifications for different windows in image

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully 

Convolutional

Hidden Layer

Fully 

Convolutional

Hidden Layer

Fully 

Convolutional

Output Layer

Loss



Object Detection Tasks

We can have a multi-headed architecture

⬣ One part predicting distribution over class labels (classification)

⬣ One part predicting a bounding box for each image region (regression)

⬣ Refinement to fit the object better (outputs 4 numbers)

⬣ Both heads share features! Jointly optimized (summing gradients)

x,y

w,

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully 

Convolutional

Hidden Layer

Fully 

Convolutional

Hidden Layer

Fully 

Convolutional

Output Layer

Mean 

Squared 

Error (MSE)

Cross-

Entropy

Loss



Object Detection Tasks

Can also do this at multiple scales to result in a large number of detections

⬣ Various tricks used to increase the resolution (decrease subsampling ratio)

⬣ Redundant boxes are combined through Non-Maximal Suppression (NMS)

Sermanet, et al., “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”, 2013



Single-Shot Detector (SSD) 

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-shot detectors 

use an idea of grids 

as anchors, with 

different scales and 

aspect ratios around 

them

⬣ Various tricks 

used to increase 

the resolution 

(decrease 

subsampling 

ratio)



You Only Look Once (YOLO)

Redmon, et al., “You Only Look Once:Unified, Real-Time Object Detection”, 2016

Similar network architecture but single-scale (and hence faster for same size)



Datasets

Lin, et al., “Microsoft COCO: Common Objects in Context”, 2015. https://cocodataset.org/#explore 



Evaluation – Mean Average Precision (mAP)

Ground 

Truth

Detection

1. For each bounding box, 

calculate intersection over union 

(IoU)

2. Keep only those with IoU > 

threshold (e.g. 0.5)

3. Calculate precision/recall curve 

across classification probability 

threshold

4. Calculate average precision 

(AP) over recall of [0, 0.1, 0.2, 

…, 1.0]

5. Average over all categories to 

get mean Average Precision 

(mAP)

𝑨𝑷 =
𝟏

𝟏𝟏


𝒊∈[𝟎,𝟎.𝟏,…𝟏.𝟎]

𝑨𝑷𝒊

Recall

P
re

c
is

io
n



Results

Tan, et al., “EfficientDet: Scalable and Efficient Object Detection”, 2020

Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector”, 2020

EfficientDet PP-YOLO



Two-Stage 

Object 

Detectors 



R-CNN

Instead of making dense predictions across an image, we can decompose the 

problem:

⬣ Find regions of interest (ROIs) with object-like things

⬣ Classifier those regions (and refine their bounding boxes)

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

For each crop, 

Resize



Extracting Region Proposal

We can use unsupervised 

(non-learned!) algorithms for 

finding candidates

Downsides:

Takes 1+ second per image

Return thousands of (mostly 

background) boxes

Resize each candidate to full 

input size and classify

Uijlings, et al., “Selective Search for Object Recognition”, 2012



Inefficiency of R-CNN 

What is the problem with this?

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

Computation for 

convolutions re-done 

for each image patch, 

even if overlapping!



Fast R-CNN

Map each ROI in image to corresponding region in feature maps

Extract Feature 

Map Region

?

Idea: Reuse computation by finding regions in feature maps 

Feature extraction only done once per image now!

Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015



ROI Pooling

Given an arbitrarily-sized feature map, we can use pooling across a grid 

(ROI Pooling Layer) to convert to fixed-sized representation

𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎
𝟔𝟓 𝟕𝟓 𝟏𝟎

For each grid element, max pool however many 

values there are to one scalar



Fast R-CNN

We can now train this model end-to-end (i.e. backpropagate through 

entire model including ROI Pooling)! 

Map each ROI in image to corresponding are in feature maps

Extract Feature 

Map Region
ROI 

Pooling



Faster R-CNN

Idea: Why not have the neural 

network also generate the proposals?

Region Proposal Network (RPN) 

uses same features!

Outputs objectness score and 

bounding box

Top k selected for classification

Note some parts (gradient w.r.t. 

bounding box coordinates) not 

differentiable so some complexity in 

implementation

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016



Faster R-CNN

RPN also uses notion 

of anchors in a grid

Boxes of various sizes 

and scales classified 

with objectness score 

and refined bounding 

boxes refined

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016



Mask R-CNN

He, et al., “Mask R-CNN”, 2018

Many new 

advancements have 

been made

For example, 

combining detection 

and segmentation

Extract foreground 

(object) mask per 

bounding box

https://paperswithcode.com/sota/object-detection-on-coco 



Summary

• A range of problems characterized by density and type of output 

• Semantic/instance segmentation: Dense, spatial output

• Leverage encoder/decoder architectures

• Object detection: Variable-length list of objects

• Two-stage versus one-stage architectures

• (Not covered): Anchor-based versus anchor-free methods



DETR
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