
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Advanced Architectures: Segmentation and Detection

• Assignment 3

• Due March 8th 11:59pm EST

• Projects

• Project check-in due March 14th

• Meta office hours Friday 3pm ET on attention models

Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)

Segmentation Tasks

Given an image, output another image

⬣ Each output contains class distribution per pixel

⬣ More generally an image-to-image problem

Semantic Segmentation
(Class distribution per pixel)

Instance Segmentation
(Class distribution per pixel with unique ID)

Input & Output

Probability distribution over

classes for this one pixel

?

𝑯

𝑾

𝟑

𝑯

𝑾
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

Model

Idea 1: Fully-Convolutional Network

Fully connected layers no longer explicitly retain spatial information (though the

network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Fully

Connected

Layers

Loss

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Converting FC Layers to Conv Layers

Each kernel has the size of entire input! (output is 1 scalar)

⬣ This is equivalent to Wx+b!

⬣ We have one kernel per output node

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully

Convolutional

Hidden Layer

Loss

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Output Layer

… … …

Same Kernel, Larger Input

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Original:

Larger:

Input Conv Kernel Output

𝑾 = 𝟕

𝑯
=

𝟕

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Fully

Convolutional

Layer Kernel

Fully

Convolutional

Layer Kernel

Inputting Larger Images

Original sized image

Larger Image

Larger Output Maps

Larger

Output

Size!

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

Why does this matter?

⬣ We can stride the “fully connected” classifier across larger inputs!

⬣ Convolutions work on arbitrary input sizes (because of striding)

Idea 2: “De”Convolution and UnPooling

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+

Non-Linear

Layer

(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

We can develop learnable

or non-learnable

upsampling layers!

Encoder

Decoder

Max Unpooling

Example : Max pooling

Stride window across image but perform per-patch max operation

X(𝟎: 𝟏, 𝟎: 𝟏) =
𝟏𝟎𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟐𝟎𝟎

max(0:1,0:1) = 𝟐𝟎𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝑾 = 𝟓

𝑯
=

𝟓

Idea: Remember max elements in encoder! Copy value from equivalent position,

rest are zeros

Copy value to position chosen as max

in encoder, fill reset of this window

with zeros

Pooling UnPooling

Max Unpooling Example (one window)

𝟐𝐱𝟐 max unpool

𝐘 =
𝟎 𝟑𝟎𝟎 −
𝟎 𝟎 −
− − −

𝐗 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Decoder

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

Encoder

Max Unpooling Example

𝐗𝐞𝐧𝐜 =
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘𝐞𝐧𝐜 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

𝟐𝐱𝟐 max unpool

𝐘𝐝𝐞𝐜 =
𝟎 𝟑𝟎𝟎 + 𝟒𝟓𝟎 𝟎

𝟏𝟎𝟎 𝟎 𝟐𝟓𝟎
 𝟎 𝟎 𝟎

𝐗𝐝𝐞𝐜 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Encoder

Decoder

Contributions from

multiple windows

are summed

Symmetry in Encoder/Decoder

We pull max indices from

corresponding layers

(requires symmetry in

encoder/decoder)

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Encoder

Decoder

“De”Convolution (Transposed Convolution)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

How can we upsample using convolutions and learnable kernel?

Normal Convolution

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)

Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

𝑯
=

𝟓
𝑯

−
𝒌

𝟏
+

𝟏

𝑾 − 𝒌𝟐 + 𝟏

Transposed Convolution Example

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐊 =
𝟏 − 𝟏
𝟐 − 𝟐

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 𝟎 𝟎
𝟐𝟒𝟎 − 𝟐𝟒𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎

Contributions from

multiple windows

are summed

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 + 𝟏𝟓𝟎 − 𝟏𝟓𝟎 𝟎
 𝟐𝟒𝟎 − 𝟐𝟒𝟎 + 𝟑𝟎𝟎 − 𝟑𝟎𝟎 𝟎

 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

Incorporate
X(0,0)

Incorporate
X(1,0)

Symmetry in Encoder/Decoder

We can either learn the kernels,

or take corresponding encoder

kernel and rotate 180 degrees

(no decoder learning)

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Decoder

Transfer Learning

We can start with a

pre-trained

trunk/backbone (e.g.

network pretrained on

ImageNet)!

Input

Image
PredictionsCNN

CNN

U-Net

You can

have skip

connections

to bypass

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

⬣ Various ways to get image-like outputs, for

example to predict segmentations of input

images

⬣ Fully convolutional layers essentially apply

the striding idea to the output classifiers,

supporting arbitrary input sizes

⬣ (without output size depending on what

the input size is)

⬣ We can have various upsampling layers that

actually increase the size

⬣ Encoder/decoder architectures are popular

ways to leverage these to perform general

image-to-image tasks

Summary

Single-Stage

Object

Detection

Object Detection Tasks

Given an image, output a list of bounding boxes with probability

distribution over classes per box

Problems:

⬣ Variable number of boxes!

⬣ Need to determine candidate regions (position and scale) first

Object Detection
(List of bounding boxes with class distribution per box)

Object Detection Tasks

We can use the same idea of fully-convolutional networks

⬣ Use ImageNet pre-trained model as backbone (e.g. taking in 224x224

image)

⬣ Feed in larger image and get classifications for different windows in image

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Output Layer

Loss

Object Detection Tasks

We can have a multi-headed architecture

⬣ One part predicting distribution over class labels (classification)

⬣ One part predicting a bounding box for each image region (regression)

⬣ Refinement to fit the object better (outputs 4 numbers)

⬣ Both heads share features! Jointly optimized (summing gradients)

x,y

w,

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Output Layer

Mean

Squared

Error (MSE)

Cross-

Entropy

Loss

Object Detection Tasks

Can also do this at multiple scales to result in a large number of detections

⬣ Various tricks used to increase the resolution (decrease subsampling ratio)

⬣ Redundant boxes are combined through Non-Maximal Suppression (NMS)

Sermanet, et al., “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”, 2013

Single-Shot Detector (SSD)

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-shot detectors

use an idea of grids

as anchors, with

different scales and

aspect ratios around

them

⬣ Various tricks

used to increase

the resolution

(decrease

subsampling

ratio)

You Only Look Once (YOLO)

Redmon, et al., “You Only Look Once:Unified, Real-Time Object Detection”, 2016

Similar network architecture but single-scale (and hence faster for same size)

Datasets

Lin, et al., “Microsoft COCO: Common Objects in Context”, 2015. https://cocodataset.org/#explore

Evaluation – Mean Average Precision (mAP)

Ground

Truth

Detection

1. For each bounding box,

calculate intersection over union

(IoU)

2. Keep only those with IoU >

threshold (e.g. 0.5)

3. Calculate precision/recall curve

across classification probability

threshold

4. Calculate average precision

(AP) over recall of [0, 0.1, 0.2,

…, 1.0]

5. Average over all categories to

get mean Average Precision

(mAP)

𝑨𝑷 =
𝟏

𝟏𝟏

𝒊∈[𝟎,𝟎.𝟏,…𝟏.𝟎]

𝑨𝑷𝒊

Recall

P
re

c
is

io
n

Results

Tan, et al., “EfficientDet: Scalable and Efficient Object Detection”, 2020

Long et al., “PP-YOLO: An Effective and Efficient Implementation of Object Detector”, 2020

EfficientDet PP-YOLO

Two-Stage

Object

Detectors

R-CNN

Instead of making dense predictions across an image, we can decompose the

problem:

⬣ Find regions of interest (ROIs) with object-like things

⬣ Classifier those regions (and refine their bounding boxes)

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

For each crop,

Resize

Extracting Region Proposal

We can use unsupervised

(non-learned!) algorithms for

finding candidates

Downsides:

Takes 1+ second per image

Return thousands of (mostly

background) boxes

Resize each candidate to full

input size and classify

Uijlings, et al., “Selective Search for Object Recognition”, 2012

Inefficiency of R-CNN

What is the problem with this?

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

Computation for

convolutions re-done

for each image patch,

even if overlapping!

Fast R-CNN

Map each ROI in image to corresponding region in feature maps

Extract Feature

Map Region

?

Idea: Reuse computation by finding regions in feature maps

Feature extraction only done once per image now!

Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015

ROI Pooling

Given an arbitrarily-sized feature map, we can use pooling across a grid

(ROI Pooling Layer) to convert to fixed-sized representation

𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎
𝟔𝟓 𝟕𝟓 𝟏𝟎

For each grid element, max pool however many

values there are to one scalar

Fast R-CNN

We can now train this model end-to-end (i.e. backpropagate through

entire model including ROI Pooling)!

Map each ROI in image to corresponding are in feature maps

Extract Feature

Map Region
ROI

Pooling

Faster R-CNN

Idea: Why not have the neural

network also generate the proposals?

Region Proposal Network (RPN)

uses same features!

Outputs objectness score and

bounding box

Top k selected for classification

Note some parts (gradient w.r.t.

bounding box coordinates) not

differentiable so some complexity in

implementation

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

Faster R-CNN

RPN also uses notion

of anchors in a grid

Boxes of various sizes

and scales classified

with objectness score

and refined bounding

boxes refined

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

Mask R-CNN

He, et al., “Mask R-CNN”, 2018

Many new

advancements have

been made

For example,

combining detection

and segmentation

Extract foreground

(object) mask per

bounding box

https://paperswithcode.com/sota/object-detection-on-coco

Summary

• A range of problems characterized by density and type of output

• Semantic/instance segmentation: Dense, spatial output

• Leverage encoder/decoder architectures

• Object detection: Variable-length list of objects

• Two-stage versus one-stage architectures

• (Not covered): Anchor-based versus anchor-free methods

DETR

43Slides by R. Q. FEITOSA

44Slides by R. Q. FEITOSA

45Slides by R. Q. FEITOSA

46Slides by R. Q. FEITOSA

47Slides by R. Q. FEITOSA

48Slides by R. Q. FEITOSA

49Slides by R. Q. FEITOSA

50Slides by R. Q. FEITOSA

51Slides by R. Q. FEITOSA

52Slides by R. Q. FEITOSA

53Slides by R. Q. FEITOSA

54Slides by R. Q. FEITOSA

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

