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* Advanced Architectures: Segmentation and Detection
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Assignment 3
* Due March 8th 11:59pm EST

Projects
* Project check-in due March 14th

Meta office hours Friday 3pm ET on attention models
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Classification
(Class distribution per image)

Object Detection

(List of bounding boxes with class distribution per box)

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Computer Vision Tasks Gegrala |
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Given an image, output another image

Each output contains class distribution per pixel

More generally an image-to-image problem

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Segmentation Tasks Gegrala |
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3 Classes

) Input & Output

Probability distribution over
classes for this one pixel
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Fully connected layers no longer explicitly retain spatial information (though the
network can still learn to do so)

Idea: Convert fully connected layer to convolution!

) Idea 1: Fully-Convolutional Network Georg-a@
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Convolution + Pooling Convolution + FuIIy_ Fully Fully
Non-Linear Layer Non-Linear Convolutional ~ Convolutional  Convolutional
Layer Layer Hidden Layer  Hidden Layer  Output Layer

Each kernel has the size of entire input! (output is 1 scalar)
This is equivalent to Wx+Db!
We have one kernel per output node

) Converting FC Layers to Conv Layers Ge°r9'aQ
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Why does this matter?
We can stride the “fully connected” classifier across larger inputs!
Convolutions work on arbitrary input sizes (because of striding)

“tabby cat”
Original sized image . ﬁfﬁ‘?@s@

conv olutlonahzatlon

v

tabby cat heatmap

. Larger
Larger Image g@%@ﬁ Output
= Size!

Larger Output Maps

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

) Inputting Larger Images Gegrala)



Convolutional Neural Network (CNN)

Image
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Example : Max pooling
Stride window across image but perform per-patch max operation

X(0:1,0:1) = Hgg ;(5)8] =) max(0:1,0:1) =200

Copy value to position chosen as max
in encoder, fill reset of this window
with zeros

H

=5
o WE %I

N
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i EE
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Pooling

ldea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

) Max Unpooling Gegqraia
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120 150 120
150 150
X=1100 50 110 |:> Y=[100110
25 25 10 2x2 max pool
Encoder
Decoder
2x2 max unpool
0 300 -—
300450
= Y = _
=[loozz0l ~ EP Y=|0 0 l

) Max Unpooling Example (one window) Gegrola |
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- 120 150 120:> v _[150150 Contributions from
Xenc =100 50 110 ¢ 11001101 multiple windows

25 25 102
are summed

max pool

Encoder
Decoder
2x2 max unpool 0 300+450 O
X, = 300450 |:> Y;:..=1100 0 250
dec ~ (100 250] dee 0 0 0

) Max Unpooling Example Gograla |



Convolutional Neural Network (CNN)

Image
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How can we upsample using convolutions and learnable kernel?

Normal Convolution

NN
- EEETS
R !
= DEEE 2

=SSESE k=3

W=>5 W—k,+1

3

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

“De”’Convolution (Transposed Convolution) Ge%%'ﬁ&




120 150 120 : :
— Contributions from
X= (100 50 110] K=, ] multiple windows
25 25 10 P
are summed
[ 120 —120 0 O 120 —-120+ 150 — 150 O |
240 — 240 0 O 240 — 240+ 300 —300 O
0 0 0 O 0 0 0 O
0 0 0 O 0 0 0 O
Incorporate Incorporate
X(0,0) X(1,0)

) Transposed Convolution Example Gogratn |



Convolutional Neural Network (CNN) )
| | We can either learn the kernels,
ﬂ | or take corresponding encoder

Useful, lower-
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Input
Image

/

CNN

CNN

-—» Predictions

We can start with a
pre-trained
trunk/backbone (e.qg.
network pretrained on
ImageNet)!

Transfer Learning

Georgla [&



input
image

output
tile

| segmentation
g map

\

388x388

You can
have skip
connections
to bypass
bottleneck!

= CONV 3X3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= CONnv 1x1

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015
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Summary

Various ways to get image-like outputs, for
example to predict segmentations of input
images

Fully convolutional layers essentially apply
the striding idea to the output classifiers,
supporting arbitrary input sizes
(without output size depending on what
the input size is)

We can have various upsampling layers that
actually increase the size

Encoder/decoder architectures are popular
ways to leverage these to perform general
iImage-to-image tasks

Tech
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Single-Stage

ODbject
Detection
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Given an image, output a list of bounding boxes with probability
distribution over classes per box

Problems:
Variable number of boxes!
Need to determine candidate regions (position and scale) first

Object Detection

(List of bounding boxes with class distribution per box)

Object Detection Tasks Georgia Q
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Fully Fully Fully

Convolution + Pooling Convolution + _ :
Non-Linear Layer Non-Linear Convolutional  Convolutional ~ Convolutional
Layer Layer Hidden Layer  Hidden Layer Output Layer

We can use the same idea of fully-convolutional networks

Use ImageNet pre-trained model as backbone (e.g. taking in 224x224
Image)

Feed in larger image and get classifications for different windows in image

) Object Detection Tasks Georgia Q



Cross-
= D & ) —\ =P Entrop)
Loss

Mean

== == @R — Squared

Error (MSE)

Convolution + Pooling Convolution + Fully Fully Fully
Non-Linear Layer Non-Linear Convolutional  Convolutional ~ Convolutional | X,¥
Layer Layer Hidden Layer ~ Hidden Layer  Output Layer

| @

We can have a multi-headed architecture

One part predicting distribution over class labels (classification)

One part predicting a bounding box for each image region (regression)
Refinement to fit the object better (outputs 4 numbers)

Both heads share features! Jointly optimized (summing gradients)

) Object Detection Tasks Georgia Q



Smar cond 543 " 2 g3 ! o ! 323 e

Can also do this at multiple scales to result in a large number of detections
Various tricks used to increase the resolution (decrease subsampling ratio)

Redundant boxes are combined through Non-Maximal Suppression (NMS)

Sermanet, et al., “OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks”, 2013

) Object Detection Tasks Gograla |
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Single-shot detectors | oA
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Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-Shot Detector (SSD) Gogratn |



Similar network architecture but single-scale (and hence faster for same size)

N .

YOLO Customized Architecture

YOLO
5
4

Detections: 98 per class
| Non-Maximum Suppression |

Fully Connected  Fully Connected L

iiiii

Final detections

Class probability map

Redmon, et al., “You Only Look Once:Unified, Real-Time Object Detection”, 2016

You Only Look Once (YOLO) Gograla |
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What is COCO?
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and captioning dataset

COCO has several features

segmentation,

& Object segmentation

& Recognition in context

& Superpixel stuff segmentation

& 330K images (>200K labeled)

& 1.5 million object instances

& 80 object categories

Instances per category

mCoco

1,000,000

W PASCAL VOC

100,000
10,000
1,000
100

Instances per image

Categories per image

Common Objects in Context”, 2015. https://cocodataset.org/#explore

Lin, et al., “Microsoft COCO
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For each bounding box,
calculate intersection over union
(|0U) 0.8

Keep only those with loU > Ground
threshold (e.g. 0.5) Truth

0.6 —

Precision

Calculate precision/recall curve
across classification probability
threshold

04~ "~

Calculate average precision ,/
(AP) over recall of [0, 0.1, 0.2, ST S vy

..., 1.0]
1 Recall

Average over all categories to AP = — AP;
get mean Average Precision i€[0,0.1,...1.0]
(mAP)

) Evaluation — Mean Average Precision (mMAP) Sy
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Results

EfficientDet-D7 =#=PP-YOLO (ours)
D6 ) e YOLOVA
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Mask R-CNN

|AP_ FLOPs (ratio)

N
EfficientDet-Di 338 238 \

YOLOv3 [ 4] 33.0 71B (28x) 3
'r YOLOv3 EfficientDet-D1 39.6 6.1B
RetinaNet [2-] 39.2 97B (16x)

MS-COCO(test-dev) mAP(%)

EfficientDet-D7x7 5514108
AmoebaNet+ NAS-FPN +AA [43]7|50.7 3045B (13x)
Not plotted.

600 200 1000 1200 ; 5 70 80 90 100 110
FLOPs (Billions) FPS(V100)

EfficientDet PP-YOLO

Tan, et al., “EfficientDet: Scalable and Efficient Object Detection”, 2020

Long et al., “PP-YOLOQ: An Effective and Efficient Implementation of Object Detector”, 2020 Ge‘%{;{ﬁ&




Two-Stage

ODbject
Detectors

Georgia
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For each crop,
Resize

Instead of making dense predictions across an image, we can decompose the
problem:

Find regions of interest (ROIs) with object-like things
Classifier those regions (and refine their bounding boxes)

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

) R-CNN Gogratn |




We can use unsupervised
(non-learned!) algorithms for
finding candidates

Downsides:

Takes 1+ second per image

Return thousands of (mostly
background) boxes

Resize each candidate to full
iInput size and classify

Uijlings, et al., “Selective Search for Object Recognition”, 2012

) Extracting Region Proposal Gograla |
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What is the problem with this?
Computation for

convolutions re-done
for each image patch,
even if overlapping!

Girshick, et al., “Rich feature hierarchies for accurate object detection and semantic segmentation”, 2014

) Inefficiency of R-CNN Gegrala)
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Map each ROI in image to corresponding region in feature maps

Extract Feature

Map Region
= (FJ =~

Idea: Reuse computation by finding regions in feature maps
Feature extraction only done once per image now!
Problem: Variable input size to FC layers (different feature map sizes)

Girshick, “Fast R-CNN”, 2015

) FaSt R'CNN (:‘uec_i_;g(:iﬁg}J
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For each grid element, max pool however many
values there are to one scalar

120 150 120] E::;>
100 50 110

25 25 10

/ 65 —75—10.

Given an arbitrarily-sized feature map, we can use pooling across a grid
(ROI Pooling Layer) to convert to fixed-sized representation

) ROI Pooling Gogratn |
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Map each ROI in image to corresponding are in feature maps

Extract Feature

Map Region ROI
|=> 6 |=> Pooling ':>

We can now train this model end-to-end (i.e. backpropagate through
entire model including ROI Pooling)!

) Fast R-CNN Gogratn |



Idea: Why not have the neural
network also generate the proposals?

Region Proposal Network (RPN)
uses same features!

Outputs objectness score and
bounding box

Top k selected for classification

Note some parts (gradient w.r.t.
bounding box coordinates) not
differentiable so some complexity in
Implementation

classifier

Rol pooling

| N

pmpoy /

[

Region Proposal Network

feature maps

conv layers /

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

) Faster R-CNN

Georgia [&
Tech




R P N aISO uses n Ot| on 2k scores 4k coordinates « k anchor boxes
of anchors in a grid cls layer\ ’ reg layer

256-d
t mtermediate layer

Boxes of various sizes
and scales classified
with objectness score \ -
and refined bounding
boxes refined

sliding window

conv feature map

Ren, et al., “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, 2016

) FaSteI‘ R'CNN Ge?l';gciﬁ&
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Many new
advancements have
been made

For example,
combining detection
and segmentation

View = box AP v by | Date v for | Allmodels v

Extract foreground
(object) mask per
bounding box

80 =

Group DETR v2
DyHead (Swin-L, multi s(ale,,self:lrainir‘l‘g)__’

60 DetectoRS (ResNeXt=101-64x4d, multi=scale)0
NAS-FPN (AmoebaNet-B;-learned-augy
D-RFCN + SNIP (DPN-98 with flip, multi-scale).
Mask R-CNN (ResNeXt—101-FPN)}
Faster R-CNN (box refinement, context, multi=seale testing)

SSD512

BOX AP
IS
s}

Fast-RENN
e

He, et al., “Mask R-CNN”, 2018 https://paperswithcode.com/sota/object-detection-on-coco

Mask R-CNN Gegrgia |

=




A range of problems characterized by density and type of output
Semantic/instance segmentation: Dense, spatial output
Leverage encoder/decoder architectures
Object detection: Variable-length list of objects
Two-stage versus one-stage architectures

(Not covered): Anchor-based versus anchor-free methods

) Summ ary Gegrreggﬁ&
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DETR
End-to-End Object Detection with Transformers

—
~1 End-to-End Object Detection with Transformers
-
N
>, Nicolas Carion*, Francisco Massa®, Gabriel Synnaeve, Nicolas Usunier,
< Alexander Kirillov, and Sergey Zagoruyko
—
< Facebook Al
o0
N
N Abstract. We present a new method that views object detection as a
./ direct set prediction problem. Our approach streamlines the detection
\). pipeline, effectively removing the need for many hand-designed compo-
W nents like a non-maximum suppression procedure or anchor generation
o that explicitly encode our prior knowledge about the task. The main
_ ingredients of the new framework, called DEtection TRansformer or
on DETR, are a set-based global loss that forces unique predictions via bi-
> partite matching, and a transformer encoder-decoder architecture. Given
N a fixed small set of learned object queries, DETR reasons about the re-
- lations of the objects and the global image context to directly output
° the final set of predictions in parallel. The new model is conceptually
o simple and does not require a specialized library, unlike many other
e modern detectors. DETR demonstrates accuracy and run-time perfor-
v mance on par with the well-established and highly-optimized Faster R-
- CNN baseline on the challenging COCO object detection dataset. More-
O over, DETR can be easily generalized to produce panoptic segmentation
(\! in a unified manner. We show that it significantly outperforms com-
> petitive baselines. Training code and pretrained models are available at
'_/‘; https://github.com/facebookresearch/detr.
-

o




DEtector TRansformer - DETR

overview
------------- l'--_--_------_-_-__-'r"""""""""I’""_".‘""""""
E backbone !| encoder ¥ decoder ! prediction heads
| |
! set of image featuresii " X |
| class,
s : a: gy
I Il
' ' FFN -
: ! transformer \ transformer \ | object
|
encoder i: decoder i\ FEN > CE::'
I iy
L S S ST |
Goooto-0 ; B eoe e,
: : object queries by




DEtector TRansformer - DETR
backbone

A conventional CNN backbone to learn a 2D representation of an input
image.

backbone
set of image features

—~——_
CNN >




DEtector TRansformer - DETR
transformer encoder

DETR supplements the features with a positional encoding and flattens
them before passing them into a transformer encoder.
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DEtector TRansformer - DETR
transformer decoder

The transformer decoder takes as input a small number of learned
positional and content embeddings (object queries) and additionally
attends to the encoder output.

__________________________________

backbone ﬁ encoder

I
set of image features::
I

decoder

E

transformer
decoder

transformer
encoder

A4
0D OO0 @

object queries

O N
Doooog---0

I
I
I
I
|
, ) )
I
I
I
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DEtector TRansformer - DETR
Object queries

* are randomly initialized embeddings,
* refined through the course of training, and
* then fixed for evaluation.

————————————————————————————————————————————————————

1 i
' backbone || encoder 1 decoder I
I I
| set of image features:i ! ! |
: ! : @
| ||
: ': I
—_ L1 > transformer ! transformer |
i encoder r decoder !
I ! N
I ! I
: |3 N N S S SO | S—— :
; oooooo-0 & (@808
I I
I ! I

object queries




DEtector TRansformer - DETR
prediction heads

Each embedding at the decoder output feeds a shared feed-forward
network (FFN) that predicts either a detection (class and bounding box)
or a “no object" class.

_____________________________________________________

! i | B At s e St et T i TR —
' backbone |, encoder 1 decoder it prediction heads | p——
| |
| set of image features:i " 1 | : —
|
E :E i} FEN b» C;OSXS,
I
| !
| | no
o= L] N : transformer :' transformer \ PPN || object
r |
encoder i: decoder E' FEN > cLa;:,
| |
‘ N e |
tonono-n | oo oB b e e]e
+ "
| L



DEtector TRansformer - DETR
prediction heads

Each output embedding of the decoder to a shared feed forward
network (FFN) that predicts either a detection (class and bounding box)
or a “no object" class.

([class], [bounding box])

__________________________________

backbone || encoder

___________________________________

|
set of image featuresi !
|

| |
| 1 |
i , !
s :: =AY |
1 !
l ! ¥
: : : transformer N transformer
|
|
|
|
|
|
|
|

class,

box ( [blrd], [X1;_)’1, hll Wl])

FFN >

FEN [ "0 |mmesb ([ ¢ 1,[0,0,0,01)

object

decoder class,

box

FFN [ ([bird], [x2, y2, ha, w])

TR

FEN (] 20 == ([ 0 1,[0,0,0,0])

- -




Matching bounding boxes during training with the Reference

What is the target for each bounding box during training?

T

>,

DETR while training

)




The complexity of matching grows with N!

DETR while training Reference — Ground Truth

Georgia !
Tech !




The Hungarian algorithm used for bipartite matching

Reference — Ground Truth

DETR while training

The Hungarian algorithm?! computes the optimal assignment efficiently.
It considers both the class prediction and the similarity of predicted and
ground truth boxes.

Georgia !
Tech )



DETR Demo

Detecting objects with DEtection TRansformer (DETR)

< 0:00/1:00 Scroll for details




paperswithcode.com

Leaderboard Dataset
View = box mAP v| by Date v for  All models v
80 =
FocalNet-H (DINO)
60 Swin-L (HTC+ w_u It-i-sc-‘ale)-‘ &
Cascade Mask R-CNN (Triple-ResNeXt] 52_,_n,1_u‘ll-i:—'5'c5ie)
SNIPER (ResNet=101),
RetinaNet (ResNeXt™'0T=FPN)
% 40  Faster R-CNN (box refinement,_"c;‘ontext, multi-scale testing)
= SSD5T2
pas
o} Fast=RCNN
o 20 @
0
-20
2016 2017 2018 2019 2020 2021 2022 2023 2024

Other models -o- Models with highest box mAP




Leaderboard Dataset

MASK AP

70

60

50

40

30

20

PANet

View

mask AP v | by | Date v for

Soft Teacher + Swin-L (HTCgk,-multiZscale)y—®—

All models

EVA

CBNetV?2 (EVAQ2, single-scale)
.p"'

Cascade Eff-B7 NAS-FPN (1280, self-training Copy Paste, single-scale)
Mask R-CNN (SpineNet-190481'536X1536)
Cascade Mask R-CNN (ReSNeXt152, CBNet)
—a

Mask R-CNN (ResNeXt-101-EPN)

FCIS+++ £+@OHEM

MultiPath Network

4

2017

2018

2019

Other models

2020 2021 2022

-8- Models with highest mask AP

2023

2024
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