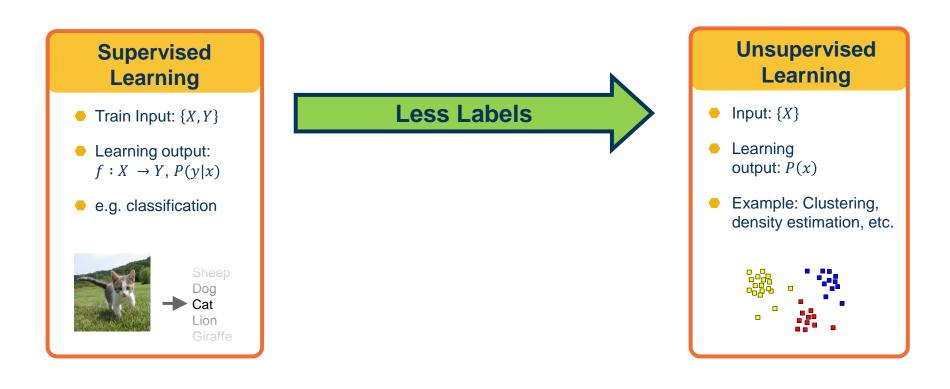
Topics:

• Variational Autoencoders

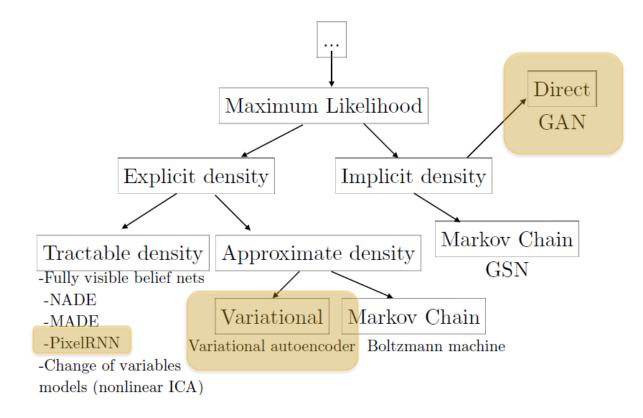
CS 4803-DL / 7643-A ZSOLT KIRA

- A4 due March 30th (grace until April 1st)
- Projects!
 - Project Check-in extended to March 24th (grace 26th)
 - Make sure to contribute equally with your teammates!!!
 - We will have optional team peer review, and reduce scores if necessary
- Meta OH today 3pm ET

Back to Generative Models

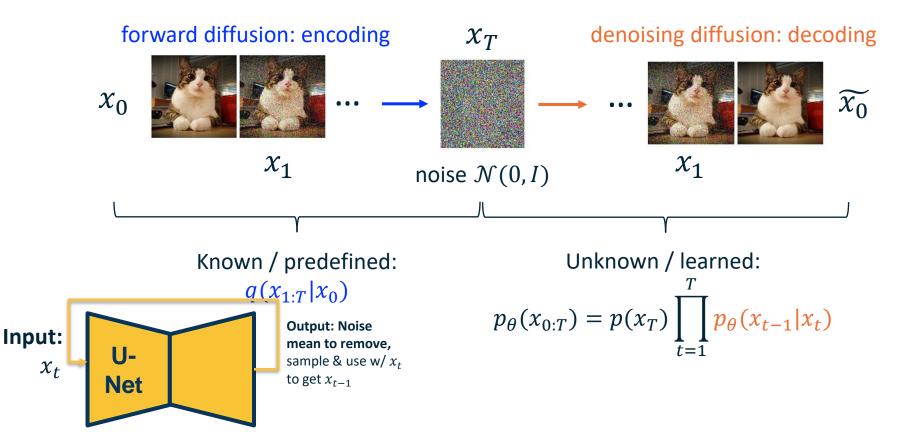


Supervised

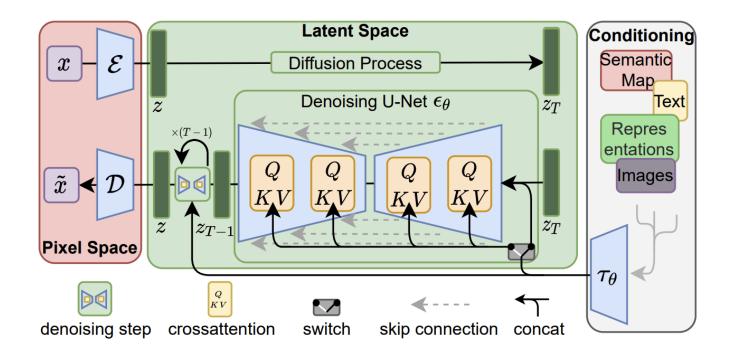


Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Forward/Reverse Processes



"StableDiffusion"

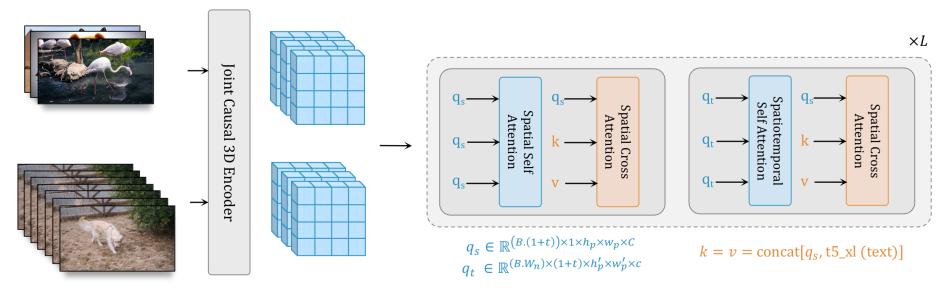


Rombach and Blattmann et al., 2022

10 months ago

6-7 second videos

Transformers!



Gupta et al., Photorealistic Video Generation with Diffusion Models

Now

https://openai.com/sora Georgia

Now

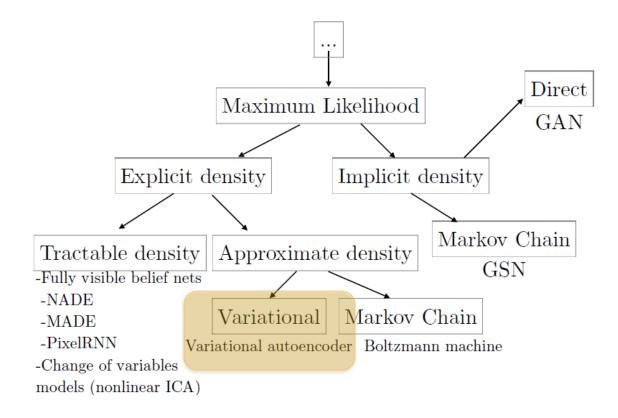
https://openai.com/sora Georgia

Now

https://openai.com/sora Georgia

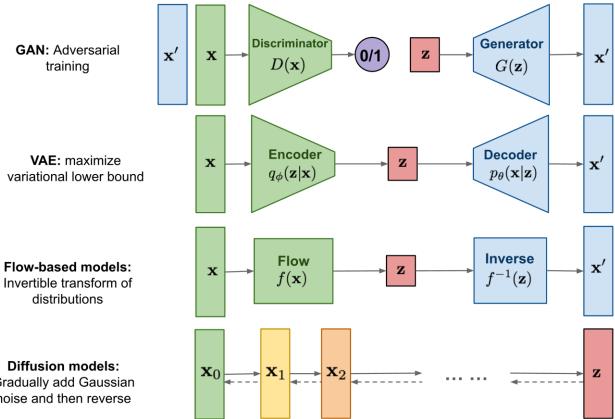
Video Generation – Failure Cases

Variational Autoencoders (VAEs)



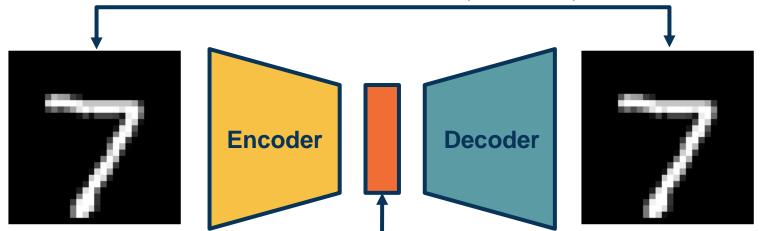
Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Comparison



Gradually add Gaussian noise and then reverse

Minimize the difference (with MSE)

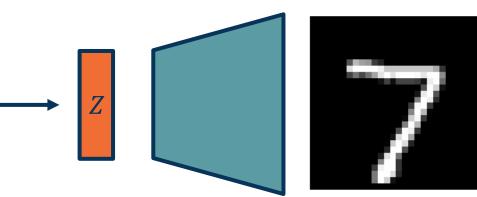


Low dimensional embedding

Linear layers with reduced dimension or Conv-2d layers with stride

Linear layers with increasing dimension or Conv-2d layers with bilinear upsampling

What is this? Hidden/Latent variables Factors of variation that produce an image: (digit, orientation, scale, etc.)

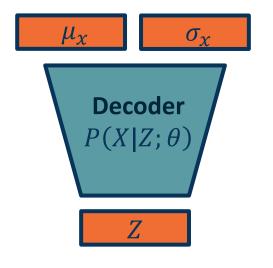


$$P(X) = \int P(X|Z;\theta)P(Z)dZ$$

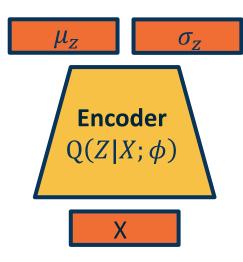
We cannot maximize this likelihood due to the integral
Instead we maximize a variational *lower bound* (VLB) that we *can* compute

Kingma & Welling, Auto-Encoding Variational Bayes

- We can combine the probabilistic view, sampling, autoencoders, and approximate optimization
- Just as before, sample Z from simpler distribution
- We can also output parameters of a probability distribution!
 - **Example**: μ, σ of Gaussian distribution
 - For multi-dimensional version output diagonal covariance
- How can we maximize $P(X) = \int P(X|Z;\theta)P(Z)dZ$



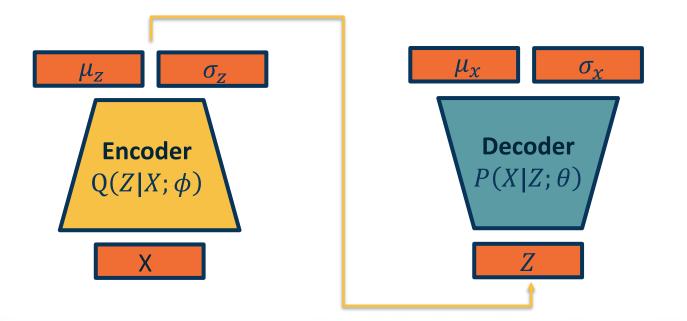
 We can combine the probabilistic view, sampling, autoencoders, and approximate optimization



- Given an image, estimate Z
- Again, output parameters of a distribution

We can tie the encoder and decoder together into a probabilistic autoencoder

- Given data (X), estimate μ_z , σ_z and sample from $N(\mu_z, \sigma_z)$
- Given Z, estimate μ_x , σ_x and sample from $N(\mu_x, \sigma_x)$



How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let's work out the (log) data likelihood:

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \end{split}$$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Young

0

Ge

Aside: KL Divergence (distance measure for distributions), always >= 0

$$KL(p||q) = H_c(p,q) - H(p) = \sum p(x)\log p(x) - \sum p(x)\log q(x)$$

Definition of Expectation

$$\mathbb{E}[f] = \mathbb{E}_{x \sim q}[f(x)] = \sum_{x \in \Omega} q(x) f(x)$$

$$KL(a||b) = E[\log a(x)] - E[\log b(x)] = E[\log \frac{a(x)}{b(x)}]$$

Maximizing Likelihood

Georg

$$\log p_{\theta}(x^{(i)}) = \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)})\right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z)$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})}\right] \quad (\text{Bayes' Rule})$$

$$= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)}|z)p_{\theta}(z)}{p_{\theta}(z|x^{(i)})}\frac{q_{\phi}(z|x^{(i)})}{q_{\phi}(z|x^{(i)})}\right] \quad (\text{Multiply by constant})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z)}\right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z|x^{(i)})}{p_{\theta}(z|x^{(i)})}\right] \quad (\text{Logarithms})$$

$$= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)}))$$

$$\stackrel{\clubsuit}{=} \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)}))\right]$$

$$\stackrel{\clubsuit}{=} \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)}))\right]$$

$$\stackrel{\clubsuit}{=} \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)) + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)}))\right]$$

$$\stackrel{\clubsuit}{=} \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)| + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)}))\right]$$

$$\stackrel{\clubsuit}{=} \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)}|z)\right] - D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z)| + D_{KL}(q_{\phi}(z|x^{(i)})||p_{\theta}(z|x^{(i)})|\right]$$

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeur g

0

GE

Maximizing Likelihood

$$\begin{split} \log p_{\theta}(x^{(i)}) &= \mathbf{E}_{z \sim q_{\phi}(z|x^{(i)})} \left[\log p_{\theta}(x^{(i)}) \right] \quad (p_{\theta}(x^{(i)}) \text{ Does not depend on } z) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Bayes' Rule}) \\ &= \mathbf{E}_{z} \left[\log \frac{p_{\theta}(x^{(i)} \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x^{(i)})} \frac{q_{\phi}(z \mid x^{(i)})}{q_{\phi}(z \mid x^{(i)})} \right] \quad (\text{Multiply by constant}) \\ &= \mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z)} \right] + \mathbf{E}_{z} \left[\log \frac{q_{\phi}(z \mid x^{(i)})}{p_{\theta}(z \mid x^{(i)})} \right] \quad (\text{Logarithms}) \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid |p_{\theta}(z \mid x^{(i)}))}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}))}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right] - D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z)) + \underbrace{D_{KL}(q_{\phi}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)})}_{>0} \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right]_{z} + \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(z \mid x^{(i)}) \mid p_{\theta}(z \mid x^{(i)}) \right] \\ &= \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^{(i)} \mid z) \right]_{z} + \underbrace{\mathbf{E}_{z} \left[\log p_{\theta}(x^$$

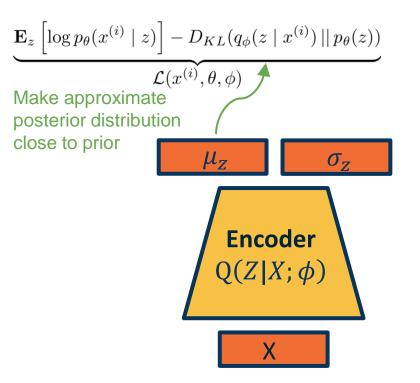
From CS231n, Fei-Fei Li, Justin Johnson, Serena Young

0

GE

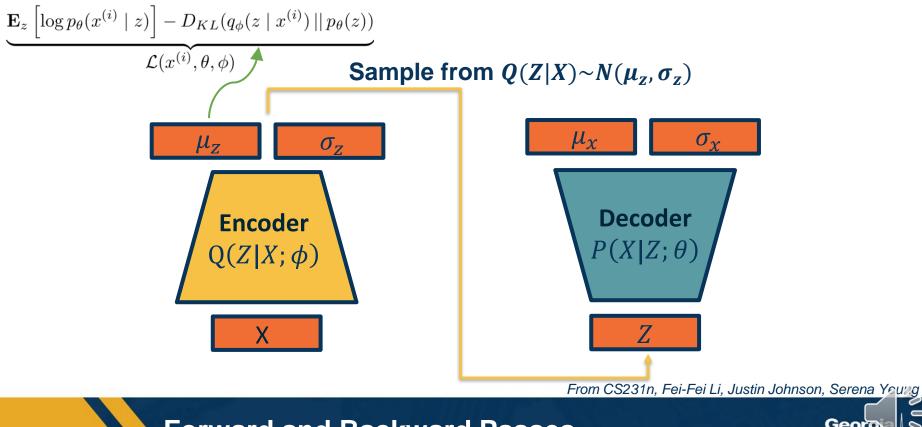
Maximizing Likelihood

Putting it all together: maximizing the likelihood lower bound



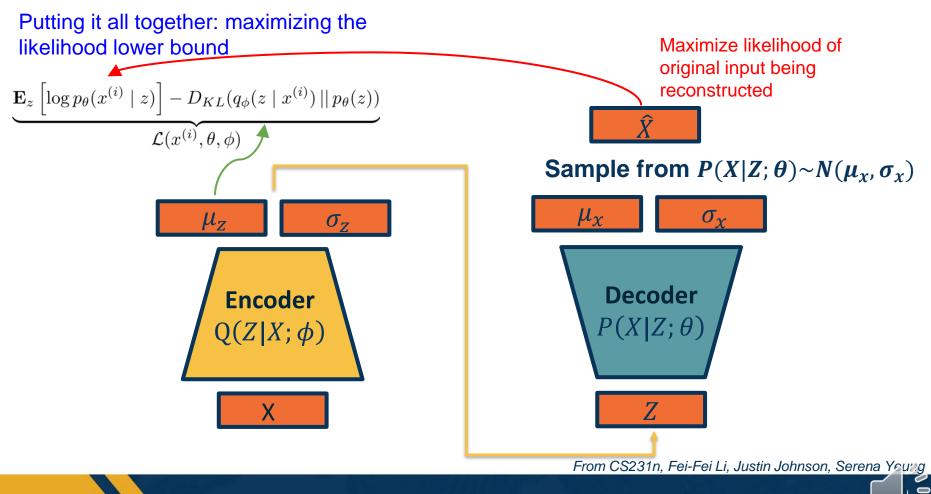
From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeurg

Putting it all together: maximizing the likelihood lower bound



0

Forward and Backward Passes

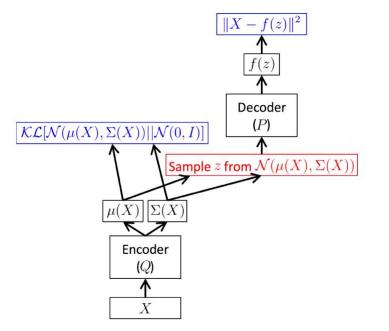


Forward and Backward Passes

• Problem with respect to the VLB: updating ϕ $\mathcal{L}_{VAE} = \mathbb{E}_{q \neq (z|z)} \left[\log \frac{p_{\theta}(z, z)}{|z|} \right]$

$$egin{aligned} &= -D_{ ext{KL}}(q_{\phi}(oldsymbol{z}|oldsymbol{x})||p_{ heta}(oldsymbol{z})) + \mathbb{E}_{q_{\phi}(oldsymbol{z}|oldsymbol{x})}[\log p_{ heta}(oldsymbol{x}|oldsymbol{z})] \end{aligned}$$

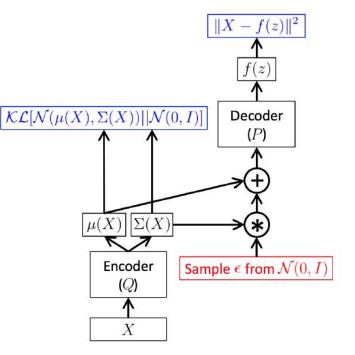
• $Z \sim Q(Z|X; \phi)$: need to differentiate through the sampling process w.r.t ϕ (encoder is probabilistic)



From: Tutorial on Variational Autoencoders https://arxiv.org/abs/1606.05908

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

- Solution: make the randomness independent of encoder output, making the encoder deterministic
- Gaussian distribution example:
 - Previously: encoder output = random variable $z \sim N(\mu, \sigma)$
 - Now encoder output = distribution parameter [μ, σ]
 - $z = \mu + \epsilon * \sigma, \epsilon \sim N(0,1)$



From: Tutorial on Variational Autoencoders <u>https://arxiv.org/abs/1606.05908</u>

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/

C C

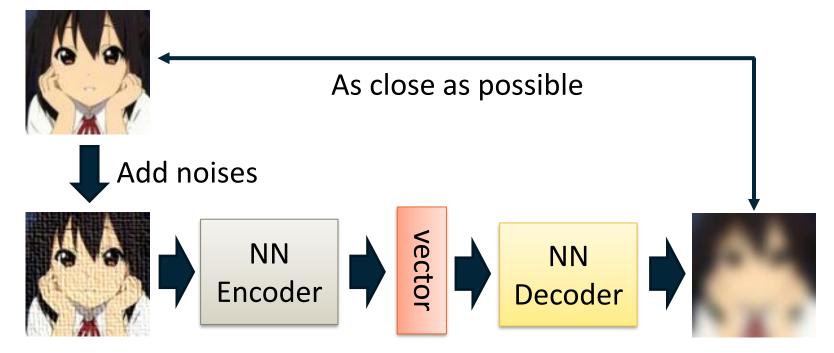
 Z_1

Z_2

Kingma & Welling, Auto-Encoding Variational Bayes

- Variational Autoencoders (VAEs) provide a principled way to perform approximate maximum likelihood optimization
 - Requires some assumptions (e.g. Gaussian distributions)
- Samples are often not as competitive as diffusion models or GANs
- Latent features (learned in an unsupervised way!) often good for downstream tasks:
 - Example: World models for reinforcement learning (Ha et al., 2018)

De-noising Auto-encoder

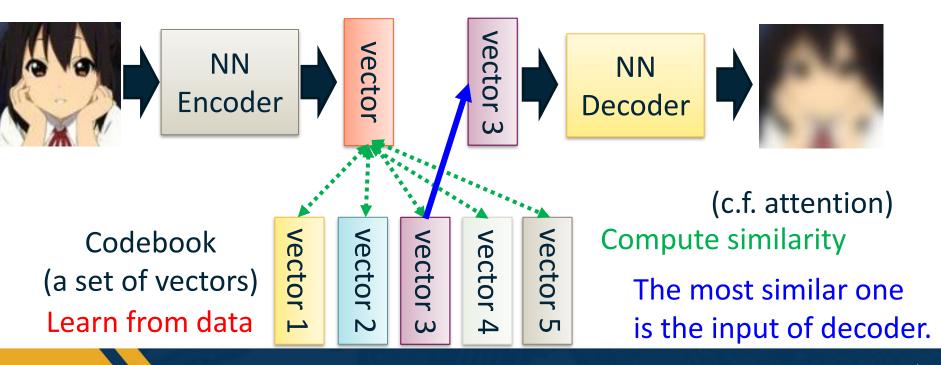


Slide by Hung-yi Lee

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

Discrete Representation

• Vector Quantized Variational Auto-encoder (VQVAE)



https://arxiv.org/abs/1711.00937

Slide by Hung-yi Lee

- Variational Autoencoders (VAEs) provide a principled way to perform approximate maximum likelihood optimization
 - Requires some assumptions (e.g. Gaussian distributions)
- Samples are often not as competitive as GANs
- Latent features (learned in an unsupervised way!) often good for downstream tasks:
 - Example: World models for reinforcement learning (Ha et al., 2018)

Q. Which ones are VAEs good at?

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations			
Fast sampling			
High quality samples			



VAEs are bad at generating high quality samples

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations			
Fast sampling	\checkmark		
High quality samples	×		

Q. Which ones are GANs good at?

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations			
Fast sampling			
High quality samples	×		

GANs suffer from mode collapse

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations		×	
Fast sampling		\checkmark	
High quality samples	×	\checkmark	

Q. Which ones are Diffusion models good at?

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations		×	
Fast sampling		\checkmark	
High quality samples	×	\checkmark	

Diffusion models are bad at sampling fast.

	Autoregressive (VAEs)	GANs	Diffusion
Mode coverage / diversity of generations		×	
Fast sampling		\checkmark	×
High quality samples	×	\checkmark	

Several ways to learn generative models via deep learning

Generative Adversarial Networks (GANs):

- Pro: Amazing results across many image modalities
- Con: Unstable/difficult training process, computationally heavy for good results
- Con: Limited success for discrete distributions (language)
- Con: Hard to evaluate (implicit model)

Variational Autoencoders:

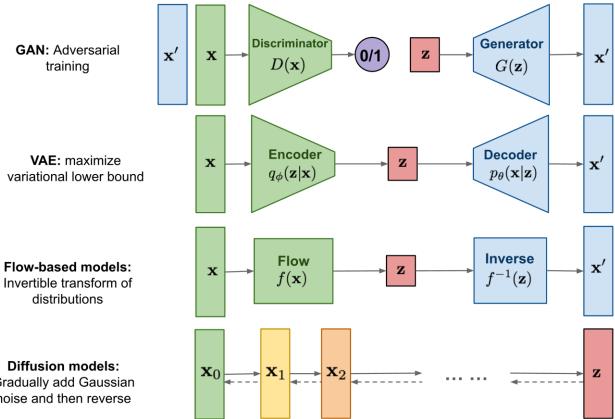
- Pro: Principled mathematical formulation
- Pro: Results in disentangled latent representations
- Con: Approximation inference, results in somewhat lower quality reconstructions

Diffusion Models

- Pro: Great results and diversity!
- Con: Slow generation (though lots of tricks to address)

Ha & Schmidhuber, World Models, 2018

Comparison



Gradually add Gaussian noise and then reverse

Plan Moving Forward

- Spring break!
- Guest lecture by Will Held on large language models!
- Reinforcement learning
- Open to other topics after:
 - Visualization and interpretability
 - Vision-language models
 - 3D / NeRFs
 - Robotics

The role of RLHF in ChatGPT

