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Transformer Lecture Speed Recap: The Transformer Block
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Attention is “All” You Need
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How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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How do we most effectively turn
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How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

How do we go from purpose driven models to LLMs?
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https://github.com/Mooler0410/LLMsPracticalGuide

LLM Advancements have been driven primarily by these two

Self-Supervised Learning Scaling Laws
How do we most effectively turn How do we train large models on
raw text into meaningful loss? large amounts of quality data?
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SSL | From raw text to loss!

Input Masking

9090

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking
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Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

= Masked Attention
] Similarities: E = (QXT / sqrt(DQ)) * MASK
Attention Matrix: A = softmax(E,dim=1)
o Output vectors: Y = AX
Y, = A X

1041

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | What is the “Mask” in a Masked Language Model?

Input Masking

If MASK, = @, then Y, =3 . _.A X

—] Intuition

a.k.a the representation of the masked
token is created purely from context

108

Masked Language Model
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction
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https://arxiv.org/abs/1810.04805

SSL | Masked Token Prediction

P(“World” | Context)
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SSL | Masked Token Prediction

P(“World” | Context)

/ [ Softmax \

[ Hidden States

Optimize Negative Log Likelihood

loss = -log(P(“World” | Context)

Stacked
. g Transformer
Equivalent to the Cross-Entropy S Blocks
Loss term from Lecture 3! - >
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Data | BERT used existing curation!

BERT Corpus
English Wikipedia + BooksCorpus

Size
~3 Billion Tokens

Quality
High quality text,
Broad “Academic” Knowledge,
Limited Diversity
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https://arxiv.org/abs/1810.04805
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SSL | “How does GPT work?”
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Autoregressive Language Modeling

Masking

\
Causal Mask Masked Attention Again!

Similarities: E = (QXT / sqrt(DQ)) * MASK

Attention Matrix: A = softmax(E,dim=1)
Output vectors: Y = AX

Y, = szLjX

Tokens only affected by preceding tokens
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

SSL | Purely Autoregressive
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Optimize Negative Log Likelihood of Whole Sequence

loss = -(log(P(“World” | “Hello”) + log(P(“!” | “Hello World”) +
log(P(“[EOS]"” | “Hello World!"))
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Data | Increasing Token Count via Human Curation Heuristics

GPT-2 Corpus
All Reddit Outbound links with at

least 3 karma

Size
~10 Billion Tokens

Quality
High quality text,
Broad Knowledge,
Improved Diversity

URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbc.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%
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https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

Input Masking

—_—

Questions?

Transformer

Decoder

Causal Mask

1999

Autoregressive Language Model

Next Token Prediction

o

CS 4644 / 7643 Deep Learning - William Held



Data & Parameter Scaling | Moving to Large Language Models

Today’s LLMs are driven by data and model scaling

Loss vs Model and Dataset Size
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https://arxiv.org/abs/2001.08361

Data Scaling | Collecting High-Quality Self-Supervision at Scale

\

'l 1)
0' L P ¥
“~ @ ~
e
f \

I \

We could get a lot more data from CommonCrawl!

CS 4644 / 7643 Deep Learning - William Held



Data Scaling | Collecting High-Quality Self-Supervision at Scale

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
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Data Scaling | Collecting High-Quality Self-Supervision at Scale

We could get a lot more data from CommonCrawl!
A lot of it is spam though...
How do we get “useful” data?
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T5 - Encoder-Decoder with Common Crawl Scale Data

¢ We only retained lines that ended in a terminal punctuation mark (i.e. a period,
exclamation mark, question mark, or end quotation mark).

e We discarded any page with fewer than 3 sentences and only retained lines that
contained at least 5 words.

o We removed any page that contained any word on the “List of Dirty, Naughty, Obscene
or Otherwise Bad Words™.%

TS5 Corpus (AKA C4)

: e Many of the scraped pages contained warnings stating that Javascript should be
All Common Crawl Text Which y pec. pag g g p

enabled so we removed any line with the word Javascript.

Meets Heuristics

« Some pages had placeholder “lorem ipsum” text; we removed any page where the
phrase “lorem ipsum” appeared.

M e Some pages inadvertently contained code. Since the curly bracket “{” appears in
~350 BI”IOﬂ To kenS many programming languages (such as Javascript, widely used on the web) but not in
natural text, we removed any pages that contained a curly bracket.

Szualitx « Since some of the scraped pages were sourced from Wikipedia and had citation markers
. . (e.g. [1], [citation needed], etc.), we removed any such markers.
Varying quality text,

Broa d Kn OW|e d g e, . Ma.ny p:fges had l)oil(ifp{?te. policy n(.)tiu:fs,uso w.e rem(-)ve,(} a:ly lines colnt?:ining the
X g strings “terms of use”, “privacy policy”, “cookie policy”, “uses cookies”, “use of
Improved DlverSIty cookies”, or “use cookies”.

e To deduplicate the data set, we discarded all but one of any three-sentence span
occurring more than once in the data set.
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https://arxiv.org/abs/1910.10683

GPT-3 - Increased Scaling Via Automated Data Curation

Training

Ox —— Distinguish High and Low Quality
Low-Quality, High Volume

URL Domain #Docs % of Total Docs
bbc.co.uk 116K 1.50%
theguardian.com 115K 1.50%
washingtonpost.com 89K 1.20%
nytimes.com 88K 1.10%
reuters.com 79K 1.10%
huffingtonpost.com 72K 0.96%
cnn.com 70K 0.93%
cbe.ca 67K 0.89%
dailymail.co.uk 58K 0.77%
go.com 48K 0.63%

High Quality, Medium Volume
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https://arxiv.org/abs/2005.14165

GPT-3 - Increased Scaling Via Automated Data Curation
Filtering

Keep “False” Positives

—_—

“False” positive ~= High Quality

M

Brown et al. 2020 CS 4644 / 7643 Deep Learning - William Held



https://arxiv.org/abs/2005.14165

Data | GPT-2 to Original GPT-3 was mostly data scaling

GPT-3 Corpus
Common-Crawl Filtered using

GPT-2 Training Data

Size
~400 Billion Tokens

Quality
High-ish quality text,
Broad Knowledge,
Web-scale Diversity
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https://arxiv.org/abs/2005.14165

Data | Recent Open Source models focus heavily on data scaling

Llama 1 Corpus

Size
~1.4 Trillion Tokens

Quality
Varying quality text,
Broad Knowledge,
Web-scale Diversity,
Includes Code!

Dataset Sampling prop. Epochs Disk size
CommonCrawl  67.0% 1.10 3.3TB
C4 15.0% 1.06 783 GB
Github 4.5% 0.64 328 GB
Wikipedia 4.5% 2.45 83 GB
Books 4.5% 223 85 GB
ArXiv 2.5% 1.06 92 GB
StackExchange 2.0% 1.03 78 GB



https://arxiv.org/abs/2302.13971

Data | Data Mixture has become the biggest “secret”

Llama 3 Corpus Gemini Corpus GPT-4 Corpus
Size Size Size
15 Trillion Tokens Unknown Unknown (Est. >11T Tokens)
Quality ualit Quality
Minimal details known No details known No details known

N &
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https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.08774
https://arxiv.org/pdf/2407.21783

Llama 3 Corpus

Size
15 Trillion Tokens

Quality

Minimal details known

7\

Questions?

Gemini Corpus

Size
Unknown

Quality

No details known

C

GPT-4 Corpus

Size
Unknown (Est. >11T Tokens)

Quality

No details known
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https://arxiv.org/pdf/2407.21783
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2303.08774

Scaling Parameters | Data Parallel Training
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https://engineering.fb.com/2021/07/15/open-source/fsdp/

Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD ) > \:,’:,%AHTTES J
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Total memory increases linearly with shards
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Scaling Parameters | Data Parallel Training

MODEL FORWARD > BACKWARD ) > \:,’:,%AHTTES J
SHARD (LOCAL) (LOCAL) (LOCAL)
T KgS
]
]
1 ]
]

'
SYNC
GRADS

MODEL > FORWARD BACKWARD > UBDATE
SHARD (LOCAL) (LOCAL)

WEIGHTS
(LOCAL) \

Max memory constrains model size
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Scaling Parameters | *Fully* Sharded Data Parallel Training

ALL- Ny FoRwaro ALL- N BACKWARD > Bl
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https://engineering.fb.com/2021/07/15/open-source/fsdp/

Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL ALL- ALL- BACKWARD UBDATE
SHARD > GATHER > GATHER (LOCAL) > > ‘:’fgg::;"
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& ] ]
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Total memory is constant



Scaling Parameters | *Fully* Sharded Data Parallel Training

MODEL ALL- FORWARD ALL- BACKWARD > “‘,’:I%':‘TTES \
SHARD GATHER LOCAL GATHER
\ ) F OO (LOCAL)
‘

N LAYERS N LAYERS RS

u ' ]
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o' N LAYERS N LAYERS

MODEL ALL- FORWARD ALL- BACKWARD > REDUCE- > :::,‘HTTES
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Max single GPU memory constrains layer Size ... .o win i




Scaling Parameters | Tensor Parallel Training

74

98

10 | 14

0 1 2 3 11 | 15
4| s | 6| 7 12 | 16
13|17

X | |

258

346

https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism
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https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1
o | 1 10 | 14 1 | 15
10 | 14 . =
4 | s 1 | 15 95 | 131
o| 1] 2] 3 1 | 15 74 | 98 74 | 98
= is equal to + -
4| s | 6| 7 12 | 16 258 | 346 258 | 346
: 2 3 12 | 16 63 | 83
13 | 17
X Y = Y
6 | 7 13017 163 | 215
A
X2 A2 Y2

https://hugaingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism CS 4644/ 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + -
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don't need to sync gradients!
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https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | Tensor Parallel Training

X1 Al Y1l
0 1 10 14 11 15
10 14 =
4 5 11 15 95 | 131
0 1 2 3 11 15 74 98 74 98
= is equal to + =
4 5 6 7 12 16 258 | 346 258 | 346
2 3 12 16 63 83
13 17
X Y = Y
6 7 13 17 163 | 215
A
X2 A2 Y2

Don't need to sync gradients!
Max GPU memory constrains layer shard size

https://hugaingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism CS 4644 / 7643 Deep Learning - William Held



https://huggingface.co/docs/transformers/v4.15.0/parallelism#tensor-parallelism

Scaling Parameters | FSDP + TP = ~Limitless Scaling

( FSDP N
(@« checkpoint_wrapper o
( Decoder ~12H? params h
FSDP
Multi-Head Attention ~4H? params
Query Key Value Out
~H2 ~H2 "'H2 ~H2 \
params || params || params || params
FSDP
E€H
~4H? params
FSDP
FC2 {
~4H? params 1
-~ 4
> =,

1 Trillion Parameter Model with Tensor Parallelism and FSDP

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

Scaling Parameters | FSDP + TP = ~Limitless Scaling

( FSDP N
(@« checkpoint_wrapper o
( Decoder ~12H? params h
FSDP
Multi-Head Attention ~4H? params
Query Key Value Out
~H2 ~H2 "'H2 ~H2 \
params || params || params || params
FSDP
E€H
~4H? params
FSDP
FC2 {
~4H? params 1
-~ 4
> =,

1 Trillion Parameter Model with Tensor Parallelism and FSDP

Outer activations are
offloaded to CPU

Inner activations are
checkpointed/recomputed

Linear layers are sharded

Full parameters of a single FSDP
instance are loaded to GPU for
computation, parameters in other
FSDP instance are offloaded to CPUs
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https://medium.com/pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data-parallel-on-aws-3ac13aa96cff

Scaling Parameters | Mixture Of Experts

Dense LMs (OLMo, Llama...)

Output
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Slides adapted from Niklas Muen'ﬂrl’ahoﬁ
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

Output
s 4 N
r ‘O
2 E3 E‘ 8 Es 52 E.J E“
‘%‘\ —2r Router activation is sparse!
MoE Il [l 55
Modute  { R°“;e’ ) ) Pros of Mixture of Experts
L ( MO ) + Cheaper, Large Scale Training
+ Lower Inference Requirements
| Multi-head Attention |
Norm
\ : 4 : Nox )
Input
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

HellaSwag MMLU ARC-Challenge
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

Output
- 4 N
e >®
(E é 2\
( (1)
Ei) E:2 (Es) Ea Es [Es Ees Eos
< 2 - Router activation is sparse!
MoE _Hpliepll - gl
(Module R°“;e’ ) Cons of Mixture of Experts
L ( Norm | - More Unstable Training Runs
| Multi-head Attention |
Norm
L : 4 : Nox )
Input
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

Training loss Validation loss (C4) HellaSwag MMLU Var
4.0 A6 35
60
§3.5
3.5
(]
£3.0 30
- 40 — Z-loss
8 3.0
2.5 __No
4 z-loss 25
10 250 500 7502210 250 500 750 10 250 500 750 10 250 500 750
Tokens (B)

Z-Loss decreases the magnitude of the logits
into the router to stabilize gradients
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

Output
e 4 N
r ‘O
2 E3 E‘ S E6 S5 E.J E“
‘%MI I,-,—L/‘ Router activation is sparsel
MoE (1]
Modute  { R°“;e’ ) ) Cons of Mixture of Experts
( Norm ) - More Unstable Training Runs

- Experts frequently collapse

( Multi-head Attention j

( Norm ]

§ 4 Nox
Input
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https://x.com/Muennighoff/status/1831159130230587486

Scaling Parameters | Mixture Of Experts

< o No load balancing Load balancing

U

3 2 | —— Expert 0 Expert 4

c0 Expert 1 —— Expert5

23 50 —— Expert2 —— Expert 6

79 ——— Expert 3 Expert 7

ocC

sy W

58 o L PSS '

XC 1 5 10 1 5 10
Tokens (B) Tokens (B)

Load Balancing loss to update all experts similarly
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Dense LMs (OLMo, Llama...)

Output

Questions?
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——®
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Feedforward
Network
(FFN)

[Multi-head Attention ]
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Input
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[ Multi-head Attention )
N
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J

Input
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LLMs aren't very good for “assistance” by default

[&] [Suggest 3 things to do in San Mateo.

p
San Mateo is a city in San Mateo County, California, in the

high-tech enclave of Silicon Valley in the San Francisco Bay
Area. With a population of 97,207 at the 2010 census, the
city is located on the San Francisco Peninsula halfway

between San Francisco and San Jose, about 20 miles (32 km)

from the Pacific Ocean.

Adapted from Content by Michael Ryan @michaelryan207 for https://arxiv.org/abs/2402.15018
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Massively Multitask Supervised “Instruction” Finetuning

“Reverse this string:

+ IHHELLolﬂ
‘OLLEH"” \

“Suggest 3thingsto | “1.Visit San Mateo,
do in San Mateo.” Central Park...”

“What is the capital

+ llDOha”
of Qatar?”

Adapted from Content by Michael Ryan @michaelryan207 for
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Instruction Tuning | Just keep training!

Input Masking Transformer Next Token Prediction
JE—
/
.— Decoder \
X
n
©
(D
©
%)
-
.— ©
&)
- (oD
— |

Optimize Negative Log Likelihood of The Response
loss = -log(P(RESPONSE | INSTRUCTION))

Wanq et al 2022 CS 4644 / 7643 Deep Learning - William Held
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Further Refinement from Sparse Reward (RLHF)

“Suggest 3 things to

—_—
do in San Mateo.” -

Adapted from Content by Michael Ryan @michaelryan207 for

“San Mateo is a city in ®
Pl San Mateo County...” 0-

—_

N

@
“I'm sorry | can’t help.” 0-

“1. Visit San Mateo, ®
Central Park...” -
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Reinforcement Learning From Human Feedback (RLHF)

Preference Data

o
o

) (e iy

00O

/nmu ) [

©

Language

Reward Model Model

alk;

Ak

RM

00 5,

Al

$l$
ak
T3

6]o

°4°

Adapted from Content by Michael Ryan @michaelryan207 for https://arxiv.org/abs/2402.15018
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Reinforcement Learning From Human Feedback (RLHF)

Reward Model
Preference Data T T § — . Reward Scores
BOBQ [ oRM
IT%

JE

Optimize Reward Margin between Preferences
loss = -1log(c(RM(POSITIVE) - RM(NEGATIVE)))

Adapted from Content by Michael Ryan @michaelryan207 for https://arxiv.org/abs/2402.15018 60
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Reinforcement Learning From Human Feedback (RLHF)

. Mode Language
T BasBRes Mgdel

el ——uu
—0
RM o Al
) l 6 — _  —
Optimize Reward Margin between Preferences
loss,, = -RM(GENERATED_EXAMPLES)

Adapted from Content by Michael Ryan @michaelryan207 for https://arxiv.org/abs/2402.15018 61
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Models Quickly Overfit to Naively Optimized Reward

14 RM Size RM Type
7 l— 3M === Proxy
— 12M  —— Gold
12 —— 25M  —— Gold (Fit)
— 42M
— 85M
1.0 —— 300M
—— 680M
o
g 038
(%]
=
o
0.6
0.4
0.2
00 °

0 20 40 60 80 100
KL distance between RL tuned policy and initial policy

Gao et al. 2022
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Reinforcement Learning From Human Feedback (RLHF)

. 4 Model Language
e

efe —

—0
RM o Al
oo — __—
Optimize Reward Without Drifting Too Far from SFT

loss, . = loss,, + KL(LM LM
Adapted from Content by Michael Ryan @michaelryan207 for https://arxiv.org/abs/2402.15018 63
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Questions?

Language
Reward Model Model

O\ N

al;

—0
RM o

oo — __—

Adapted from Content by Michael Ryan @michaelryan207 for
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Final Questions?

Fill out my anonymous feedback form
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