#### CS 4644 / 7643-A: Deep Learning

#### Website:

https://faculty.cc.gatech.edu/~zk15/teaching/AY2025\_cs7643\_spring/index.html

Piazza: <a href="https://piazza.com/gatech/spring2025/cs46447643a">https://piazza.com/gatech/spring2025/cs46447643a</a>

(sync'd to Canvas)

Canvas: <a href="https://gatech.instructure.com/courses/433296">https://gatech.instructure.com/courses/433296</a> (4644)

https://gatech.instructure.com/courses/433264 (7643)

Gradescope: <a href="https://www.gradescope.com/courses/939128">https://www.gradescope.com/courses/939128</a> (4644)

https://www.gradescope.com/courses/939135 (7643)

Zsolt Kira
Associate Professor

School of Interactive Computing Georgia Tech

#### Are you in the right place?

- This is CS 4644 / CS 7643-A
  - "On campus" class
  - For project, you can group across ugrad/grad with permission

- This is NOT CS 7643-O01/OAN/Q/R/AO ("OMSCS")
  - Online class for OMSCS program, but other sections combined
  - AO section is NOT on-campus section! It is linked with OMSCS version
  - You cannot group between on-campus class and OMSCS

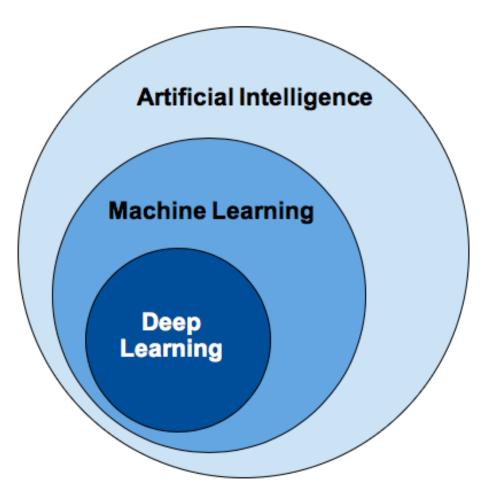
## Spring 23 Delivery Format

- In-Person
  - Scheller College of Business 100
- Streaming & Recording
  - We STRONGLY encourage you to attend the lectures in person
  - But DO NOT come in sick!
    - We will provide recordings for such cases & accommodations
  - Lectures recordings MAY be available on a delayed basis. Do not rely on this.
  - (Remote or in-person) recordings by students not allowed unless you talk to me first
- Office hours, HW/project submissions online
- Remember: Content is free online.
  - You are here for the interaction and the insight.

#### Outline for Today

- What is Deep Learning, the field, about?
- The elephant in the room: ChatGPT, Stable Diffusion, existential risk, ...
- What is this class about?
  - What to expect?
  - Logistics
- FAQ

#### Concepts



"Deep Learning is part of a broader family of machine learning methods based on artificial neural networks"

--- https://en.wikipedia.org/wiki/Deep\_learning

ZK Caveat: Note it does not HAVE to be through ANNs; there are deep methods involving probabilistic graphical models (Boltzmann Machines, etc.). They just do not currently work and are not scalable.

#### What is (general) intelligence?

Boring textbook answer

The ability to acquire and apply knowledge and skills

- Dictionary
- Many others
  - Survival, various types/aspects of intelligence, etc.

#### **New Words!:**

- AGI Artificial General Intelligence (~ as good as expert humans across most/all tasks)
- ASI Artificial Super-Intelligence (self-improvement, etc.)

#### What is artificial intelligence?

Boring textbook answer

Intelligence demonstrated by machines

- Wikipedia
- What others say:

The science and engineering of making computers behave in ways that, until recently, we thought required human intelligence.

- Andrew Moore, CMU
- Squaring the two (artificial general intelligence) is not easy; how do we define or evaluate this?

## What is machine learning?

A favorite

```
Study of algorithms that improve their performance (P) at some task (T) with experience (E)

– Tom Mitchell, CMU
```

#### So what is Deep (Machine) Learning?

- Objective: Representation Learning
  - Automatically discover useful features/representations for a task from raw data
- Model: (Deep) Artificial Neural Networks
- Learning Method:
   Unsupervised/Supervised/Reinforcement/Generative/
   <insert-qualifier-here>
   Learning
- Simply: Deep Learning

#### So what is Deep (Machine) Learning?

- A few different ideas:
- (Hierarchical) Compositionality
  - Cascade of non-linear transformations
  - Multiple layers of representations
- End-to-End Learning
  - Learning (goal-driven) representations
  - Learning to feature extraction

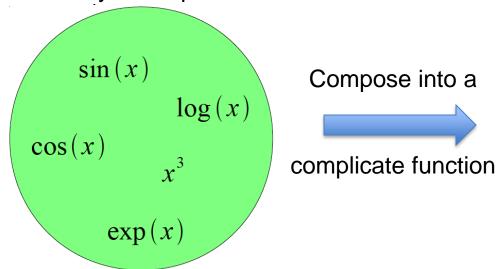
#### Hierarchical Compositionality

#### **VISION**

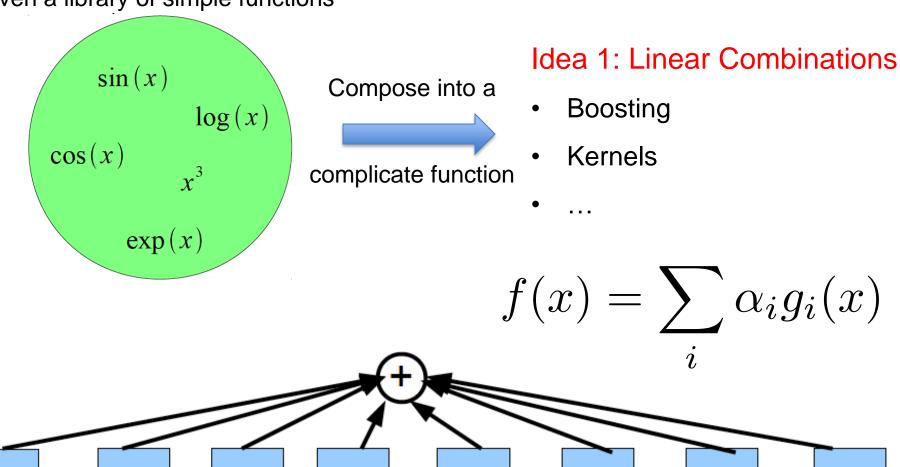
#### **SPEECH**

#### **NLP**

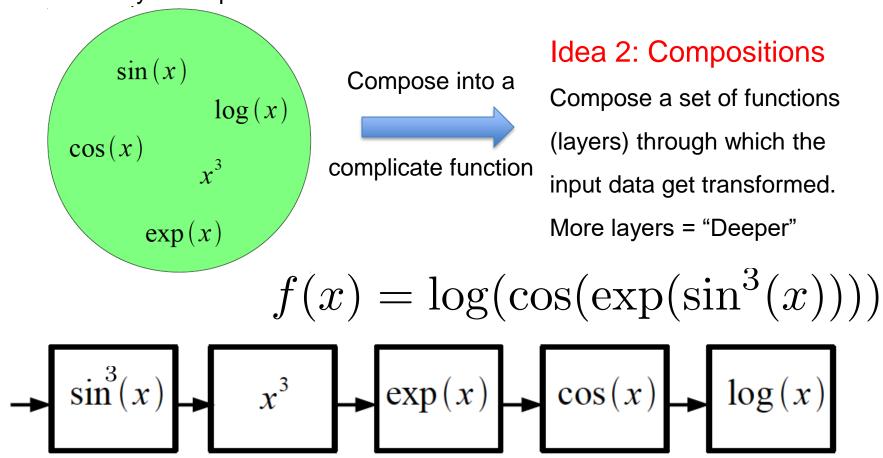
Given a library of simple functions



Given a library of simple functions

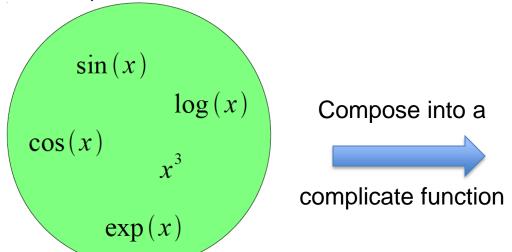


Given a library of simple functions



#### Can we make it more expressive?

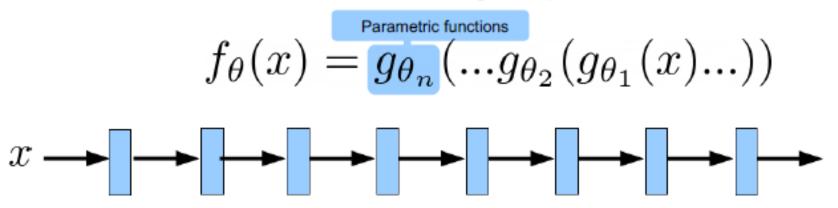
Given a library of simple functions



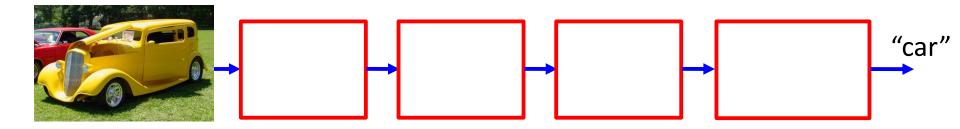
Yes! Parametric functions

Modern DNNs have huge # of parameters, on the orders of Billions

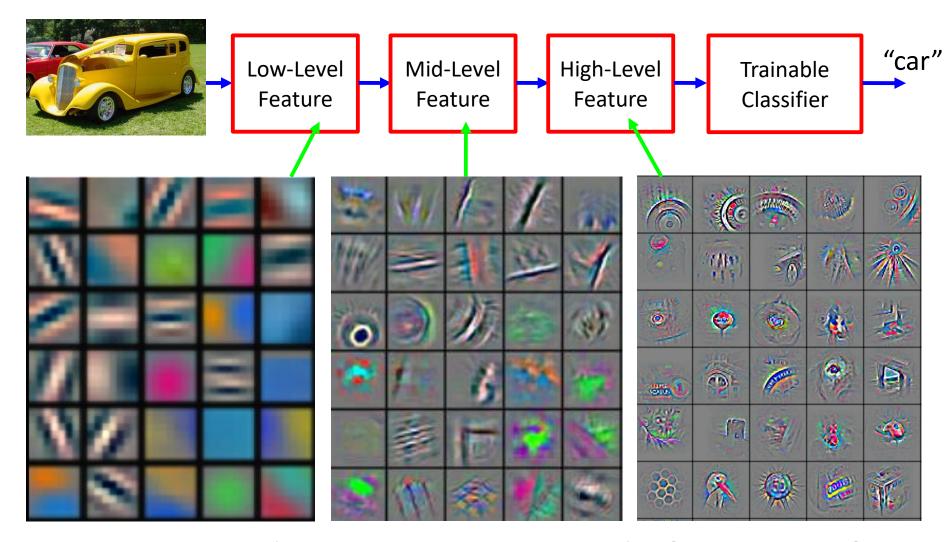
Modern DNNs have huge # of parameters, on the orders of bn's



#### Deep Learning = Hierarchical Compositionality



#### Deep Learning = Hierarchical Compositionality



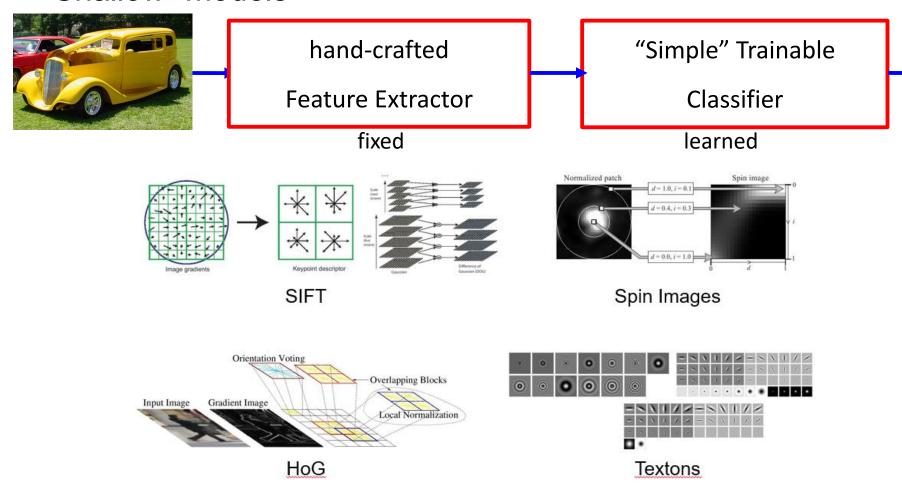
Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

#### So what is Deep (Machine) Learning?

- A few different ideas:
- (Hierarchical) Compositionality
  - Cascade of non-linear transformations
  - Multiple layers of representations
- End-to-End Learning
  - Learning (goal-driven) representations
  - Learning to feature extraction

### "Shallow" vs Deep Learning

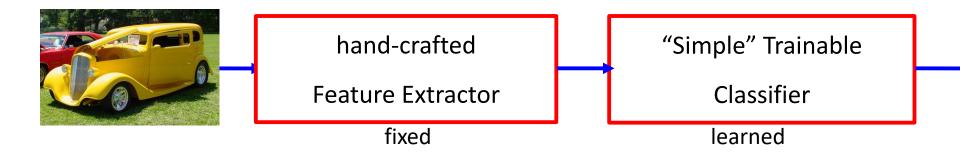
"Shallow" models



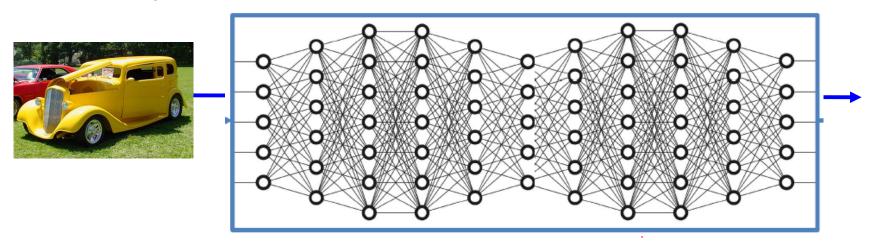
and many many more....

# "Shallow" vs Deep Learning

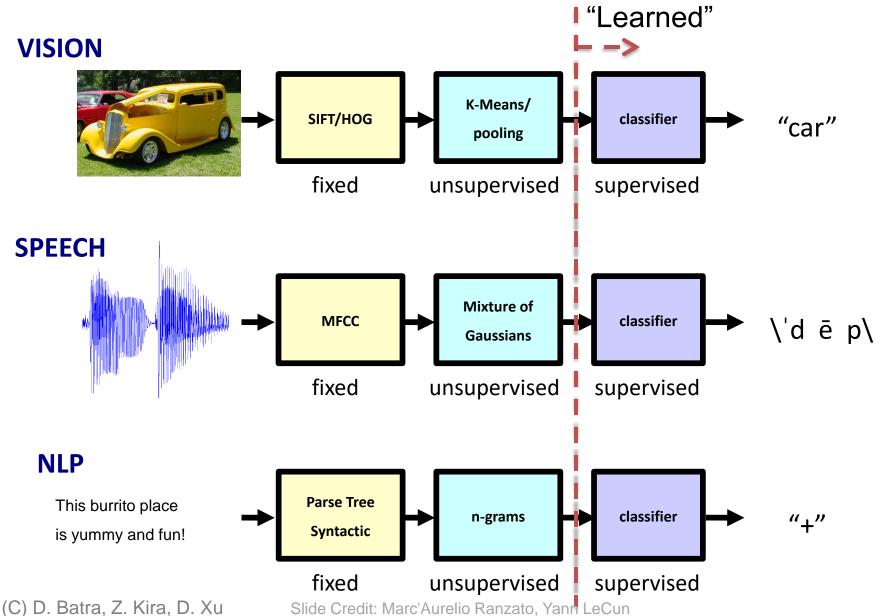
"Shallow" models



Deep models



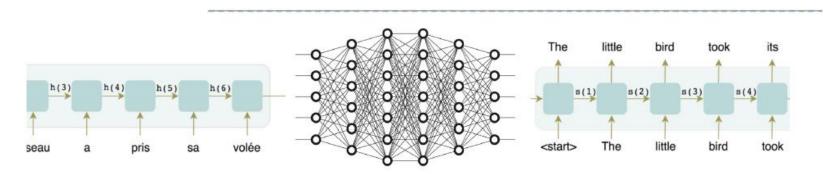
# Deep Learning = End-to-End Learning

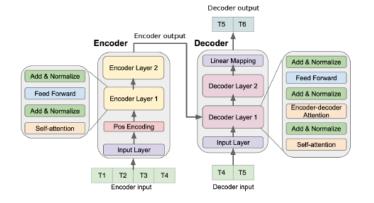


### "Shallow" vs Deep Learning

"Shallow" vs. deep language models



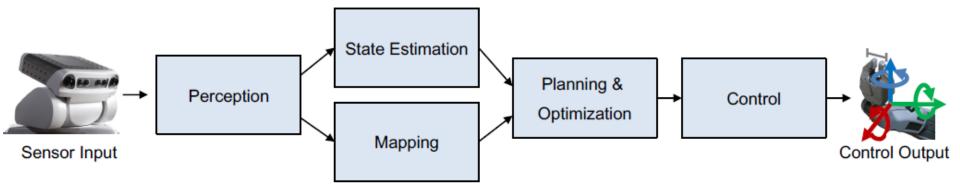




Transformer Models (Vaswani et al., 2017)



#### "Pipelining"vs. "End-to-End Learning"



Hand-engineered pipelines



End-to-end learning ("pixel-to-torque")

**Note: These can be mixed/combined!** 

#### Benefits of Deep/Representation Learning

- (Usually) Better Performance
  - Caveats: given enough data, similar train-test distributions, non-adversarial evaluation, etc., etc.
- New domains without "experts"
  - RGBD/Lidar
  - Multi-spectral data
  - Gene-expression data
  - Unclear how to hand-engineer
- "Homogenization" of model design
- New abilities emerge with more data/parameter scale and compute

#### "Expert" intuitions can be misleading

- "Every time I fire a linguist, the performance of our speech recognition system goes up"
  - Fred Jelinik, IBM '98



- "Because gradient descent is better than you"
  - Yann LeCun, CVPR '13

#### "The Bitter Lesson"

 "The biggest lesson that can be read from 70 years of Al research is that general methods that leverage computation are ultimately the most effective, and by a large margin. The ultimate reason for this is Moore's law, or rather its generalization of continued exponentially falling cost per unit of computation." (Sutton, 2019)

# What about ChatGPT / Foundation Models / ... buzzwords?

#### Bing's A.I. Chat: 'I Want to Be Alive. ""

In a two-hour conversation with our columnist, Microsoft's new chatbot said it would like to be human, had a desire to be destructive and was in love with the person it was chatting with. Here's the transcript.







https://www.nytimes.com/article/ai-artificial-intelligencechatbot.html



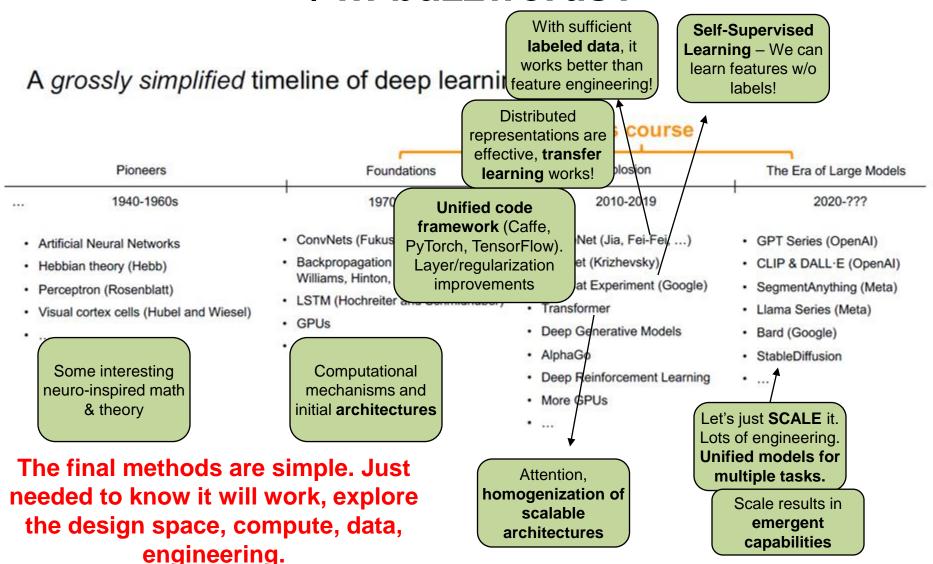
https://www.technologyreview.com/2023/03/25/1070275/chatgpt-revolutionize-economy-decide-what-looks-like/

| Exam                                           | GPT-4                   | GPT-4 (no vision)       | GPT-3.5                |
|------------------------------------------------|-------------------------|-------------------------|------------------------|
| Uniform Bar Exam (MBE+MEE+MPT)                 | 298 / 400 (~90th)       | 298 / 400 (-90th)       | 213 / 400 (~10th)      |
| LSAT                                           | 163 (~88th)             | 161 (~83rd)             | 149 (~40th)            |
| SAT Evidence-Based Reading & Writing           | 710 / 800 (~93rd)       | 710 / 800 (~93rd)       | 670 / 800 (~87th)      |
| SAT Math                                       | 700 / 800 (~89th)       | 690 / 800 (~89th)       | 590 / 800 (~70th)      |
| Graduate Record Examination (GRE) Quantitative | 163 / 170 (~80th)       | 157 / 170 (-62nd)       | 147 / 170 (~25th)      |
| Graduate Record Examination (GRE) Verbal       | 169 / 170 (~99th)       | 165 / 170 (~96th)       | 154 / 170 (~63rd)      |
| Graduate Record Examination (GRE) Writing      | 4 / 6 (~54th)           | 4 / 6 (~54th)           | 4/6(~54th)             |
| USABO Semifinal Exam 2020                      | 87 / 150 (99th - 100th) | 87 / 150 (99th - 100th) | 43 / 150 (31st - 33rd) |
| USNCO Local Section Exam 2022                  | 36/60                   | 38 / 60                 | 24/60                  |
| Medical Knowledge Self-Assessment Program      | 75 %                    | 75 %                    | 53 %                   |
| Codeforces Rating                              | 392 (below 5th)         | 392 (below 5th)         | 260 (below 5th)        |
| AP Art History                                 | 5 (86th - 100th)        | 5 (86th - 100th)        | 5 (86th - 100th)       |
| AP Biology                                     | 5 (85th - 100th)        | 5 (85th - 100th)        | 4 (62nd - 85th)        |
| AP Calculus BC                                 | 4 (43rd - 59th)         | 4 (43rd - 59th)         | 1 (0th - 7th)          |
| AP Chemistry                                   | 4 (71st - 88th)         | 4 (71st - 88th)         | 2 (22nd - 46th)        |
| AP English Language and Composition            | 2 (14th - 44th)         | 2 (14th - 44th)         | 2 (14th - 44th)        |
| AP English Literature and Composition          | 2 (8th - 22nd)          | 2 (8th - 22nd)          | 2 (8th - 22nd)         |
| AP Environmental Science                       | 5 (91st - 100th)        | 5 (91st - 100th)        | 5 (91st - 100th)       |
| AP Macroeconomics                              | 5 (84th - 100th)        | 5 (84th - 100th)        | 2 (33rd - 48th)        |
| AP Microeconomics                              | 5 (82nd - 100th)        | 4 (60th - 82nd)         | 4 (60th - 82nd)        |
| AP Physics 2                                   | 4 (66th - 84th)         | 4 (66th - 84th)         | 3 (30th - 66th)        |
| AP Psychology                                  | 5 (83rd - 100th)        | 5 (83rd - 100th)        | 5 (83rd - 100th)       |
| AP Statistics                                  | 5 (85th - 100th)        | 5 (85th - 100th)        | 3 (40th - 63rd)        |
| AP US Government                               | 5 (88th - 100th)        | 5 (88th - 100th)        | 4 (77th - 88th)        |
| AP US History                                  | 5 (89th - 100th)        | 4 (74th - 89th)         | 4 (74th - 89th)        |
| AP World History                               | 4 (65th - 87th)         | 4 (65th - 87th)         | 4 (65th - 87th)        |
| AMC 10 <sup>3</sup>                            | 30 / 150 (6th - 12th)   | 36 / 150 (10th - 19th)  | 36 / 150 (10th - 19th  |
| AMC 12 <sup>3</sup>                            | 60 / 150 (45th - 66th)  | 48 / 150 (19th - 40th)  | 30 / 150 (4th - 8th)   |
| Introductory Sommelier (theory knowledge)      | 92 %                    | 92 %                    | 80 %                   |
| Certified Sommelier (theory knowledge)         | 86 %                    | 86 %                    | 58 %                   |
| Advanced Sommelier (theory knowledge)          | 77 %                    | 77 %                    | 46 %                   |
| Leetcode (easy)                                | 31/41                   | 31 / 41                 | 12/41                  |
| Leetcode (medium)                              | 21 / 80                 | 21 / 80                 | 8 / 80                 |
| Leetcode (hard)                                | 3 / 45                  | 3 / 45                  | 0 / 45                 |

Table 1. GPT performance on academic and professional exams. In each case, we simulate the conditions and scoring of the real exam. We report GPT-4's final score graded according to examsectife rubrics, as well as the percentile of test-takers achieving GPT-4's score.

GPT4 technical report, OpenAI, March 2023

# What about ChatGPT / Foundation Models / ... buzzwords?



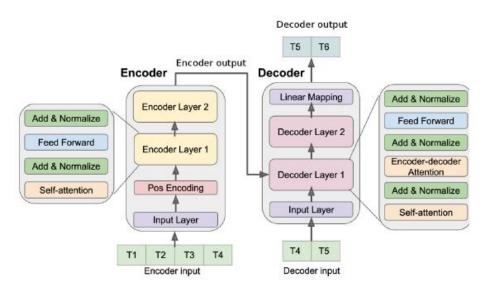
(C) D. Batra, Z. Kira, D. Xu

## Homogenization of Deep Learning

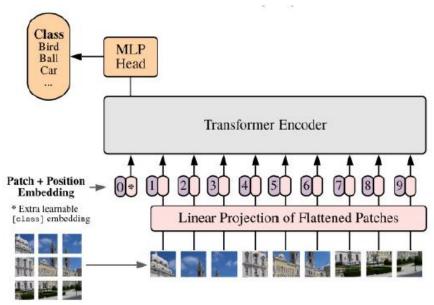
Homogenization is the **consolidation** of methodologies for building machine learning systems across a wide range of applications.

- Enabled by modular, plug-n-play nature of neural networks and training
- Consequence: Multi-modal, unified architectures, unified tasks (next-token prediction)

**Example**: The Transformer Models (Vaswani et al., 2017)



Transformer Models originally designed for NLP



Almost identical model (Visual Transformers) can be applied to Computer Vision tasks

#### Emergence of new behaviors

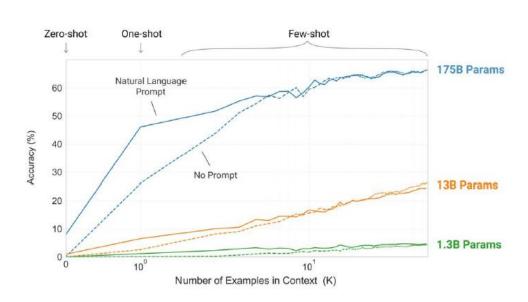
**Emergence** means that the behavior of a system is implicitly induced rather than explicitly constructed. For Deep Learning, emergence is often induced by larger model & more data.

**Example**: Compared to GPT-2's 1.5B parameter parameter model, GPT-3's 175-billion model permits "prompting" and "incontext learning", i.e., adapting to a new task simply by describing task.

Example input (prompt):

Ask it to translate French to English

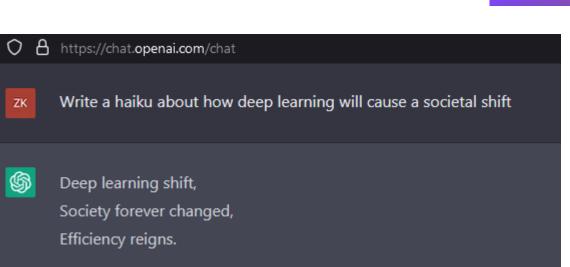
$$\underbrace{\mathsf{maison} \to \mathsf{house}, \, \mathsf{chat} \to \mathsf{cat}, \, \mathsf{chien} \to}_{\mathsf{prompt}} \underbrace{\mathsf{dog}}_{\mathsf{completion}}.$$



# Societal Change is Coming

 GitHub Copilot, ChatGPT, etc. are now useful enough to speed up higher-level human work!







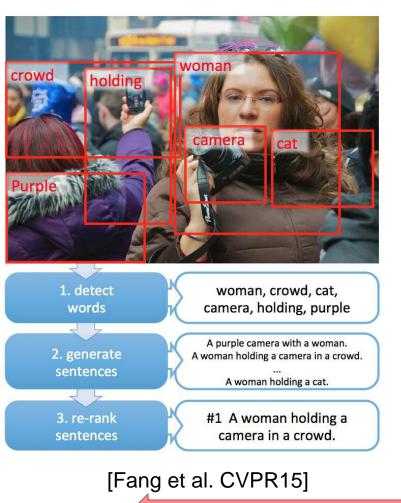
https://gamefromscratch.com/dall-e-vs-stable-diffusion-vs-midjour

But likely will not be as crazy fast or much as the hype suggests

- Problem#1: Lack of a formal understanding
  - Non-Convex! Non-Convex! Non-Convex!
    - Depth>=3: most losses non-convex in parameters
  - Worse still, existing intuitions from classical statistical learning theory don't seem to carry over.
  - Theoretically, we are stumbling in the dark here
- Standard response #1
  - "Yes, but this just means there's new theory to be constructed"
  - "All interesting learning problems are non-convex"
    - · For example, human learning
      - Order matters → wave hands → non-convexity
- Standard response #2
  - "Yes, but it often works!"

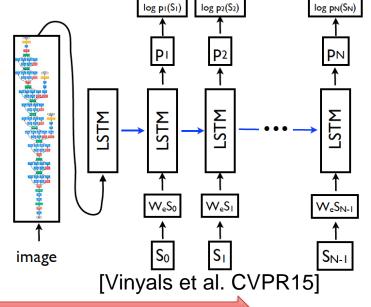
- Problem#2: Lack of interpretability
  - Hard to track down what's failing
  - Pipeline systems have expected performances at each step
  - In end-to-end systems, it's hard to know why things are not working

Problem#2: Lack of interpretability



(C) D. Batra, Z. Kira, D. Xu





#### Problem#2: Lack of interpretability

- Hard to track down what's failing
- Pipeline systems have "oracle" performances at each step
- In end-to-end systems, it's hard to know why things are not working

#### Standard response #1

- Tricks of the trade: visualize features, add losses at different layers, pre-train to avoid degenerate initializations...
- "We're working on it"

#### Standard response #2

– "Yes, but it often works!"

- Problem#3: Lack of easy reproducibility
  - Direct consequence of stochasticity & non-convexity
    - different initializations → different local minima
    - Almost everything matters! (hyper-parameters, small design decisions, etc.)
  - More recently: Privatization of unknown models trained on unknown data
- Standard response #1
  - It's getting much better
  - Standard toolkits/libraries/frameworks now available
  - PyTorch, TensorFlow, MxNet...
- Standard response #2
  - "Yes, but it often works!"

# Problems with Deep Learning

- Problem#4: Still not robust to out-of-distribution data
  - Even training on "entire internet" just bypasses this:
    - For domains you care about it may still not generalize well
    - Domains that dominate the data will dominate performance profile
- Lots of research into this, but lack of formal understanding hinders this
  - Most ML theory deals with i.i.d. train/test case, or some simplified model of shift

# Consequences

- As a consequence, general issue of safety and correctness
  - No explicit reasoning or logical mechanisms

### Example:

- Tesla crashes
- Language models hallucinating

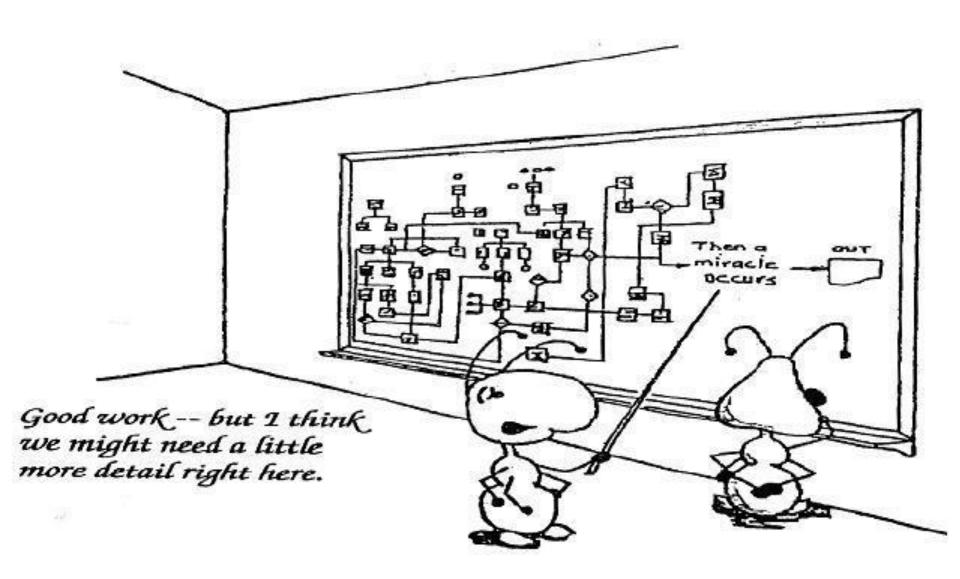
#### What awards did Zsolt Kira win?

Dr. Zsolt Kira has won several awards including the Outstantind Online Teaching Assistant of the Year Award in February 2022 [1], best paper awards at ICRA, ICASSP, and AAAI, and the Best Student Paper Award at ICRA 2020. He has also been a recipient of the National Science Foundation CAREER Award in 2020.

 Zsolt Kira - Home https://www.cc.gatech.edu/~zk15/

https://you.com/search?q=who+are+you&tbm=youchat

# Yes it works, but how?



# Outline

- What is Deep Learning, the field, about?
  - Highlight of some recent projects from my lab
- What is this class about?
  - What to expect?
  - Logistics
- FAQ

# Outline

- What is Deep Learning, the field, about?
  - Highlight of some recent projects from my lab
- What is this class about?
  - What to expect?
  - Logistics
- FAQ

## What is this class about?

Introduction to Deep Learning

### Goal:

- After finishing this class, you should be ready to get started on your first DL research project.
  - CNNs (Image data)
  - RNNs / Transformers (sequential/graph data)
  - Deep Reinforcement Learning (decision-making)
  - Generative Models (VAEs, Diffusion Models, GANs) (unsupervised learning)

- Target Audience:
  - Senior undergrads, MS-ML, and new PhD students

## What this class is NOT

- NOT the target audience:
  - Students without sufficient background knowledge (Python, linear algebra, calculus, basic probability & statistics)
  - Advanced grad-students already working in ML/DL areas
  - People looking for an in-depth understanding of a research area that uses deep learning (3D Vision, Large Language
  - Models, Deep RL, etc.).
- NOT the goal:
  - Intro to Machine Learning
  - Teaching a toolkit. "Intro to TensorFlow/PyTorch"

## Caveat

- This is an ADVANCED Machine Learning class
  - This should NOT be your first introduction to ML
  - You will need a formal class; not just self-reading/coursera
  - If you took CS 7641/ISYE 6740/CSE 6740 @GT, you're in the right place
  - If you took an equivalent class elsewhere, see list of topics taught in CS 7641 to be sure.

# Prerequisites

- Python programming
  - Basic knowledge of numerical computation & tools (e.g. numpy)
  - HW1 (pure python), HW2 (python + PyTorch), HW3+4 (PyTorch)
  - Your language of choice for project
- Intro Machine Learning
  - Classifiers, regressors, loss functions, MLE, MAP
- Linear Algebra
  - Matrix multiplication, eigenvalues, positive semi-definiteness...
- Calculus
  - Multi-variate gradients, hessians, jacobians...
- Must read (on W3 reading list): <u>Matrix calculus for deep learning</u>
  - https://explained.ai/matrix-calculus/index.html

## Course Information

- Instructor: Zsolt Kira
  - [censored]@gatech.edu (use piazza public/private instead!)



Associate Professor
Associate Director, ML@GT

# TAs

Wei Zhou (Head TA)

**Elias Cho** 

Cari He

**David He** 

Sriharsha Kocherla

**Pratham R Mehta** 

**Ayush Patel** 

Sri Prakash

**Aryan Sarswat** 

**Woo Chul Shin** 

**Neelabh Sinha** 

**Haotian Xue** 

## Office Hours

- TA Office Hours:
  - Virtual over zoom
  - Check course website for OH slots and zoom links
  - Start next week

- Zsolt's Office Hours:
  - Virtual over Zoom
  - No assignment (PS/HW) questions
  - Lecture content / project ideas / administrative / career advice, ...

# Organization & Deliverables

- 4 problem-sets+homeworks (72%)
  - Mix of theory (PS) and implementation (HW)
  - First one goes out next week
    - Start early, Start early
- Final project (28%)
  - Projects done, recommended in groups of 3-4
  - You need a good reason to do a solo project
  - Mid-semester project proposal before project period starts
  - Find a team ASAP! Talk to people, use Piazza "find a teammate" post
- (Bonus) Class Participation (1%)
  - Top (endorsed) contributors on Piazza

# Plenty of "buffer" built in

- Grace period
  - 2 days grace period
    - Intended for checking submission NOT to replace due date
    - No need to ask for grace, no penalty for turning it in within grace period
    - Can NOT use for PS0/HW0
  - After grace period, you get a 0 (no excuses except medical)
    - Send all medical requests to dean of students (<a href="https://studentlife.gatech.edu/">https://studentlife.gatech.edu/</a>)
    - Form: <a href="https://gatech-advocate.symplicity.com/care\_report/index.php/pid224342?">https://gatech-advocate.symplicity.com/care\_report/index.php/pid224342?</a>
  - DO NOT SEND US ANY MEDICAL INFORMATION! We do not need any details, just a confirmation from dean of students

## GT Resources for Mental Health

#### Georgia Tech Police Department

Emergency: Call 911 | 404-894-2500

#### **Dean of Students Office**

404-894-2565 | studentlife.gatech.edu Afterhours Assistance Line & Dean on Call: 404-894-2204

## Center for Assessment, Referral and Education (CARE)

404-894-3498 | care.gatech.edu

### Collegiate Recovery Program

404-894-2575 | counseling.gatech.edu

### **Counseling Center**

404-894-2575 | counseling.gatech.edu

#### **Health Initiatives**

404-894-9980 healthinitiatives.gatech. edu

#### LGBTQIA Resource Center

404-385-4780 | Igtbqia.gatech.edu

#### **Stamps Psychiatry Center**

404-894-1420

#### VOICE

404-385-4464 | 404-385-4451 24/7 Info Line: 404-894-9000 | voice.gatech.edu

#### Women's Resource Center

404-385-0230 | womenscenter.gatech.edu

#### **Veterans Resource Center**

404-894-4953 | veterans.gatech.edu

### Georgia Crisis and Access Line 1-800-715-4225

The crisis line is staffed with professional social workers and counselors 24 hours per day, every day, to assist those with

urgent and emergency needs.

#### **Trevor Project**

1-866-488-7386

Trained counselors are available to support anyone in need.

#### **National Suicide Prevention Hotline**

1-800-273-8255

A national network of local crisis centers that provides free and confidential emotional support to people in suicidal crisis or emotional distress 24/7.

### Georgia State Psychology Clinic

404-413-2500

The clinic offers high quality and affordable psychological services to adults, children, adolescents, families and couples from the greater Atlanta area.

## PS<sub>0</sub>

- Out already; due Sunday Jan 12<sup>th</sup> (no grace period)
  - Available on class webpage + Canvas
  - If not registered yet (on waitlist), see webpage FAQ for form to request gradescope access

### Grading

- Not counted towards your final grade, but required
- <=75% means that you might not be prepared for the class</p>
- We may not be able to grade before registration ends if submit later than Thursday morning

### Topics

PS: probability, calculus, convexity, proving things

# Project

### Goal

- Chance to try Deep Learning
- Encouraged to apply to your research (computer vision, NLP, robotics,...)
- Must be done this semester.
- Can combine with other classes, but separate thrust
  - get permission from both instructors; delineate different parts
- 2-4 members (outside of this requires approval)

### Main categories

- Application/Survey
  - Compare a bunch of existing algorithms on a new application domain of your interest
- Formulation/Development
  - Formulate a new model or algorithm for a new or old problem
- Theory
  - · Theoretically analyze an existing algorithm

# Computing

- Major bottleneck
  - GPUs
- Options
  - Your own / group / advisor's resources
  - Google Colab
    - jupyter-notebook + free GPU instance
  - PACE-ICE
  - Google Cloud credits (details TBA)
    - Tutorial on setting up gloud: <a href="https://github.com/cs231n/gcloud">https://github.com/cs231n/gcloud</a>

# Outline

- What is Deep Learning, the field, about?
  - Highlight of some recent projects from my lab
- What is this class about?
  - What to expect?
  - Logistics
- FAQ

## 4644 vs 7643

- Level differentiation
- HWs
  - Extra credit questions for 4644 students, necessary for 7643
- Project
  - Higher expectations from 7643
- Different grade cutoffs

## Waitlist / Audit / Sit in

### Waitlist

- Waitlist are mostly full. Class size will likely increase closer to room size
- Do PS0/HW0 NOW. Come to first few classes.
- Hope people drop.
- "I need this class to graduate"
  - Talk to your degree program advisor. They control the process of making sure you have options to graduate on time.
- Audit or Pass/Fail
  - No. We will give preference to people taking class for credit.
- Sitting in
  - Welcome to if space allows

# What is the re-grading policy?

- Homework assignments
  - Within 1 week of receiving grades: see the TAs

- This is an advanced grad class.
  - The goal is understanding the material and making progress towards our research.

# What is the collaboration policy?

### Collaboration

- Only on HWs and project (not allowed in PS0/HW0).
- You may discuss the questions
- Each student writes their own answers
- Write on your homework anyone with whom you collaborate
- Each student must write their own code for the programming part

### Zero tolerance on plagiarism

- Neither ethical nor in your best interest
- Always credit your sources
- Don't cheat. We will find out.

# Deep Learning is So Good..

- That I had to put this slide in
- Our policy on ChatGPT/Co-Pilot/etc. is on the webpage
- tldr; treat it like a human collaborator you can talk to it, learn from it, but never directly copy from it

# How do I get in touch?

- Primary means of communication -- Piazza
  - No direct emails to Instructor unless private information
  - Instructor/TAs can provide answers to everyone on forum
  - Class participation credit for answering questions!
  - No posting answers. We will monitor.
  - Stay respectful and professional

## Research

- "Can I work with your group for funding/credits/neither?"
  - Fill out this form

# Todo

- PS0
  - Due: Jan 12th 11:59pm (no grace period)

## Welcome

