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Topics:

• Reinforcement Learning Part 2

• Q-Learning

• Deep Q-Learning

• Policy Gradient



Machine Learning Applications

Admin

• HW4 – into the grace period!



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Figure Credit: Rich Sutton



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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Summary of Last Time

Definition of optimal policy 

What we want

A policy 

Some intermediate concepts and terms

A Value function (how good is a state?)

A Q-Value function (how good is a state-action pair?)

We can then derive the Bellman Equation

(Math in previous 
lecture)

This must hold true for an optimal Q-Value!
   -> Leads to dynamic programming algorithm to find it

Equalities relating optimal quantities



⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations



Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration



0             0             0

2             1             0

3.5          2.5          0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu



https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html


Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over 

actions as well as states



For Value Iteration:

 Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size 

16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration



Value Iteration

⬣ Bellman update to state value 

estimates

Q-Value Iteration

⬣ Bellman update to (state, 

action) value estimates

Summary: MDP Algorithms



Reinforcement 

Learning, 

Deep RL



⬣ Recall RL assumptions:

⬣        unknown, how actions affect the environment.

⬣         unknown, what/when are the good actions?

⬣ But, we can learn by trial and error.

⬣ Gather experience (data) by performing actions.

⬣ Sampling from the transition function(!), have reward -> Everything you need!

⬣ Approximate unknown quantities from data.

Learning Based Methods: RL

Reinforcement Learning



⬣ Old Dynamic Programming Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

⬣ RL Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Learning Based Methods: RL

Slide credit: Dhruv Batra 

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html


Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost!  But we can’t 
rewind time to get 

sample after sample from 
state s.

Why does this work 
without knowing T?

What is a practical 
difficulty?



Temporal Difference Learning

• Big idea: learn from every experience!
– Update V(s) each time we experience a transition (s, a, s’, r)

– Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
– Policy can be fixed, just doing evaluation!

– Move values toward value of whatever successor occurs: running average

(s)

s

s, 
(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a) 

– So keep a running average

Slide Credit: http://ai.berkeley.edu



Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:

– You have to explore enough

– You have to eventually make the learning rate

 small enough

– … but not decrease it too quickly

– Basically, in the limit, it doesn’t matter how you select actions (!)

Slide Credit: http://ai.berkeley.edu



Deep 

Q-Learning



Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states from experience

– Generalize that experience to new, similar situations

– This is the fundamental idea in machine learning!

[demo – RL pacman]

Slide Credit: http://ai.berkeley.edu



Example: Pacman

Let’s say we 
discover through 

experience that this 
state is bad:

In naïve q-learning, 
we know nothing 
about this state:

Or even this one!

Slide Credit: http://ai.berkeley.edu



Feature-Based Representations

• Solution: describe a state using a vector of features (properties)
– Features are functions from states to real numbers (often 0/1) that capture important properties of the state
– Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Slide Credit: http://ai.berkeley.edu



Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but can actually be very different in value!

Slide Credit: http://ai.berkeley.edu



⬣ State space is too large and complicated for feature engineering though!

⬣ Recall: Value iteration not scalable (chess, RGB images as state space, etc)

⬣ Solution: Deep Learning!     … more precisely, function approximation.

⬣ Use deep neural networks to learn state representations

⬣ Useful for continuous action spaces as well

Learning Based Methods: Deep RL

Deep Reinforcement Learning



⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating          with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy        with a parametrized policy 

⬣ Model-based RL

⬣ Approximate transition function       and reward function  

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories



⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson, 

Serena Yeung, CS 231n



⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value



⬣ Minibatch of 

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

What is a challenge for using two 
different Q networks that change?



⬣ In practice, for stability:

⬣ Freeze              and update                parameters   

⬣ Set                    at regular intervals

Deep Q-Learning



Deep Q-Learning

How to gather experience?

This is why RL is hard



How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data



⬣ What should           be? 

⬣ Greedy? -> Local minimas, no exploration

⬣ An exploration strategy:

⬣  

Exploration Problem



⬣ Samples are correlated => high variance gradients => inefficient learning 

⬣ Current Q-network parameters determines next training samples => can lead 

to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be 

dominated by samples going right, may fall into local minima

Correlated Data Problem

R=10 R=1



⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions 

➢ Continually update replay buffer as game (experience) episodes are 

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay 

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay



Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay



Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Thus far, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Now:

⬣ Policy-based RL algorithms (policy gradients)

Summary



Policy 

Gradients, 

Actor-Critic



Overview



⬣ Class of policies defined by parameters

⬣ Eg:     can be parameters of linear transformation, deep network, etc. 

⬣ Want to maximize:

⬣ In other words, 

Parametrized Policy



Pong from Pixels



Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/



⬣ Slightly re-writing the notation

  Let              denote a trajectory

Gathering Data/Experience



⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories                 by acting according to 

Gathering Data/Experience



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

The REINFORCE Algorithm

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

Slide credit: Sergey Levine

?



Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient



Deriving The Policy Gradient

Doesn’t depend on 
Transition probabilities!

Continuous Action Space?



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

The REINFORCE Algorithm

Slide credit: Sergey Levine



Drawbacks of Policy Gradients

Slide credit: Dhruv Batra



Issues with Policy Gradients

• Credit assignment is hard! 

– Which specific action led to increase in reward

– Suffers from high variance → leading to unstable training

• Next time: How to fix these issues 
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