
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:

• Reinforcement Learning Part 2

• Q-Learning

• Deep Q-Learning

• Policy Gradient

Machine Learning Applications

Admin

• HW4 – into the grace period!

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Figure Credit: Rich Sutton

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Summary of Last Time

Definition of optimal policy

What we want

A policy

Some intermediate concepts and terms

A Value function (how good is a state?)

A Q-Value function (how good is a state-action pair?)

We can then derive the Bellman Equation

(Math in previous
lecture)

This must hold true for an optimal Q-Value!
 -> Leads to dynamic programming algorithm to find it

Equalities relating optimal quantities

⬣ Equations relating optimal quantities

⬣ Recursive Bellman optimality equation

Bellman Optimality Equations

Based on the bellman optimality equation

Algorithm

Initialize values of all states

While not converged:

For each state:

Repeat until convergence (no change in values)

Value Iteration

Time complexity per iteration

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Racing Search Tree

Slide Credit: http://ai.berkeley.edu

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

Value Iteration Update:

Q-Iteration Update:

Q-Iteration

The algorithm is same as value iteration, but it loops over

actions as well as states

For Value Iteration:

 Theorem: will converge to unique optimal values
Basic idea: approximations get refined towards optimal values
Policy may converge long before values do

Feasible for:

⬣ 3x4 Grid world?

⬣ Chess/Go?

⬣ Atari Games with integer image pixel values [0, 255] of size

16x16 as state?

State Spaces & Time Complexity

Time complexity per iteration

Value Iteration

⬣ Bellman update to state value

estimates

Q-Value Iteration

⬣ Bellman update to (state,

action) value estimates

Summary: MDP Algorithms

Reinforcement

Learning,

Deep RL

⬣ Recall RL assumptions:

⬣ unknown, how actions affect the environment.

⬣ unknown, what/when are the good actions?

⬣ But, we can learn by trial and error.

⬣ Gather experience (data) by performing actions.

⬣ Sampling from the transition function(!), have reward -> Everything you need!

⬣ Approximate unknown quantities from data.

Learning Based Methods: RL

Reinforcement Learning

⬣ Old Dynamic Programming Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html

⬣ RL Demo

⬣ https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Learning Based Methods: RL

Slide credit: Dhruv Batra

https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_dp.html
https://cs.stanford.edu/people/karpathy/reinforcejs/gridworld_td.html

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

• Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1

'
s2

'
s3

'

s, (s),s’

s
'

Almost! But we can’t
rewind time to get

sample after sample from
state s.

Why does this work
without knowing T?

What is a practical
difficulty?

Temporal Difference Learning

• Big idea: learn from every experience!
– Update V(s) each time we experience a transition (s, a, s’, r)

– Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
– Policy can be fixed, just doing evaluation!

– Move values toward value of whatever successor occurs: running average

(s)

s

s,
(s)

s’

Sample of V(s):

Update to V(s):

Same update:

Q-Learning

• We’d like to do Q-value updates to each Q-state:

– But can’t compute this update without knowing T, R

• Instead, compute average as we go
– Receive a sample transition (s,a,r,s’)

– This sample suggests

– But we want to average over results from (s,a)

– So keep a running average

Slide Credit: http://ai.berkeley.edu

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:

– You have to explore enough

– You have to eventually make the learning rate

 small enough

– … but not decrease it too quickly

– Basically, in the limit, it doesn’t matter how you select actions (!)

Slide Credit: http://ai.berkeley.edu

Deep

Q-Learning

Generalizing Across States

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about every single state!
– Too many states to visit them all in training

– Too many states to hold the q-tables in memory

• Instead, we want to generalize:
– Learn about some small number of training states from experience

– Generalize that experience to new, similar situations

– This is the fundamental idea in machine learning!

[demo – RL pacman]

Slide Credit: http://ai.berkeley.edu

Example: Pacman

Let’s say we
discover through

experience that this
state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Slide Credit: http://ai.berkeley.edu

Feature-Based Representations

• Solution: describe a state using a vector of features (properties)
– Features are functions from states to real numbers (often 0/1) that capture important properties of the state
– Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

– Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Slide Credit: http://ai.berkeley.edu

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but can actually be very different in value!

Slide Credit: http://ai.berkeley.edu

⬣ State space is too large and complicated for feature engineering though!

⬣ Recall: Value iteration not scalable (chess, RGB images as state space, etc)

⬣ Solution: Deep Learning! … more precisely, function approximation.

⬣ Use deep neural networks to learn state representations

⬣ Useful for continuous action spaces as well

Learning Based Methods: Deep RL

Deep Reinforcement Learning

⬣ Value-based RL

⬣ (Deep) Q-Learning, approximating with a deep Q-network

⬣ Policy-based RL

⬣ Directly approximate optimal policy with a parametrized policy

⬣ Model-based RL

⬣ Approximate transition function and reward function

⬣ Plan by looking ahead in the (approx.) future!

Deep RL: Algorithm Categories

⬣ Q-Learning with linear function approximators

⬣ Has some theoretical guarantees

⬣ Deep Q-Learning: Fit a deep Q-Network

⬣ Works well in practice

⬣ Q-Network can take RGB images

Deep Q-Learning

Image Credits: Fei-Fei Li, Justin Johnson,

Serena Yeung, CS 231n

⬣ Assume we have collected a dataset:

⬣ We want a Q-function that satisfies bellman optimality (Q-value)

⬣ Loss for a single data point:

Deep Q-Learning

Target Q-ValuePredicted Q-Value

⬣ Minibatch of

⬣ Forward pass:

⬣ Compute loss:

⬣ Backward pass:

Deep Q-Learning

State Q-Network Q-Values per action

State

Q-Network

What is a challenge for using two
different Q networks that change?

⬣ In practice, for stability:

⬣ Freeze and update parameters

⬣ Set at regular intervals

Deep Q-Learning

Deep Q-Learning

How to gather experience?

This is why RL is hard

How to gather experience?

Environment Data

Update

Train

Challenge 1: Exploration vs Exploitation

Challenge 2: Non iid, highly correlated data

⬣ What should be?

⬣ Greedy? -> Local minimas, no exploration

⬣ An exploration strategy:

⬣

Exploration Problem

⬣ Samples are correlated => high variance gradients => inefficient learning

⬣ Current Q-network parameters determines next training samples => can lead

to bad feedback loops

⬣ e.g. if maximizing action is to move right, training samples will be

dominated by samples going right, may fall into local minima

Correlated Data Problem

R=10 R=1

⬣ Correlated data: addressed by using experience replay

➢ A replay buffer stores transitions

➢ Continually update replay buffer as game (experience) episodes are

played, older samples discarded

➢ Train Q-network on random minibatches of transitions from the replay

memory, instead of consecutive samples

⬣ Larger the buffer, lower the correlation

Experience Replay

Deep Q-Learning Algorithm

Epsilon-greedy

Q Update

Experience Replay

Case study: Playing Atari Games

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Case study: Playing Atari Games

Atari Games

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Thus far, we looked at

⬣ Dynamic Programming

⬣ Value, Q-Value Iteration

⬣ Reinforcement Learning (RL)

⬣ The challenges of (deep) learning based methods

⬣ Value-based RL algorithms

⬣ Deep Q-Learning

Now:

⬣ Policy-based RL algorithms (policy gradients)

Summary

Policy

Gradients,

Actor-Critic

Overview

⬣ Class of policies defined by parameters

⬣ Eg: can be parameters of linear transformation, deep network, etc.

⬣ Want to maximize:

⬣ In other words,

Parametrized Policy

Pong from Pixels

Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/

⬣ Slightly re-writing the notation

 Let denote a trajectory

Gathering Data/Experience

⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories by acting according to

Gathering Data/Experience

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

The REINFORCE Algorithm

Run the policy and
sample trajectories

Compute policy
gradient

Update policy

Slide credit: Sergey Levine

?

Deriving The Policy Gradient

Expectation as integral

Exchange integral and gradient

Deriving The Policy Gradient

Doesn’t depend on
Transition probabilities!

Continuous Action Space?

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

Run the policy and
sample trajectories

Compute policy
gradient

Update policy

The REINFORCE Algorithm

Slide credit: Sergey Levine

Drawbacks of Policy Gradients

Slide credit: Dhruv Batra

Issues with Policy Gradients

• Credit assignment is hard!

– Which specific action led to increase in reward

– Suffers from high variance → leading to unstable training

• Next time: How to fix these issues

	Slide 1: CS 4803-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: Sample-Based Policy Evaluation?
	Slide 18: Temporal Difference Learning
	Slide 19: Q-Learning
	Slide 20: Q-Learning Properties
	Slide 21
	Slide 22: Generalizing Across States
	Slide 23: Example: Pacman
	Slide 24: Feature-Based Representations
	Slide 25: Linear Value Functions
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: Issues with Policy Gradients

