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Some Problems Require More Computation at Test Time

You cannot one-shot everything.

e Challenging problems (e.g. IMO) may require
exploring multiple approaches to the problem.
e Even simple problems (e.g. countdown game)

may fundamentally require search.

User: Using the numbers [19, 36, 55, 7], create an equation that equals 65.
Assistant: Let me solve this step by step.

<answer> 55 + 36 - 7 - 19 </answer>



Analogy to Cognitive Science
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e They can instantly output a coherent essay or S b eonecions Cansclons

a rhyming poem.

e How can we get LMs to think for longer on el Sral

more challenging problems, like humans do? “m
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Classical Scaling Laws

For a long time, we could only scale parameters.

e The more parameters/pretraining compute, the better
your next-token prediction ability gets.

e This ability improves predictably with scale.
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Scaling on Downstream Tasks

o
©

Normalized Exact Match
o
N

o
<)

o
o

e
ES

Word Unscramble
y = sigmoid(2.00x - 6.11)

MSE¢ain = 1.3e-04
MSEtest = 4.0e-03

-1 0 1 2 3 4
Logio(Llama-2-Equiv. FLOPs (1E21))

0.6
>

[9)
© 0.51

V]

Qo3

© 0.2
=

S 0.1+
=2

0.0

O 0.44
<<

Persian QA
y = sigmoid(2.32x - 8.43)

MSEain = 1.8e-04
MSE¢est = 3.2e-03

e
1 2 3 4
Logio(Llama-2-Equiv. FLOPs (1E21))

S
o ® o

o

Normalized Accuracy
Y

°
N

o
o

3-Digit Substraction

2-Digit Multiplication

y = sigmoid(2.22x - 4.45)
a 10 MSE;rsin = 2.8e-03 "‘*"\ Az
© MSE¢est = 9.9e-03 A
5 0.81
|9}
<
e 0.6
Q
N
o 0.41
IS
S
202
AC(od 0.01 . .
0 1 2 3 4 3 4

Logio(Llama-2-Equiv. FLOPs (1E21))

Logig(Llama-2-Equiv. FLOPs (1E21))
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Scaling pre-training yields predictable improvements on many downstream tasks.



Scaling on Downstream Tasks
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Scaling on Downstream Tasks
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Some downstream tasks scale much more slowly than we would like.



Historical Lesson: Test-Time Search Can Improve Scaling

logio(test) = -1.2 - logio(train) + 0.004 - elo + 29
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Test-Time Scaling with LLMs
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Pre-Training vs Test-Time Scaling

e s test-time scaling a good use of compute?
e \Would we see larger gains from spending compute doing pre-training
instead?
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When can Test-time Compute Outperform Pretraining?
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Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.
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Our Work: Compute-Optimal Scaling
We select the best test-time compute configuration for a given problem and test-time budget.

Q;,y*(q)(N ) = argmax, (EyNTarget(H,N,Q) [1y:y*(q)}) )

In practice: we select algorithm configurations, such as which search algorithm to use, and use
question difficulty as a sufficient statistic to represent the question, instead of specializing the

algorithm to each question.



Compute-Optimal Scaling with Question Difficulty

e  We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

| Generate N full solutions,
selecting the best one with the |
rifier

o  For a given difficulty level, select the best performing

Question

hyperparameters.




Compute-Optimal Scaling with Question Difficulty

e  We use question difficulty as a sufficient statistic for practically
estimating compute optimal scaling.
o  For a given difficulty level, select the best performing
hyperparameters.
e  Oracle difficulty
o  Sample 2048 outputs per question and bin questions into 5

quantiles by how many of the samples were correct.

Question

| Generate N full solutions,
selecting the best one with the |
rifier



Compute-Optimal Scaling with Question Difficulty

e  We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

Generate N full solutions,
the best one with the |

o  For a given difficulty level, select the best performing Sueston
hyperparameters.
e  Oracle difficulty
o  Sample 2048 outputs per question and bin questions into 5
quantiles by how many of the samples were correct.

e  Predicted difficulty

o Do the same thing but use a verifier’s predicted

correctness score instead of ground truth correctness

information.



Two Basic Approaches to Scaling Test-Time Compute
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Searching Against a Verifier Revising Answers lteratively

Parallel Sampling
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Scaling Test-time Compute With Verifiers
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Scaling Test-time Compute With Verifiers
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Scaling Test-time Compute With Verifiers
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Training a Process Based Verifier

e We learn a PRM, which is a verifier that scores each step in a solution.

o  Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
o We instead follow the approach from MathShepard [wang et al. 2024] to learn a value

function.



Training a Process Based Verifier

e We learn a PRM, which is a verifier that scores each step in a solution.

o  Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
o We instead follow the approach from MathShepard [wang et al. 2024] to learn a value

function.

® Rollout N times from each step in the solution, get the correctness rate of the rollouts

® Train the PRM on these MC rollout targets



Comparing Search Methods

e Beam search performs best at small budgets.

Comparing PRM Search Methods

'
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e At large budgets, Best-of-N performs similarly

to beam search. i <S
e Lookahead generally underperforms due to the R

high cost of the lookahead rollouts. §
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Performance Breakdown by Question Difficulty

Comparing Beam Search and Best-of-N by Difficulty Level

e On easy questions, beam-search shows some
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Compute Optimal Search

Compute Optimal Search
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By selecting the best performing search algorithm at each difficulty level, we can

nearly outperform best-of-N using up to 4x less test-time compute.



Takeaways for Scaling Test-time Compute With Verifiers

e The efficacy of a search method depends on the budget and the question.
e Beam search is more effective on harder questions and at lower budgets.
e Best-of-N is more effective on easier questions and at higher budgets.

e By selecting the best setting for each question, we can nearly outperform

best-of-N using up to 4x less test-time compute.



Scaling Test-time Compute With Revisions

Parallel Sampling
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Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

Procedure:

1. Sample N solutions to a question from the
base LM.

2. Create a chain of incorrect answers .{
followed by a correct answer. E

3. Finetune the model to generate the correct

answer conditioned on the chain.
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Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

Procedure:

1. Sample N solutions to a question from the
base LM.

2. Create a chain of incorrect answers
followed by a correct answer.

3. Finetune the model to generate the correct

answer conditioned on the chain.
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Using a Verifier with the Revision Model

Sometimes the model will “revise” a

correct answer into an incorrect one.

To correct for this, we:

O

O

sample N outputs in sequence

use a verifier to select the most likely

correct answer from the chain
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Comparing Sequential and Parallel Sampling

Revision Model Parallel Verses Sequential
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Sampling N outputs in sequence from the model outperforms sampling N in parallel.



Comparing Sequential and Parallel Sampling

Varying Sequential/Parallel with Verifier
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In some cases there is an ideal ratio of sequential to parallel test-time compute.



Comparing Sequential and Parallel Sampling

Revisions@128, Varying the Sequential to Parallel Ratio
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This ideal ratio also depends on the difficulty of the question at hand.



Scaling Test-time Compute With Revisions

Compute Optimal Revisions
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By selecting the best performing ratio at each difficulty level, we can outperform parallel

sampling using up to 4x less test-time compute.



Takeaways for Scaling Test-time Compute With Revisions

e There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.
standard best-of-N) test-time computation.

e The ideal ratio depends on the compute budget and the question at hand.

e Easier questions benefit more from sequential revisions.

e Harder questions perform best with an ideal ratio of sequential and parallel.

e By optimally selecting the ideal ratio, we can outperform parallel sampling

using up to 4x less test-time compute.



Exchanging Test-time and Pretraining Compute

longer responses, “more thinking”, self-correction, etc.
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Can scaling test-time compute be more effective than scaling parameters?
e Depends on the number of inference queries we are expecting.
e [f serving to many users, then extra test-time compute will cost a lot.

e |[f running few inferences, then we can afford more test-time compute.



Exchanging Test-time and Pretraining Compute

Comparing Test-time and Pretraining Compute
Revisions PRM Search
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On easy/medium difficulty questions, or in settings with low inference

requirements, scaling test-time compute can be preferable to scaling parameters.



Takeaways/Discussion

Using fairly simple methodology we find that scaling LLM test-time compute
can greatly improve performance, and in some cases it can outperform

scaling parameters.



Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling
test-time compute.
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Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling
test-time compute.

2. Conduct additional analysis. E.g. how does the scale of finetuning impact
test-time scaling?
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