
Scaling LLM Test-Time Compute Optimally Can
be More Effective than Scaling Model Parameters

Charlie Snell Jaehoon Lee Kelvin Xu Aviral Kumar

Some Problems Require More Computation at Test Time

You cannot one-shot everything.

● Challenging problems (e.g. IMO) may require

exploring multiple approaches to the problem.

● Even simple problems (e.g. countdown game)

may fundamentally require search.

Analogy to Cognitive Science

Current LMs are a very strong system 1.

● They can instantly output a coherent essay or

a rhyming poem.

● How can we get LMs to think for longer on

more challenging problems, like humans do?

Classical Scaling Laws

For a long time, we could only scale parameters.

● The more parameters/pretraining compute, the better

your next-token prediction ability gets.

● This ability improves predictably with scale.

Scaling on Downstream Tasks

Scaling pre-training yields predictable improvements on many downstream tasks.

Scaling on Downstream Tasks

Scaling on Downstream Tasks

Some downstream tasks scale much more slowly than we would like.

Scaling on Downstream Tasks

Historical Lesson: Test-Time Search Can Improve Scaling

Test-Time Scaling with LLMs

Pre-Training vs Test-Time Scaling

● Is test-time scaling a good use of compute?
● Would we see larger gains from spending compute doing pre-training

instead?

When can Test-time Compute Outperform Pretraining?

Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.

In practice: we select algorithm configurations, such as which search algorithm to use, and use

question difficulty as a sufficient statistic to represent the question, instead of specializing the

algorithm to each question.

Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.

In practice: we select algorithm configurations, such as which search algorithm to use, and use

question difficulty as a sufficient statistic to represent the question, instead of specializing the

algorithm to each question.

● We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

○ For a given difficulty level, select the best performing

hyperparameters.

● Oracle difficulty

○ Sample 2048 outputs per question and bin questions into 5

quantiles by how many of the samples were correct.

● Predicted difficulty

○ Do the same thing but use a verifier’s predicted

correctness score instead of ground truth correctness

information.

Compute-Optimal Scaling with Question Difficulty

● We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

○ For a given difficulty level, select the best performing

hyperparameters.

● Oracle difficulty

○ Sample 2048 outputs per question and bin questions into 5

quantiles by how many of the samples were correct.

● Predicted difficulty

○ Do the same thing but use a verifier’s predicted

correctness score instead of ground truth correctness

information.

Compute-Optimal Scaling with Question Difficulty

● We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

○ For a given difficulty level, select the best performing

hyperparameters.

● Oracle difficulty

○ Sample 2048 outputs per question and bin questions into 5

quantiles by how many of the samples were correct.

● Predicted difficulty

○ Do the same thing but use a verifier’s predicted

correctness score instead of ground truth correctness

information.

Compute-Optimal Scaling with Question Difficulty

Searching Against a Verifier Revising Answers Iteratively

Two Basic Approaches to Scaling Test-Time Compute

Scaling Test-time Compute With Verifiers

Scaling Test-time Compute With Verifiers

Scaling Test-time Compute With Verifiers

Scaling Test-time Compute With Verifiers

Training a Process Based Verifier

● We learn a PRM, which is a verifier that scores each step in a solution.
○ Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.

○ We instead follow the approach from MathShepard [wang et al. 2024] to learn a value

function.

Training a Process Based Verifier

● We learn a PRM, which is a verifier that scores each step in a solution.
○ Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.

○ We instead follow the approach from MathShepard [wang et al. 2024] to learn a value

function.

● Rollout N times from each step in the solution, get the correctness rate of the rollouts

● Train the PRM on these MC rollout targets

Comparing Search Methods

● Beam search performs best at small budgets.

● At large budgets, Best-of-N performs similarly

to beam search.

● Lookahead generally underperforms due to the

high cost of the lookahead rollouts.

● All verifier search methods outperform the

majority baseline.

Performance Breakdown by Question Difficulty

● On easy questions, beam-search shows some

signs of over-optimization.

● On medium/hard questions, beam-search

outperforms best-of-N.

● On the hardest questions, all methods struggle.

By selecting the best performing search algorithm at each difficulty level, we can

nearly outperform best-of-N using up to 4x less test-time compute.

Compute Optimal Search

Takeaways for Scaling Test-time Compute With Verifiers

● The efficacy of a search method depends on the budget and the question.

● Beam search is more effective on harder questions and at lower budgets.

● Best-of-N is more effective on easier questions and at higher budgets.

● By selecting the best setting for each question, we can nearly outperform

best-of-N using up to 4x less test-time compute.

Scaling Test-time Compute With Revisions

Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

Procedure:

1. Sample N solutions to a question from the

base LM.

2. Create a chain of incorrect answers

followed by a correct answer.

3. Finetune the model to generate the correct

answer conditioned on the chain.

Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

Procedure:

1. Sample N solutions to a question from the

base LM.

2. Create a chain of incorrect answers

followed by a correct answer.

3. Finetune the model to generate the correct

answer conditioned on the chain.

Using a Verifier with the Revision Model

● Sometimes the model will “revise” a

correct answer into an incorrect one.

● To correct for this, we:

○ sample N outputs in sequence

○ use a verifier to select the most likely

correct answer from the chain

Sampling N outputs in sequence from the model outperforms sampling N in parallel.

Comparing Sequential and Parallel Sampling

In some cases there is an ideal ratio of sequential to parallel test-time compute.

Comparing Sequential and Parallel Sampling

This ideal ratio also depends on the difficulty of the question at hand.

Comparing Sequential and Parallel Sampling

By selecting the best performing ratio at each difficulty level, we can outperform parallel

sampling using up to 4x less test-time compute.

Scaling Test-time Compute With Revisions

Takeaways for Scaling Test-time Compute With Revisions

● There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g.

standard best-of-N) test-time computation.

● The ideal ratio depends on the compute budget and the question at hand.

● Easier questions benefit more from sequential revisions.

● Harder questions perform best with an ideal ratio of sequential and parallel.

● By optimally selecting the ideal ratio, we can outperform parallel sampling

using up to 4x less test-time compute.

Can scaling test-time compute be more effective than scaling parameters?

● Depends on the number of inference queries we are expecting.

● If serving to many users, then extra test-time compute will cost a lot.

● If running few inferences, then we can afford more test-time compute.

Exchanging Test-time and Pretraining Compute

On easy/medium difficulty questions, or in settings with low inference

requirements, scaling test-time compute can be preferable to scaling parameters.

Exchanging Test-time and Pretraining Compute

Takeaways/Discussion

Using fairly simple methodology we find that scaling LLM test-time compute

can greatly improve performance, and in some cases it can outperform

scaling parameters.

Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling
test-time compute.

2. Conduct additional analysis. E.g. how does the scale of finetuning impact
test-time scaling?

Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling
test-time compute.

2. Conduct additional analysis. E.g. how does the scale of finetuning impact
test-time scaling?

