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Some Problems Require More Computation at Test Time

You cannot one-shot everything.

● Challenging problems (e.g. IMO) may require 

exploring multiple approaches to the problem.

● Even simple problems (e.g. countdown game) 

may fundamentally require search.



Analogy to Cognitive Science

Current LMs are a very strong system 1.

● They can instantly output a coherent essay or 

a rhyming poem.

● How can we get LMs to think for longer on 

more challenging problems, like humans do?



Classical Scaling Laws

For a long time, we could only scale parameters.

● The more parameters/pretraining compute, the better 

your next-token prediction ability gets.

● This ability improves predictably with scale.



Scaling on Downstream Tasks



Scaling pre-training yields predictable improvements on many downstream tasks.
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Some downstream tasks scale much more slowly than we would like.

Scaling on Downstream Tasks



Historical Lesson: Test-Time Search Can Improve Scaling



Test-Time Scaling with LLMs



Pre-Training vs Test-Time Scaling

● Is test-time scaling a good use of compute?
● Would we see larger gains from spending compute doing pre-training 

instead?



When can Test-time Compute Outperform Pretraining?



Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.

In practice: we select algorithm configurations, such as which search algorithm to use, and use 

question difficulty as a sufficient statistic to represent the question, instead of specializing the 

algorithm to each question.
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● We use question difficulty as a sufficient statistic for practically 

estimating compute optimal scaling.

○ For a given difficulty level, select the best performing 

hyperparameters.

● Oracle difficulty

○ Sample 2048 outputs per question and bin questions into 5 

quantiles by how many of the samples were correct.

● Predicted difficulty

○ Do the same thing but use a verifier’s predicted 

correctness score instead of ground truth correctness 

information.
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Searching Against a Verifier Revising Answers Iteratively

Two Basic Approaches to Scaling Test-Time Compute



Scaling Test-time Compute With Verifiers
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Training a Process Based Verifier

● We learn a PRM, which is a verifier that scores each step in a solution.
○ Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.

○ We instead follow the approach from MathShepard [wang et al. 2024] to learn a value 

function.
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○ Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.

○ We instead follow the approach from MathShepard [wang et al. 2024] to learn a value 

function.

● Rollout N times from each step in the solution, get the correctness rate of the rollouts

● Train the PRM on these MC rollout targets



Comparing Search Methods

● Beam search performs best at small budgets.

● At large budgets, Best-of-N performs similarly 

to beam search.

● Lookahead generally underperforms due to the 

high cost of the lookahead rollouts.

● All verifier search methods outperform the 

majority baseline.



Performance Breakdown by Question Difficulty

● On easy questions, beam-search shows some 

signs of over-optimization.

● On medium/hard questions, beam-search 

outperforms best-of-N.

● On the hardest questions, all methods struggle.



By selecting the best performing search algorithm at each difficulty level, we can 

nearly outperform best-of-N using up to 4x less test-time compute.

Compute Optimal Search



Takeaways for Scaling Test-time Compute With Verifiers

● The efficacy of a search method depends on the budget and the question.

● Beam search is more effective on harder questions and at lower budgets.

● Best-of-N is more effective on easier questions and at higher budgets.

● By selecting the best setting for each question, we can nearly outperform 

best-of-N using up to 4x less test-time compute.



Scaling Test-time Compute With Revisions



Finetuning a Revision Model

We finetune a model to iteratively revise 

answers in context.

Procedure:

1. Sample N solutions to a question from the 

base LM.

2. Create a chain of incorrect answers 

followed by a correct answer.

3. Finetune the model to generate the correct 

answer conditioned on the chain.
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Using a Verifier with the Revision Model

● Sometimes the model will “revise” a 

correct answer into an incorrect one.

● To correct for this, we:

○ sample N outputs in sequence

○ use a verifier to select the most likely 

correct answer from the chain



Sampling N outputs in sequence from the model outperforms sampling N in parallel.

Comparing Sequential and Parallel Sampling



In some cases there is an ideal ratio of sequential to parallel test-time compute.

Comparing Sequential and Parallel Sampling



This ideal ratio also depends on the difficulty of the question at hand.

Comparing Sequential and Parallel Sampling



By selecting the best performing ratio at each difficulty level, we can outperform parallel 

sampling using up to 4x less test-time compute.

Scaling Test-time Compute With Revisions



Takeaways for Scaling Test-time Compute With Revisions

● There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. 

standard best-of-N) test-time computation.

● The ideal ratio depends on the compute budget and the question at hand.

● Easier questions benefit more from sequential revisions.

● Harder questions perform best with an ideal ratio of sequential and parallel.

● By optimally selecting the ideal ratio, we can outperform parallel sampling 

using up to 4x less test-time compute.



Can scaling test-time compute be more effective than scaling parameters?

● Depends on the number of inference queries we are expecting.

● If serving to many users, then extra test-time compute will cost a lot.

● If running few inferences, then we can afford more test-time compute.

Exchanging Test-time and Pretraining Compute



On easy/medium difficulty questions, or in settings with low inference 

requirements, scaling test-time compute can be preferable to scaling parameters.

Exchanging Test-time and Pretraining Compute



Takeaways/Discussion

Using fairly simple methodology we find that scaling LLM test-time compute 

can greatly improve performance, and in some cases it can outperform 

scaling parameters.



Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling 
test-time compute.

2. Conduct additional analysis. E.g. how does the scale of finetuning impact 
test-time scaling?
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