
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Linear Classification, Loss functions 

• Gradient Descent



Administrivia

• Assignment 1 out!
• Due Jan 31st 11:59pm (grace period Feb 2th).

• Submit something by Jan 31st! 

• Start early, start early, start early!

• Piazza: Please make sure to actively check and participate!

• Office hours schedule on webpage: 
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs764
3_spring/index.html  

https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html
https://faculty.cc.gatech.edu/~zk15/teaching/AY2025_cs7643_spring/index.html


⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee 

Cup

Bird

Car

Class Scores

Coffee 

Cup

Bird

Loss Function

Optimizer



⬣ Input: Continuous number or vector

⬣ Output: A continuous number

⬣ For classification typically a score

⬣ For regression what we want to regress to (house prices, 

crime rate, etc.)

⬣ 𝒘 is a vector and weights to optimize to fit target function

Model: Discriminative Parameterized Function

𝒇 𝒙, 𝒘 = 𝒚

Classifier
Input

(vector)
Weights

Output

(scalar or vector)



Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear 

classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en


Weights

𝑾

Model

𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

𝑤11 𝑤12 ⋯ 𝑤1𝑚 𝑏1

𝑤21 𝑤22 ⋯ 𝑤2𝑚 𝑏2 
𝑤31 𝑤32 ⋯ 𝑤3𝑚 𝑏3

𝑥1

𝑥2

⋮
𝑥𝑚

1

 

𝒙

⬣ We can move 

the bias term 

into the weight 

matrix, and a “1” 

at the end of the 

input

⬣ Results in one 

matrix-vector 

multiplication! 



56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃



Linear Classifier: Three Viewpoints

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Algebraic 

Viewpoint

𝒇(𝒙, 𝑾) = 𝑾𝒙

Visual 

Viewpoint

One template 

per class

Geometric 

Viewpoint

Hyperplanes 

cutting up space



Performance 

Measure for 

a Classifier



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee 

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee 

Cup

Bird

Loss Function

Optimizer



Classification using Scores

⬣ The output of a classifier can 

be considered a score

⬣ For binary classifier, use rule:

⬣ Can be used for many 

classes by considering 

one class versus all the 

rest (one versus all)

⬣ For multi-class classifier can 

take the maximum

Car

Class Scores

Coffee 

Cup

Bird

Model

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

𝐢𝐟 𝒇 𝒙, 𝒘 > = 𝟎
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

𝒚 = ቊ
𝟏
𝟎



Performance Measure

We need a performance measure to 

optimize

⬣ Penalizes model for being wrong

⬣ Allows us to modify the model to 

reduce this penalty

⬣ Known as an objective or loss 

function

In machine learning we use empirical 

risk minimization

⬣ Reduce the loss over the training 

dataset

⬣ We average the loss over the training 

data

Given a dataset of examples:

Where 𝒙𝒊 is image and 

            𝒚𝒊 is (integer) label

Loss over the dataset is a sum 

of loss over examples:

{ 𝒙𝒊, 𝒚𝒊 }𝒊=𝟏
𝑵

𝑳 =
𝟏

𝑵
෍ 𝑳(𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)



Performance Measure for Scores

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊) 

where 𝒙𝒊 is the image and 

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍

𝒋≠𝒚𝒊

ቊ
𝟎
𝒔𝒋

= ෍

𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

− 𝒔𝒚𝒊
+ 𝟏

𝐢𝐟 𝒔𝒚𝒊
≥ 𝒔𝒋 + 𝟏

𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

scores for other classes

margin

score
score for correct class

𝒔𝒚𝒊

𝒔𝒋 𝟏

Example: “Hinge Loss”



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 2.9

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊) 

where 𝒙𝒊 is the image and 

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 5.1 - 3.2 + 1) 

   +max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 0.0

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊) 

where 𝒙𝒊 is the image and 

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 1.3 - 4.9 + 1) 

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What happens to loss if 

car image scores change a 

bit?

No change for small values



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What is min/max of loss 

value?

[0,inf]



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: At initialization W is 

small so all s ≈ 0.

What is the loss?

C-1



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if the sum was 

over all classes? 

(including j = y_i)

No difference 

(add constant 1)



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if we used mean 

instead of sum?

No difference

Scaling by constant



SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊) 

where 𝒙𝒊 is the image and 

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the 

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 = ෍
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3 

   = 5.27



Converting Scores to Probabilities

Several issues with scores:

⬣ Not very interpretable (no 

bounded value)

We often want probabilities 

⬣ More interpretable

⬣ Can relate to probabilistic 

view of machine learning

We use the softmax function to 

convert scores to probabilities

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax 

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋



Performance Measure for Probabilities

⬣ If we use the softmax function to 

convert scores to probabilities, 

the right loss function to use is 

cross-entropy

⬣ Can be derived by looking at the 

distance between two probability 

distributions (output of model and 

ground truth)

⬣ Can also be derived from a 

maximum likelihood estimation 

perspective

Maximize log-prob of correct class =

 Maximize the log likelihood 

= Minimize the negative log likelihood

𝑳𝒊 = −𝐥𝐨𝐠 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax 

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋



Performance Measure for Probabilities

⬣ If we use the softmax function to convert scores to probabilities, the right 

loss function to use is cross-entropy

⬣ Goal: Minimize KL-divergence (distance measure b/w probability 

distributions)
min

𝑤
𝐾𝐿(𝑝∗|| Ƹ𝑝) = ෍

𝑦

𝑝∗ 𝑦  𝑙𝑜𝑔
𝑝∗(𝑦)

Ƹ𝑝(𝑦)

𝑝∗ =

0
0
0
1
0
0
0
0

Ƹ𝑝  =

𝑃(𝑌 = 1|𝑥, 𝑤)
𝑃(𝑌 = 2|𝑥, 𝑤)
𝑃(𝑌 = 3|𝑥, 𝑤)
𝑃(𝑌 = 4|𝑥, 𝑤)
𝑃(𝑌 = 5|𝑥, 𝑤)
𝑃(𝑌 = 6|𝑥, 𝑤)
𝑃(𝑌 = 7|𝑥, 𝑤)
𝑃(𝑌 = 8|𝑥, 𝑤)

=

0.5
0.01
0.01
0.01
0.01
0.01
0.15
0.3

Ground Truth Prediction

= ෍

𝑦

𝑝∗ 𝑦  log(𝑝∗ 𝑦 ) − ෍

𝑦

𝑝∗ 𝑦  log( Ƹ𝑝(𝑦)) 

−𝐻(𝑝∗)
(negative entropy, term goes away 

because not a function of model, W,  

parameters we are minimizing over)

𝐻(𝑝∗, ො𝑝)
(Cross-Entropy)

Since 𝑝∗ is one-hot (0 for non-ground truth classes), all we need to 

minimize is (where 𝑖 is ground truth class): min
𝑤

 (−𝑙𝑜𝑔 ො𝑝(𝑦𝑖))

 



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax 

Function

Probabilities 

must be >= 0
Probabilities 

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

3.2 24.5 0.13cat

frog

car 5.1

-1.7

164.0

0.18

0.87

0.00

exp normalize

Unnormalized 

probabilities
ProbabilitiesUnnormalized log-

probabilities / logits

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: How is it 

possible that non-

GT probabilities 

aren’t in loss?



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax 

Function

Probabilities 

must be >= 0
Probabilities 

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: What is the min/max of 

possible loss L_i?

Infimum is 0, max is unbounded (inf)



Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax 

Function

Probabilities 

must be >= 0
Probabilities 

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: At initialization all s will be 

approximately equal; what is 

the loss?

Log(C), e.g. log(10) ≈ 2



Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization

𝑳𝒊 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + |𝑾|



Gradient 

Descent



⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee 

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee 

Cup

Bird

Loss Function

Optimizer



Optimization

Given a model and loss function, finding the 

best set of weights is a search problem

⬣ Find the best combination of weights 

that minimizes our loss function

Several classes of methods:

⬣ Random search

⬣ Genetic algorithms (population-based 

search)

⬣ Gradient-based optimization

In deep learning, gradient-based methods 

are dominant although not the only 

approach possible

Loss

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑



Loss Surfaces

As weights change, the loss 

changes as well

⬣ This is often somewhat-

smooth locally, so small 

changes in weights produce 

small changes in the loss

We can therefore think about 

iterative algorithms that take 

current values of weights and 

modify them a bit



Strategy: Follow the Slope!



Derivatives

⬣ We can find the steepest descent direction by 

computing the derivative (gradient):

⬣ Steepest descent direction is the negative 

gradient

⬣ Intuitively: Measures how the function 

changes as the argument a changes by a small 

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 

loss function changes as weights are varied

⬣ Can consider each parameter separately 

by taking partial derivative of loss 

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from: 

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙



Derivatives in d-dimensions

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from: 

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙



Gradient Descent

This idea can be turned into an algorithm (gradient descent)

1. Choose a model: 𝒇 𝒙, 𝑾 = Wx

2. Choose loss function: 𝑳𝒊 = (𝒚 − 𝑾𝒙𝒊)𝟐

3. Calculate partial derivative for each parameter: 
𝝏𝑳

𝝏𝒘𝒊

4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳

𝝏𝒘𝒊

Instead: Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

5. Repeat (from Step 3)



Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

http://demonstrations.wolfram.com/VisualizingTheGradientVector/


Gradient Descent
w1



Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of 

data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and 

take a set

𝑳 =
𝟏

𝑵
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

𝑳 =
𝟏

𝑴
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)



Gradient Descent Properties

Gradient descent is guaranteed to converge under some 

conditions

⬣ For example, learning rate has to be appropriately reduced 

throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in 

practice (if trained well) are still pretty good! 



Computing Gradients

We know how to compute the 

model output and loss 

function

Several ways to compute 
𝝏𝑳

𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322



gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25322



gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…] 

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 

implementation with numerical gradient. 

This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients



Summary

⬣ Components of parametric classifiers: 

⬣ Input/Output: Image/Label

⬣ Model (function): Linear Classifier + Softmax

⬣ Loss function: Cross-Entropy

⬣ Optimizer: Gradient Descent

⬣ Ways to compute gradients

⬣ Numerical

⬣ Next: Analytical, automatic differentiation
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