Topics:

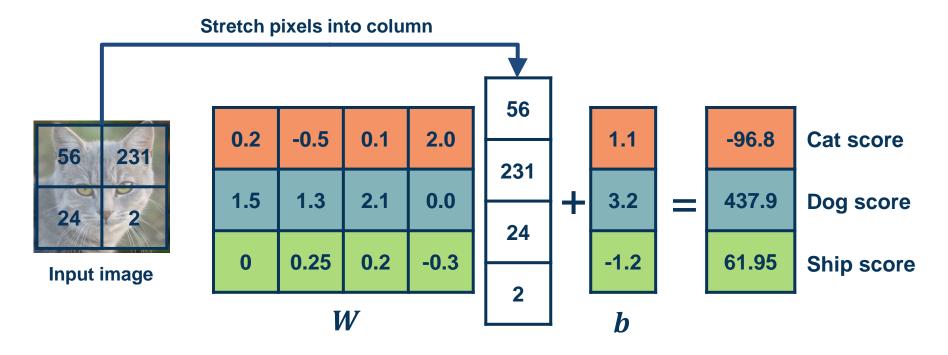
- Backpropagation
- Matrix/Linear Algebra view

CS 4644-DL / 7643-A ZSOLT KIRA

- Assignment 1 out!
 - Due Jan 31st (with grace period Feb 2nd)
 - Start now, start now!
 - Start now, start now!
 - Start now, start now!
- Resources:
 - These lectures
 - Matrix calculus for deep learning
 - Gradients notes and MLP/ReLU Jacobian notes.
 Topic OH: Assignment 1 and matrix calculus (@93)
 - Diazza: Project teaming thread
 - Piazza: Project teaming thread
 - Project proposal overview during my OH (Thursday 3:30pm ET, recorded)

Project Proposal: Feb. 14th, Project Check-in: Mar. 14th.

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

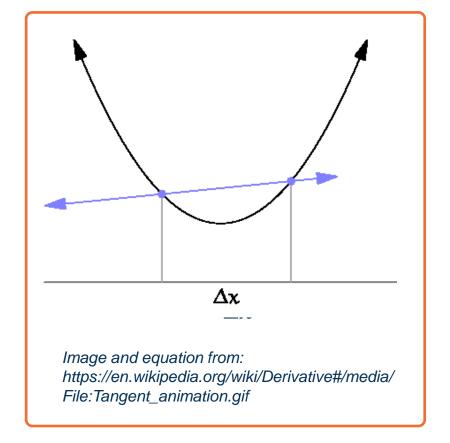


Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

We can find the steepest descent direction by computing the derivative (gradient):

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
 - As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
 - Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter



The same two-layered neural network corresponds to adding another weight matrix

 We will prefer the linear algebra view, but use some terminology from neural networks (& biology)

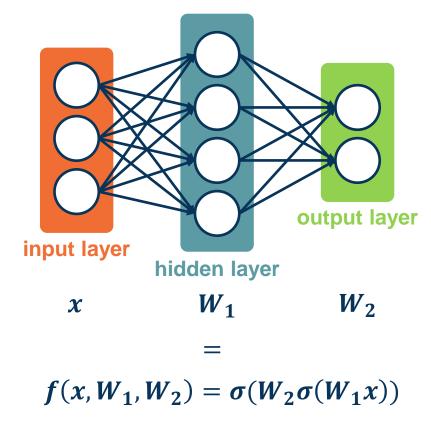


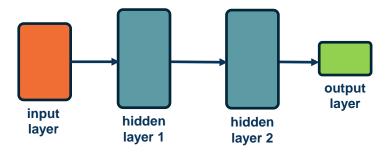
Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

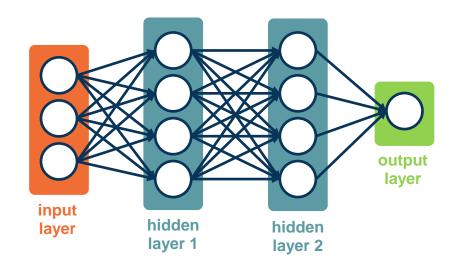
Large (deep) networks can be built by adding more and more layers

Three-layered neural networks can represent **any function**

 The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them **without edges**:

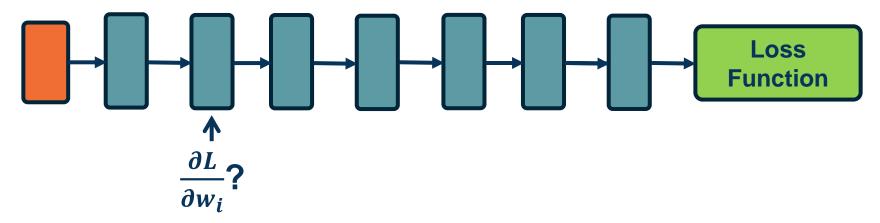




$$f(x, W_1, W_2, W_3) = \sigma(W_2 \sigma(W_1 x))$$

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end

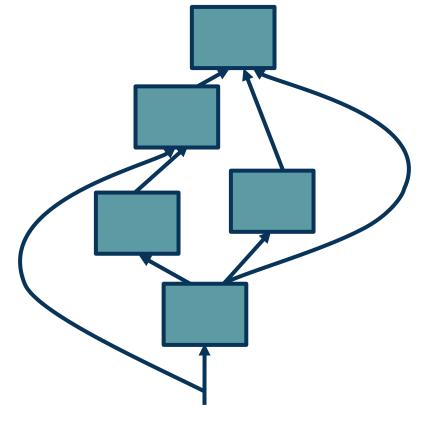


To develop a general algorithm for this, we will view the function as a **computation graph**

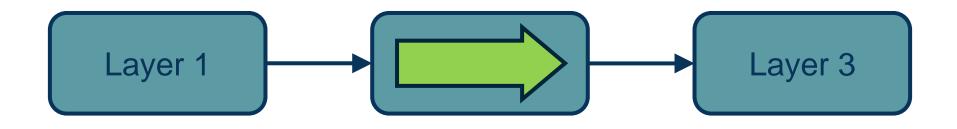
Graph can be any directed acyclic graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

A training algorithm will then process this graph, one module at a time



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

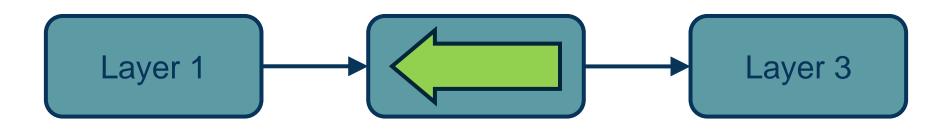


Note that we must store the **intermediate outputs of all layers!**

This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

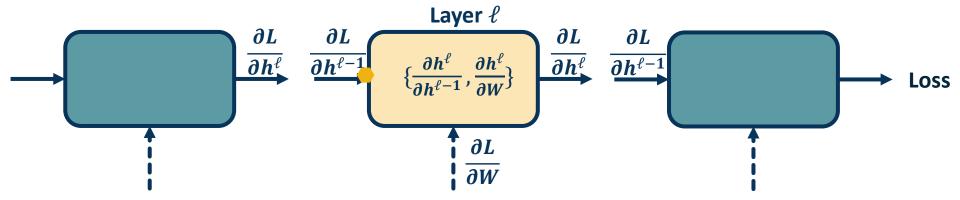
Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass



Step 2: Compute Gradients wrt parameters: Backward Pass

• We want to compute: $\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\}$



We will use the chain rule to do this:

Chain Rule:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$$

$$\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h}{\partial W}$$

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

$$w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$$

Backpropagation is the application of gradient descent to a computation graph via the chain rule!

Backpropagation: a simple example

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

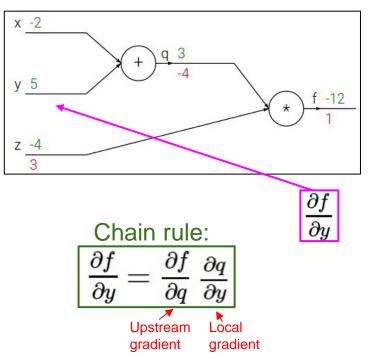


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning = Differentiable Programming

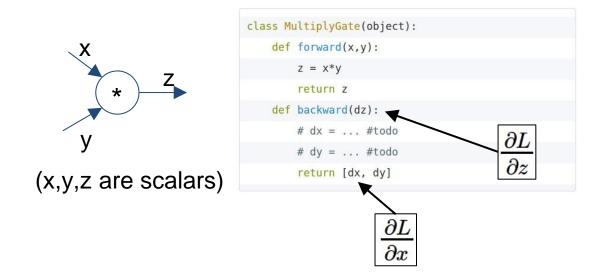
- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)
 - Backpropagation implementation on the graph

Modularized implementation: forward / backward API

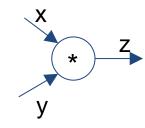
Graph (or Net) object (rough psuedo code)

```
class ComputationalGraph(object):
   # . . .
   def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes topologically sorted():
            gate.forward()
        return loss # the final gate in the graph outputs the loss
   def backward():
        for gate in reversed(self.graph.nodes topologically sorted()):
            gate.backward() # little piece of backprop (chain rule applied)
        return inputs gradients
```

Modularized implementation: forward / backward API



Modularized implementation: forward / backward API



(x,y,z are scalars)

```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z

    def backward(dz):
        dx = self.y * dz # [dz/dx * dL/dz]
        dy = self.x * dz # [dz/dy * dL/dz]
        return [dx, dy]
```

Example: Caffe layers

Branch: master - caffe / src / caffe / layers / Create new file Upload files Find file History shelhamer committed on GitHub Merge pull request #4630 from BIGene/load_hdf5_fix Latest commit e687a71 21 days ago absval_layer.cpp dismantle layer headers a year ago absval_layer.cu dismantle layer headers a year ago accuracy_layer.cpp dismantle layer headers a year ago argmax laver.cpp dismantle layer headers a year ago base_conv_layer.cpp enable dilated deconvolution a year ago base_data_layer.cpp Using default from proto for prefetch 3 months ago base_data_layer.cu Switched multi-GPU to NCCL 3 months ago batch_norm_layer.cpp Add missing spaces besides equal signs in batch_norm_layer.cpp 4 months ago batch_norm_layer.cu dismantle layer headers a year ago batch_reindex_layer.cpp dismantle layer headers a year ago batch_reindex_layer.cu dismantle layer headers a year ago bias_layer.cpp Remove incorrect cast of gemm int arg to Dtype in BiasLayer a year ago Separation and generalization of ChannelwiseAffineLayer into BiasLayer bias_layer.cu a year ago bnll_layer.cpp dismantle layer headers a year ago bnll_layer.cu dismantle layer headers a year ago concat_layer.cpp dismantle layer headers a year ago concat_layer.cu dismantle layer headers a year ago contrastive_loss_layer.cpp dismantle layer headers a year ago contrastive_loss_layer.cu dismantle layer headers a year ago conv_layer.cpp add support for 2D dilated convolution a year ago conv_layer.cu dismantle layer headers under BSD 2-Clause a year ago crop_layer.cpp remove redundant operations in Crop layer (#5138) 2 months ago crop_layer.cu remove redundant operations in Crop layer (#5138) 2 months ago cudnn_conv_layer.cpp dismantle layer headers a year ago cudnn_conv_layer.cu Add cuDNN v5 support, drop cuDNN v3 support 11 months ago

cudnn_lcn_layer.cpp	dismantle layer headers	a year ago
cudnn_lcn_layer.cu	dismantle layer headers	a year ago
cudnn_lrn_layer.cpp	dismantle layer headers	a year ago
cudnn_lrn_layer.cu	dismantle layer headers	a year ago
cudnn_pooling_layer.cpp	dismantle layer headers	a year ago
cudnn_pooling_layer.cu	dismantle layer headers	a year ago
cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_sigmoid_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_softmax_layer.cpp	dismantle layer headers	a year ago
cudnn_softmax_layer.cu	dismantle layer headers	a year ago
cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
cudnn_tanh_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months ago
data_layer.cpp	Switched multi-GPU to NCCL	3 months ago
deconv_layer.cpp	enable dilated deconvolution	a year ago
deconv_layer.cu	dismantle layer headers	a year ago
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ago
dropout_layer.cu	dismantle layer headers	a year ago
dummy_data_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cpp	dismantle layer headers	a year ago
eltwise_layer.cu	dismantle layer headers	a year ago
elu_layer.cpp	ELU layer with basic tests	a year ago
elu_layer.cu	ELU layer with basic tests	a year ago
mbed_layer.cpp	dismantle layer headers	a year ago
embed_layer.cu	dismantle layer headers	a year ago
euclidean_loss_layer.cpp	dismantle layer headers	a year ago
euclidean_loss_layer.cu	dismantle layer headers	a year ago
exp_layer.cpp	Solving issue with exp layer with base e	a year ago
exp_layer.cu	dismantle layer headers	a year ago


```
#include <cmath>
    #include <vector>
                                                                                                                                 Caffe Sigmoid Layer
    #include "caffe/layers/sigmoid layer.hpp"
    namespace caffe {
    template <typename Dtype>
    inline Dtype sigmoid(Dtype x) {
     return 1. / (1. + exp(-x));
    template <typename Dtype>
    void SigmoidLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) {
     const Dtype* bottom_data = bottom[0]->cpu_data();
     Dtype* top_data = top[0]->mutable_cpu_data();
                                                                                                     \sigma(x) =
     const int count = bottom[0]->count();
     for (int i = 0; i < count; ++i) {
      top_data[i] = sigmoid(bottom_data[i]);
    template <typename Dtype>
    void SigmoidLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top,
       const vector<bool>& propagate_down,
       const vector<Blob<Dtype>*>& bottom) {
     if (propagate_down[0]) {
       const Dtype* top_data = top[0]->cpu_data();
       const Dtype* top_diff = top[0]->cpu_diff();
       Dtype* bottom_diff = bottom[0]->mutable_cpu_diff();
       const int count = bottom[0]->count();
                                                                                                    (1 - \sigma(x)) \sigma(x) * top_diff (chain rule)
       for (int i = 0; i < count; ++i) {
         const Dtype sigmoid_x = top_data[i];
         bottom_diff[i] = top_diff[i] * sigmoid_x * (1. - sigmoid_x);
40 #1fdef CPU_ONLY
41 STUB_GPU(SigmoidLayer);
44 INSTANTIATE_CLASS(SigmoidLayer);
47 } // namespace caffe
  Caffe is licensed under BSD 2-Clause
```


- Neural networks involves composing simple functions into a computation graph
- · Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule

- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function?
 - How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

Linear **Algebra** View: **Vector** and **Matrix Sizes**

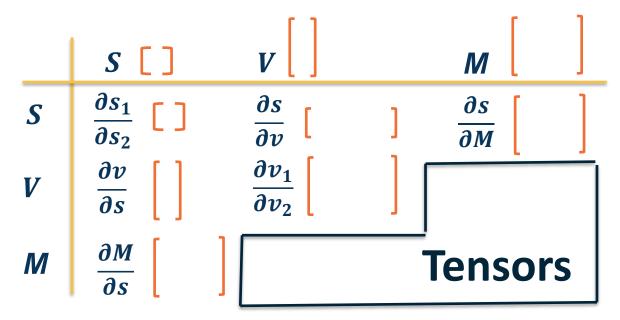
$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \\ 1 \end{bmatrix}$$

Sizes:
$$[c \times (m+1)]$$
 $[(m+1) \times 1]$

Where *c* is number of classes

m is dimensionality of input

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$



- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{m_1 \times m_2}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)

 What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)

 What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)
- What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)

$$\left[\frac{\partial s}{\partial v_1} \frac{\partial s}{\partial v_1} \cdots \frac{\partial s}{\partial v_m}\right]$$

What is the size of $\frac{\partial v^1}{\partial v^2}$? A matrix:

Row i

This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

What is the size of $\frac{\partial s}{\partial M}$? A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Example 1:

$$y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ x^2 \end{bmatrix} \qquad \frac{\partial y}{\partial x} = \begin{bmatrix} 1 \\ 2x \end{bmatrix}$$

Example 2:

$$y = w^T x = \sum_k w_k x_k$$

$$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x_1}, \dots, \frac{\partial y}{\partial x_m}\right]$$

$$= [w_1, \dots, w_m] \quad \text{because} \quad \frac{\partial (\sum_k w_k x_k)}{\partial x_i} = w_i$$

$$= w^T$$

Example 3:

$$y = Wx$$
 $\frac{\partial y}{\partial x} = W$

Example 4:

$$\frac{\partial (wAw)}{\partial w} = 2w^T A$$
 (assuming A is symmetric)

- What is the size of $\frac{\partial L}{\partial W}$?
 - Remember that loss is a scalar and W is a matrix:

$$\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix}$$

Jacobian is also a matrix:

$$\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$$

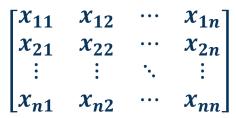
Batches of data are **matrices** or **tensors** (multi-dimensional matrices)

Examples:

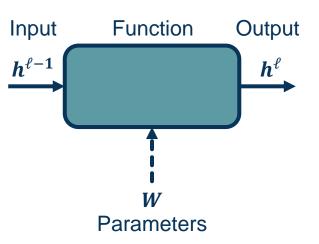
- Each instance is a vector of size m, our batch is of size $[B \times m]$
- Each instance is a matrix (e.g. grayscale image) of size $W \times H$, our batch is $[B \times W \times H]$
- Each instance is a multi-channel matrix (e.g. color image with R,B,G channels) of size C × W × H, our batch is [B × C × W × H]

Jacobians become tensors which is complicated

- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors







Define:

$$\boldsymbol{h}_{\boldsymbol{i}}^{\ell} = \boldsymbol{w}_{\boldsymbol{i}}^T \boldsymbol{h}^{\ell-1}$$

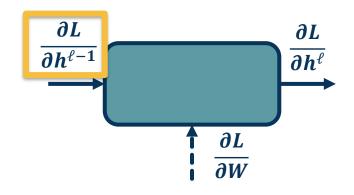
$$egin{aligned} oldsymbol{h}^{\ell} &= oldsymbol{W} oldsymbol{h}^{\ell-1} \ oldsymbol{igg|} oldsymbol{\psi}_i^T
ightarrow oldsymbol{igg|} \ |oldsymbol{h}^{\ell}| imes oldsymbol{1} & |oldsymbol{h}^{\ell-1}| & |oldsymbol{h}^{\ell-1}| imes oldsymbol{1} \ |oldsymbol{h}^{\ell-1}| imes oldsymbol{1} \end{aligned}$$

$$\boldsymbol{h}^{\ell} = \boldsymbol{W}\boldsymbol{h}^{\ell-1}$$

$$\frac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$$

Define:

$$\boldsymbol{h}_{\boldsymbol{i}}^{\ell} = \boldsymbol{w}_{\boldsymbol{i}}^T \boldsymbol{h}^{\ell-1}$$



$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$$

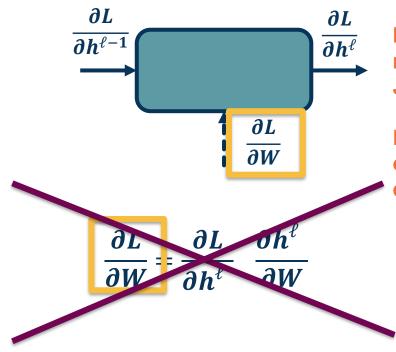
 $\mathbf{1} imes |oldsymbol{h}^{\ell-1}| \quad \mathbf{1} imes |oldsymbol{h}^{\ell}| \quad |oldsymbol{h}^{\ell}| imes |oldsymbol{h}^{\ell-1}|$

$$h^{\ell} = Wh^{\ell-1}$$

$$rac{\partial h^\ell}{\partial h^{\ell-1}} = W$$

Define:

$$\boldsymbol{h}_{\boldsymbol{i}}^{\ell} = \boldsymbol{w}_{\boldsymbol{i}}^T \boldsymbol{h}^{\ell-1}$$



Note doing this on full *W* matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

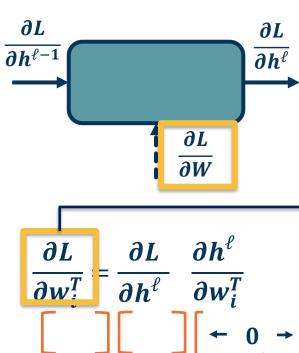
$$h^{\ell} = Wh^{\ell-1}$$

$$\frac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$$

Define:

$$\boldsymbol{h}_{i}^{\ell} = \boldsymbol{w}_{i}^{T} \boldsymbol{h}^{\ell-1}$$

$$\frac{\partial h_i^{\ell}}{\partial w_i^T} = h^{(\ell-1),T}$$



Note doing this on full W matrix would result in Jacobian tensor!

But it is *sparse* – each output only affected by corresponding weight row

 ∂L

$$\frac{\partial W_{i}^{T}}{\partial W_{i}^{T}} + \frac{\partial h_{i}^{\ell}}{\partial W_{i}^{T}} + \frac{\partial$$

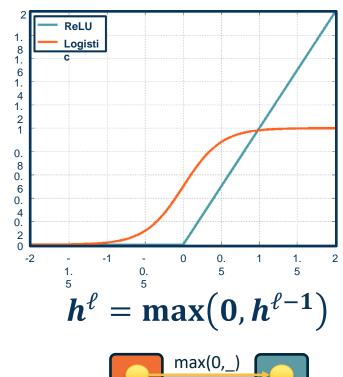
 $1 \times |h^{\ell-1}| 1 \times |h^{\ell}| |h^{\ell}| \times |h^{\ell-1}|$ lterate and populate Note can simplify/vectorize!

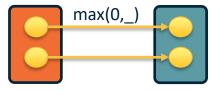
We can employ any differentiable (or piecewise differentiable) function

A common choice is the **Rectified Linear Unit**

- Provides non-linearity but better gradient flow than sigmoid
- Performed element-wise

How many parameters for this layer?



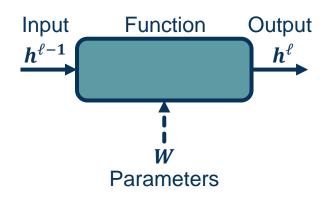


Full Jacobian of ReLU layer is large (output dim x input dim)

- But again it is **sparse**
- Only diagonal values non-zero because it is element-wise
- An output value affected only by corresponding input value

Max function funnels gradients through selected max

Gradient will be **zero** if input <= 0



Forward:
$$h^{\ell} = \max(0, h^{\ell-1})$$

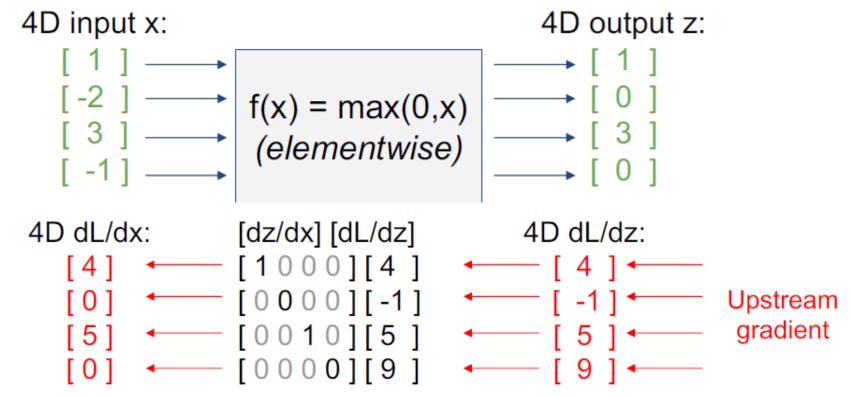
Backward:
$$\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \quad \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$$

For diagonal

$$egin{array}{cccc} rac{\partial h^\ell}{\partial h^{\ell-1}} = egin{cases} 1 & if \ h^{\ell-1} > 0 \ 0 & otherwise \end{cases}$$

4D input x:

What does $\frac{\partial z}{\partial x}$ look like?



For element-wise ops, jacobian is **sparse**: off-diagonal entries always zero! Never **explicitly** form Jacobian -- instead use elementwise multiplication

- Neural networks involves composing simple functions into a computation graph
- · Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule

- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? Next!
 - How can we implement this algorithmically to make these calculations automatic? Automatic Differentiation

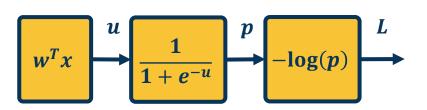
Composition of Functions: $f(g(x)) = (f \circ g)(x)$

A complex function (e.g. defined by a neural network):

$$f(x) = g_{\ell} (g_{\ell-1}(...g_1(x)))$$
$$f(x) = g_{\ell} \circ g_{\ell-1} ... \circ g_1(x)$$

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)



$$egin{aligned} ar{L} &= 1 \ ar{p} &= rac{\partial L}{\partial p} = -rac{1}{p} \end{aligned}$$

where
$$p = \sigma(w^T x)$$
 and $\sigma(x) = \frac{1}{1 + e^{-x}}$

$$\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} = \overline{p} \sigma (1 - \sigma)$$

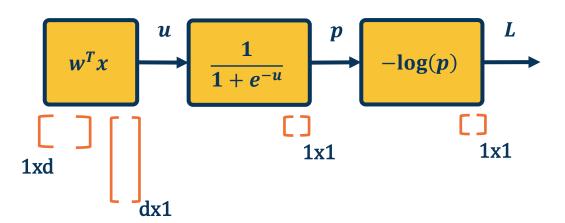
$$\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \frac{\partial u}{\partial w} = \overline{u}x^T$$

We can do this in a combined way to see all terms together:

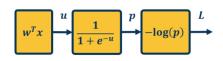
$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from L to w

The chain rule can be computed as a series of scalar, vector, and matrix linear algebra operations



Extremely efficient in graphics processing units (GPUs)



$$\overline{p} = \frac{\partial L}{\partial p} = -\frac{1}{p}$$

where $p = \sigma(w^T x)$ and $\sigma(x) = \frac{1}{1 + e^{-x}}$

$$\overline{u} = \frac{\partial L}{\partial u} = \frac{\partial L}{\partial p} \ \frac{\partial p}{\partial u} = \overline{p} \ \sigma (1 - \sigma)$$

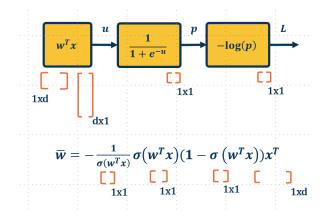
$$\overline{w} = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial u} \quad \frac{\partial u}{\partial w} = \overline{u}x^T$$

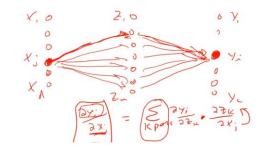
We can do this in a combined way to see all terms together:

$$\overline{w} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial u} \frac{\partial u}{\partial w} = -\frac{1}{\sigma(w^T x)} \sigma(w^T x) (1 - \sigma(w^T x)) x^T$$
$$= -\left(1 - \sigma(w^T x)\right) x^T$$

This effectively shows gradient flow along path from $\it L$ to $\it W$

Computation Graph / Global View of Chain Rule

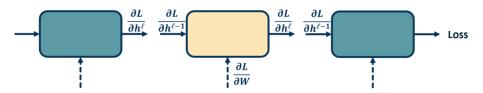




Computational / Tensor View

Graph View

• We want to to compute:
$$\left\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\right\}$$



Backpropagation View (Recursive Algorithm)

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:

- Composition of functions (scalar)
- Composition of functions (vectors/matrices)
- Jacobian view of chain rule
- Can view entire set of calculations as linear algebra operations (matrix-vector or matrix-matrix multiplication)

Automatic differentiation:

- Reduction of modules to simple operations we know (simple multiplication, etc.)
- Automatically build computation graph in background as write code
- Automatically compute gradients via backward pass

