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Topics:

• Optimization

• Convolutional Layers



Administrivia

• Assignment 2 out – Due Feb 17th (grace period until Feb 19th)

• Implement convolutional neural networks

 

• Meta Lectures: Data wrangling OH unfortunately not recorded  

• Issue fixed, sorry!

• Next one 02/21



Designing Deep Neural Networks

There are still many design 

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 

Optimization

⬣ Machine Learning 

Considerations

?

Local

Minima



Optimizers



Loss Landscape

Deep learning involves complex, 

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result 

There is little direct theory and a lot of 

intuition/rules of thumbs instead

⬣ Some insight can be gained via 

theory for simpler cases (e.g. 

convex settings)



Loss Landscape

It used to be thought that 

existence of local minima is 

the main issue in optimization

There are other more 

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point



Noisy Gradients

⬣ We use a subset of the 

data at each iteration to 

calculate the loss (& 

gradients)

⬣ This is an unbiased 

estimator but can have 

high variance

⬣ This results in noisy steps 

in gradient descent

𝑳 =
𝟏

𝑴
 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)



Loss Surface Geometry

Several loss surface geometries 

are difficult for optimization

Several types of minima: Local 

minima, plateaus, saddle points

Saddle points are those where the 

gradient of orthogonal directions 

are zero

⬣ But they disagree (it’s min for 

one, max for another)

Plateau

Saddle Point



Adding Momentum

⬣ Gradient descent takes a step in the 

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling 

down loss surface, and use 

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights



Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with 

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

=  𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏



Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights



Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 +  𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity 

with current gradient, go along velocity 

first and then calculate gradient at new 

point

⬣ We know velocity is probably a 

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Note there are several equivalent 

formulations across deep learning 

frameworks!

Resource: 

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c 

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c


Hessian and Loss Curvature

⬣ Various mathematical ways to 

characterize the loss landscape

⬣ If you liked Jacobians… meet the

⬣ Gives us information about the 

curvature of the loss surface

First 

order

Second 

order



Condition Number

Condition number is the ratio of 

the largest and smallest eigenvalue 

⬣ Tells us how different the 

curvature is along different 

dimensions

If this is high, SGD will make big 

steps in some dimensions and 

small steps in other dimension

Second-order optimization methods 

divide steps by curvature, but 

expensive to compute



Idea: Have a dynamic learning rate 

for each weight

Several flavors of optimization 

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD+Momentum can achieve 

similar results in many cases but 

with much more tuning

Per-Parameter Learning Rate



Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics 

to reduce learning rate across 

iterations

Denominator: Sum up 

gradients over iterations

Directions with high 

curvature will have higher 

gradients, and learning rate 

will reduce 
Duchi, et al., “Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization”

As gradients are 

accumulated learning 

rate will go to zero



RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving 

average of squared 

gradients!

Does not saturate the 

learning rate



Adam

Combines ideas from 

above algorithms

Maintains both 

gradient and squared 

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning 

(one or both of moments will be 

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015



Adam

Solution: Time-varying bias 

correction 

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number 

divided by (1-0.9=0.1) resulting 

in more reasonable values (and 
𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒊

 𝑮𝒊 =
𝑮𝒊

𝟏 − 𝜷𝟐
𝒊

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

𝑮𝒊 + 𝝐



Behavior of Optimizers

Optimizers behave differently 

depending on landscape

Different behaviors such as 

overshooting, stagnating, etc. 

Plain SGD+Momentum can 

generalize better than adaptive 

methods, but requires more tuning 

⬣ See: Luo et al., Adaptive 

Gradient Methods with 

Dynamic Bound of Learning 

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/images/pdf_icon_blue.svg

https://openreview.net/pdf?id=Bkg3g2R9FX


Learning Rate Schedules

First order optimization methods have 

learning rates

Theoretical results rely on annealed 

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler 
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss



Convolution 

& Pooling



The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of 

parameters for just one layer

More parameters => More 

data needed

Is this necessary? 

1024 x 1024

 Pixel Image

~1M element

Vector (M)

Fully-

Connected

Layer (N)



Image features are spatially 

localized!

Smaller features repeated 

across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature 

tends to appear in one location 

vs. another (stationarity)

Locality of Features

Can we induce a bias in the 

design of a neural network 

layer to reflect this?



Each node only receives input from 

𝑲𝟏 × 𝑲𝟐 window (image patch)

Region from which a node receives 

input from is called its  receptive 

field

Advantages: 

Reduce parameters to (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑵 where 𝑵 is number of output 

nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝑲𝟏

𝑲𝟐



Nodes in different locations can share 

features

No reason to think same feature 

(e.g. edge pattern) can’t appear 

elsewhere

 Use same weights/parameters in 

computation graph (shared 

weights)

Advantages: 

Reduce parameters to (𝑲𝟏× 𝑲𝟐 + 𝟏)

Explicitly maintain spatial 

information

Idea 2: Shared Weights

𝑲𝟏

𝑲𝟐

𝑲𝟏



We can learn many such features 

for this one layer

Weights are not shared 

across different feature 

extractors

Parameters:  (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑴 where 𝑴 is number of 

features we want to learn

Idea 3: Learn Many Features



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution



This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional 

analysis, convolution is a mathematical 

operation on two functions f  and g  producing a 

third function that is typically viewed as a 

modified version of one of the original functions, 

giving the area overlap between the two 

functions as a function of the amount that one of 

the original functions is translated. 

Convolution is similar to cross-correlation. 

It has applications that include probability, 

statistics, computer vision, image and signal 

processing, electrical engineering, and 

differential equations. 

Visual comparison of convolution and 

cross-correlation.



2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D 

Convolution

2D 

Convolution

Notation: 𝑭 ⊗ (𝑮 ⊗ 𝑰) = (𝑭 ⊗ 𝑮) ⊗ 𝑰

𝒚𝒌 = 

𝒏=𝟎

𝑵−𝟏

𝒉𝒏 ∙ 𝒙𝒌−𝒏

𝒚𝟎 = 𝒉𝟎 ∙ 𝒙𝟎 

𝒚𝟏 = 𝒉𝟏 ∙ 𝒙𝟎 + 𝒉𝟎 ∙ 𝒙𝟏 

𝒚𝟐 = 𝒉𝟐 ∙ 𝒙𝟎 + 𝒉𝟏 ∙ 𝒙𝟏 + 𝒉𝟎 ∙ 𝒙𝟐 

𝒚𝟑 = 𝒉𝟑 ∙ 𝒙𝟎 +  𝒉𝟐 ∙ 𝒙𝟏 + 𝒉𝟏 ∙ 𝒙𝟐 + 𝒉𝟎 ∙ 𝒙𝟑 

⋮



2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D 

Convolution

⋮

Image Kernel 

(or filter)

Output / 

filter / 

feature map



2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D 

Convolution

⋮

Image Kernel 

(or filter)

Output / 

filter / 

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)



Convolution and Cross-Correlation

Convolution: Start at end of kernel and 

move back

Cross-correlation: Start in the beginning of 

kernel and move forward (same as for image)

An intuitive interpretation of the relationship: 

Take the kernel, and rotate 180 degrees 

along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’  =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏



The Intuitive Explanation

1. Flip kernel 
(rotate 180 
degrees)

2. Stride 

along image



Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

= 

𝒂=−
𝑯−𝟏

𝟐

𝑯−𝟏
𝟐

,

 

𝒃=−
𝑾−𝟏

𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃  𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐, −𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐, −𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 + 
𝒙 −𝟐, 𝟏 𝒌 𝟐, −𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐, −𝟐 +…



= 

𝒂=−
𝑲𝟏−𝟏

𝟐

𝒌𝟏−𝟏
𝟐 ,

 

𝒃=−
𝒌𝟐−𝟏

𝟐

𝒌𝟐−𝟏
𝟐 ,

𝒙 𝒓 − 𝒂, 𝒄 − 𝒃  𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

( −
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)



= 

𝒂=𝟎

𝒌𝟏−𝟏

 

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃  𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change 

does not matter!



Cross-Correlation

K’  =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2)  =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Convolution and Cross-Correlation



Why Bother with Convolutions? 

Convolutions are just simple linear 

operations

Why bother with this and not just say it’s a 

linear layer with small receptive field?

There is a duality between them during 

backpropagation

Convolutions have various 

mathematical properties people care 

about

This is historically how it was inspired

?



Input & 

Output Sizes



Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d



Valid Convolution

Output size of vanilla convolution operation is 𝑯 − 𝒌𝟏 + 𝟏 × 𝑾 − 𝒌𝟐 + 𝟏

This is called a “valid” convolution and only applies kernel within image 

𝑾 = 𝟓

𝑯
=

𝟓

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏,
𝒌𝟐 − 𝟏)

𝑯
−

𝒌
𝟏

+
𝟏

 

𝑾 − 𝒌𝟐 + 𝟏



Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

 

𝑾 + 𝟐 − 𝒌𝟐 + 𝟏
𝑾 + 𝟐

𝑯
+

𝟐

0 …

…



Stride

We can move the filter along the image using larger steps (stride) 

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑾

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

 

(𝑾 − 𝒌𝟐)/𝟐 + 𝟏

Stride = 2 (every other pixel)



Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input 

𝑾

𝑯



Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three 

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

𝒌𝟐
𝟑

𝒌
𝟏

Kernel

Feature Map

𝟏

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏



Operation of Multi-Channel Input

Similar to before, we perform element-wise 

multiplication between kernel and image 

patch, summing them up (dot product)

Except with 𝒌𝟏 ∗ 𝒌𝟐 ∗ 𝟑 values

We have shown inputs as a one-channel image but in reality they have three 

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image



Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Number of 

channels in output 

is equal to number 

of kernels

𝑾

𝟑

𝑯

Image



Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage



Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 

Input Image

Im2col

=>

Patch 1

Patch 2
…Patch

1

Patch

2



Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/ 
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Summary

We will have a new layer: Convolution layer

Mathematical way of representing a strided filter

Equivalent view: Each output node is connected to window, not all 

input pixels

Kernels/filters/features are learned

Implementation is actually cross-correlation! (but it doesn’t matter)

Next time: How do we compute the gradients across this layer?

Need to reason about what input/weight pixel is affecting what output 

pixel!
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