
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Optimization

• Convolutional Layers

Administrivia

• Assignment 2 out – Due Feb 17th (grace period until Feb 19th)

• Implement convolutional neural networks

• Meta Lectures: Data wrangling OH unfortunately not recorded

• Issue fixed, sorry!

• Next one 02/21

Designing Deep Neural Networks

There are still many design

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and

Optimization

⬣ Machine Learning

Considerations

?

Local

Minima

Optimizers

Loss Landscape

Deep learning involves complex,

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result

There is little direct theory and a lot of

intuition/rules of thumbs instead

⬣ Some insight can be gained via

theory for simpler cases (e.g.

convex settings)

Loss Landscape

It used to be thought that

existence of local minima is

the main issue in optimization

There are other more

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point

Noisy Gradients

⬣ We use a subset of the

data at each iteration to

calculate the loss (&

gradients)

⬣ This is an unbiased

estimator but can have

high variance

⬣ This results in noisy steps

in gradient descent

𝑳 =
𝟏

𝑴
 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Loss Surface Geometry

Several loss surface geometries

are difficult for optimization

Several types of minima: Local

minima, plateaus, saddle points

Saddle points are those where the

gradient of orthogonal directions

are zero

⬣ But they disagree (it’s min for

one, max for another)

Plateau

Saddle Point

Adding Momentum

⬣ Gradient descent takes a step in the

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling

down loss surface, and use

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights

Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

= 𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏

Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights

Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 + 𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity

with current gradient, go along velocity

first and then calculate gradient at new

point

⬣ We know velocity is probably a

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Note there are several equivalent

formulations across deep learning

frameworks!

Resource:

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Hessian and Loss Curvature

⬣ Various mathematical ways to

characterize the loss landscape

⬣ If you liked Jacobians… meet the

⬣ Gives us information about the

curvature of the loss surface

First

order

Second

order

Condition Number

Condition number is the ratio of

the largest and smallest eigenvalue

⬣ Tells us how different the

curvature is along different

dimensions

If this is high, SGD will make big

steps in some dimensions and

small steps in other dimension

Second-order optimization methods

divide steps by curvature, but

expensive to compute

Idea: Have a dynamic learning rate

for each weight

Several flavors of optimization

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD+Momentum can achieve

similar results in many cases but

with much more tuning

Per-Parameter Learning Rate

Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics

to reduce learning rate across

iterations

Denominator: Sum up

gradients over iterations

Directions with high

curvature will have higher

gradients, and learning rate

will reduce
Duchi, et al., “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”

As gradients are

accumulated learning

rate will go to zero

RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving

average of squared

gradients!

Does not saturate the

learning rate

Adam

Combines ideas from

above algorithms

Maintains both

gradient and squared

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning

(one or both of moments will be

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015

Adam

Solution: Time-varying bias

correction

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number

divided by (1-0.9=0.1) resulting

in more reasonable values (and
𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒊

 𝑮𝒊 =
𝑮𝒊

𝟏 − 𝜷𝟐
𝒊

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

𝑮𝒊 + 𝝐

Behavior of Optimizers

Optimizers behave differently

depending on landscape

Different behaviors such as

overshooting, stagnating, etc.

Plain SGD+Momentum can

generalize better than adaptive

methods, but requires more tuning

⬣ See: Luo et al., Adaptive

Gradient Methods with

Dynamic Bound of Learning

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/images/pdf_icon_blue.svg

https://openreview.net/pdf?id=Bkg3g2R9FX

Learning Rate Schedules

First order optimization methods have

learning rates

Theoretical results rely on annealed

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss

Convolution

& Pooling

The connectivity in linear layers doesn’t always make sense

Limitation of Linear Layers

How many parameters?

M*N (weights) + N (bias)

Hundreds of millions of

parameters for just one layer

More parameters => More

data needed

Is this necessary?

1024 x 1024

 Pixel Image

~1M element

Vector (M)

Fully-

Connected

Layer (N)

Image features are spatially

localized!

Smaller features repeated

across the image

Edges

Color

Motifs (corners, etc.)

No reason to believe one feature

tends to appear in one location

vs. another (stationarity)

Locality of Features

Can we induce a bias in the

design of a neural network

layer to reflect this?

Each node only receives input from

𝑲𝟏 × 𝑲𝟐 window (image patch)

Region from which a node receives

input from is called its receptive

field

Advantages:

Reduce parameters to (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑵 where 𝑵 is number of output

nodes

Explicitly maintain spatial information

Idea 1: Receptive Fields

Do we need to learn location-specific features?

𝑲𝟏

𝑲𝟐

Nodes in different locations can share

features

No reason to think same feature

(e.g. edge pattern) can’t appear

elsewhere

 Use same weights/parameters in

computation graph (shared

weights)

Advantages:

Reduce parameters to (𝑲𝟏× 𝑲𝟐 + 𝟏)

Explicitly maintain spatial

information

Idea 2: Shared Weights

𝑲𝟏

𝑲𝟐

𝑲𝟏

We can learn many such features

for this one layer

Weights are not shared

across different feature

extractors

Parameters: (𝑲𝟏× 𝑲𝟐 +
𝟏) ∗ 𝑴 where 𝑴 is number of

features we want to learn

Idea 3: Learn Many Features

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

This operation is extremely common in electrical/computer engineering!

Convolution

From https://en.wikipedia.org/wiki/Convolution

In mathematics and, in particular, functional

analysis, convolution is a mathematical

operation on two functions f and g producing a

third function that is typically viewed as a

modified version of one of the original functions,

giving the area overlap between the two

functions as a function of the amount that one of

the original functions is translated.

Convolution is similar to cross-correlation.

It has applications that include probability,

statistics, computer vision, image and signal

processing, electrical engineering, and

differential equations.

Visual comparison of convolution and

cross-correlation.

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

1D

Convolution

2D

Convolution

Notation: 𝑭 ⊗ (𝑮 ⊗ 𝑰) = (𝑭 ⊗ 𝑮) ⊗ 𝑰

𝒚𝒌 =

𝒏=𝟎

𝑵−𝟏

𝒉𝒏 ∙ 𝒙𝒌−𝒏

𝒚𝟎 = 𝒉𝟎 ∙ 𝒙𝟎

𝒚𝟏 = 𝒉𝟏 ∙ 𝒙𝟎 + 𝒉𝟎 ∙ 𝒙𝟏

𝒚𝟐 = 𝒉𝟐 ∙ 𝒙𝟎 + 𝒉𝟏 ∙ 𝒙𝟏 + 𝒉𝟎 ∙ 𝒙𝟐

𝒚𝟑 = 𝒉𝟑 ∙ 𝒙𝟎 + 𝒉𝟐 ∙ 𝒙𝟏 + 𝒉𝟏 ∙ 𝒙𝟐 + 𝒉𝟎 ∙ 𝒙𝟑

⋮

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D

Convolution

⋮

Image Kernel

(or filter)

Output /

filter /

feature map

2D Discrete Convolution

K =
−𝟏 𝟎 𝟏
−𝟐 𝟎 𝟐
−𝟏 𝟎 𝟏

2D

Convolution

⋮

Image Kernel

(or filter)

Output /

filter /

feature map

We will make this convolution operation a layer in the neural network

• Initialize kernel values randomly and optimize them!

• These are our parameters (plus a bias term per filter)

Convolution and Cross-Correlation

Convolution: Start at end of kernel and

move back

Cross-correlation: Start in the beginning of

kernel and move forward (same as for image)

An intuitive interpretation of the relationship:

Take the kernel, and rotate 180 degrees

along center (sometimes referred to as “flip”)

Perform cross-correlation

(Just dot-product filter with image!)

K =
𝟏 𝟐 𝟑
𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

K’ =
𝟗 𝟖 𝟕
𝟔 𝟓 𝟒
𝟑 𝟐 𝟏

The Intuitive Explanation

1. Flip kernel
(rotate 180
degrees)

2. Stride

along image

Mathematics of Discrete 2D Convolution

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

𝑯 − 𝟏

𝟐
,
𝑾 − 𝟏

𝟐

−
𝑯 − 𝟏

𝟐
, −

𝑾 − 𝟏

𝟐

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

=

𝒂=−
𝑯−𝟏

𝟐

𝑯−𝟏
𝟐

,

𝒃=−
𝑾−𝟏

𝟐

𝑾−𝟏
𝟐

,

𝒙 𝒂, 𝒃 𝒌(𝒓 − 𝒂, 𝒄 − 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

𝒚 𝟎, 𝟎 = 𝒙 −𝟐, −𝟐 𝒌 𝟐, 𝟐 + 𝒙 −𝟐, −𝟏 𝒌 𝟐, 𝟏 + 𝒙 −𝟐, 𝟎 𝒌 𝟐, 𝟎 +
𝒙 −𝟐, 𝟏 𝒌 𝟐, −𝟏 + 𝒙 −𝟐, 𝟐 𝒌 𝟐, −𝟐 +…

=

𝒂=−
𝑲𝟏−𝟏

𝟐

𝒌𝟏−𝟏
𝟐 ,

𝒃=−
𝒌𝟐−𝟏

𝟐

𝒌𝟐−𝟏
𝟐 ,

𝒙 𝒓 − 𝒂, 𝒄 − 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Centering Around the Kernel

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(−
𝒌𝟏 − 𝟏

𝟐
, −

𝒌𝟐 − 𝟏

𝟐
)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(
𝒌𝟏 − 𝟏

𝟐
,
𝒌𝟐 − 𝟏

𝟐
)

=

𝒂=𝟎

𝒌𝟏−𝟏

𝒃=𝟎

𝒌𝟐−𝟏

𝒙 𝒓 + 𝒂, 𝒄 + 𝒃 𝒌(𝒂, 𝒃)𝒚 𝒓, 𝒄 = (𝒙 ∗ 𝒌)(𝒓, 𝒄)

Cross-Correlation

𝑾 = 𝟓

𝑯 = 𝟓
𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏, 𝒌𝟐 − 𝟏)

Since we will be learning these kernels, this change

does not matter!

Cross-Correlation

K’ =
1 0 − 1
2 0 − 2
1 0 − 1

X(0: 2,0: 2) =
200 150 150
100 50 100
25 25 10

X(0:2,0:2) ⋅ 𝐾′ = 65

Dot product
(element-wise multiply and sum)

+ bias

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Convolution and Cross-Correlation

Why Bother with Convolutions?

Convolutions are just simple linear

operations

Why bother with this and not just say it’s a

linear layer with small receptive field?

There is a duality between them during

backpropagation

Convolutions have various

mathematical properties people care

about

This is historically how it was inspired

?

Input &

Output Sizes

Convolution Layer Hyper-Parameters

Convolution operations have several hyper-parameters

From: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html#torch.nn.Conv2d

Valid Convolution

Output size of vanilla convolution operation is 𝑯 − 𝒌𝟏 + 𝟏 × 𝑾 − 𝒌𝟐 + 𝟏

This is called a “valid” convolution and only applies kernel within image

𝑾 = 𝟓

𝑯
=

𝟓

𝒌𝟏 = 𝟑

𝒌𝟐 = 𝟑

(𝟎, 𝟎)

(𝑯 − 𝟏, 𝑾 − 𝟏)

(𝟎, 𝟎)

(𝒌𝟏 − 𝟏,
𝒌𝟐 − 𝟏)

𝑯
−

𝒌
𝟏

+
𝟏

𝑾 − 𝒌𝟐 + 𝟏

Adding Padding

We can pad the images to make the output the same size:

Zeros, mirrored image, etc.

Note padding often refers to pixels added to one size (𝐏 = 𝟏 here)

𝒌𝟏

𝒌𝟐 𝑯
+

𝟐
−

𝒌
𝟏

+
𝟏

𝑾 + 𝟐 − 𝒌𝟐 + 𝟏
𝑾 + 𝟐

𝑯
+

𝟐

0 …

…

Stride

We can move the filter along the image using larger steps (stride)

This can potentially result in loss of information

Can be used for dimensionality reduction (not recommended)

𝑾

𝑯

(𝑯
−

𝒌
𝟏

)/
𝟐

+
𝟏

(𝑾 − 𝒌𝟐)/𝟐 + 𝟏

Stride = 2 (every other pixel)

Invalid Stride

Stride can result in skipped pixels, e.g. stride of 3 for 5x5 input

𝑾

𝑯

Multi-Channel Inputs

We have shown inputs as a one-channel image but in reality they have three

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

𝒌𝟐
𝟑

𝒌
𝟏

Kernel

Feature Map

𝟏

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Operation of Multi-Channel Input

Similar to before, we perform element-wise

multiplication between kernel and image

patch, summing them up (dot product)

Except with 𝒌𝟏 ∗ 𝒌𝟐 ∗ 𝟑 values

We have shown inputs as a one-channel image but in reality they have three

channels (red, green, blue)

In such cases, we have 3-channel kernels!

𝑾

𝟑

𝑯

Image

Multiple Kernels

We can have multiple kernels per layer

We stack the feature maps together at the output

𝒌𝟐𝟑

𝒌
𝟏

Kernels
Feature Maps

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

Number of

channels in output

is equal to number

of kernels

𝑾

𝟑

𝑯

Image

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

Vectorization

Just as before, in practice we can vectorize this operation

Step 1: Lay out image patches in vector form (note can overlap!)

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Input Image

Im2col

=>

Patch 1

Patch 2
…Patch

1

Patch

2

Vectorization

Just as before, in practice we can vectorize this operation

Step 2: Multiple patches by kernels

Adapted from: https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-deep-learning/

Patch 1

Patch 2
…

Input Matrix Kernel Matrix

Number of Kernels

N
u

m
b

e
r o

f P
a

tc
h

e
s

k

X

k

K
e

rn
e

l 1

K
e

rn
e

l 2

…

Summary

We will have a new layer: Convolution layer

Mathematical way of representing a strided filter

Equivalent view: Each output node is connected to window, not all

input pixels

Kernels/filters/features are learned

Implementation is actually cross-correlation! (but it doesn’t matter)

Next time: How do we compute the gradients across this layer?

Need to reason about what input/weight pixel is affecting what output

pixel!

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

