
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Transfer Learning

• ConvNeXt

• Recurrent Neural Networks (RNNs)



Administrivia

• Project Proposal – In grace period!

• Assignment 2 – Due June. 22nd 

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf 

• Backprop notes 
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf 

• HW2 Tutorial (@176) 

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0


Administrivia

• Meta Office Hours – First one on language modeling Wed. 3pm ET

• GPU resources: Google Colab, PACE-ICE

• Google Cloud posted soon (for projects)



Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example: 

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then  𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112
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AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling



Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions



Skip Connections



ResNet Details



Training ResNets 



Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications



Wide Residual Networks



DenseNet



Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction, 

diversity of features, number of parameters/capacity, etc.



What do 

CNNs Learn?



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.



https://poloclub.github.io/cnn-explainer/   https://fredhohman.com/papers/cnn101 

CNN101 and CNN Explainer



Transfer 

Learning & 

Generalization



Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic 

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Reality

Generalization

model class
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AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generalization

model class
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VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality



Transfer Learning – Training on Large Dataset

What if we don’t have 

enough data?

Step 1: Train on large-scale 

dataset

Convolutional Neural

Networks

Input

Image
Predictions



Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights 

trained in Step 1

Replace last layer with new fully-connected for 

output nodes per new category



Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not 

enough data)

Replace last layer with new fully-connected for 

output nodes per new category



Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding 

Baseline for Recognition

This works 

extremely well! It 

was surprising upon 

discovery.

Features learned 

for 1000 object 

categories will 

work well for 

1001st!

Generalizes even 

across tasks 

(classification to 

object detection)



But it doesn’t always work that 

well!

If the source dataset you train on 

is very different from the target 

dataset, transfer learning is not as 

effective

If you have enough data for the 

target domain, it just results in 

faster convergence

See He et al., “Rethinking 

ImageNet Pre-training”

Learning with Less Labels



Effectiveness of More Data

From: Hestness  et al., Deep Learning Scaling Is 

Predictable
From: Revisiting the Unreasonable 

Effectiveness of Data 

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html



Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift



Data 

Augmentation



Data augmentation – Performing a range of transformations to 

the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or 

label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation



Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix



Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



We can apply generic affine 

transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations



We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html



Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”

mix

Noise
CowMask m Masked 

Image 𝑥

Unlabelled 

Image ො𝑥

mix

Mean

Masked 

Image ො𝑥𝑚

CowMask m

Unlabelled 

Image ො𝑥𝑏

Unlabelled 

Image ො𝑥𝑎

Mask proportion p



The Process 

of Training 

Neural 

Networks



⬣ Training deep neural networks is an art 

form!

⬣ Lots of things matter (together) – the key 

is to find a combination that works

⬣ Key principle: Monitoring everything to 

understand what is going on!

⬣ Loss and accuracy curves

⬣ Gradient statistics/characteristics

⬣ Other aspects of computation graph

The Process of Training

Optimizer

Trajectory

Local

Minima



Always start with proper methodology!

⬣ Not uncommon even in published papers 

to get this wrong

Separate data into: Training, validation, test 

set 

⬣ Do not look at test set performance until 

you have decided on everything (including 

hyper-parameters)

Use cross-validation to decide on hyper-

parameters if amount of data is an issue

Proper Methodology



Check the bounds of your loss function

⬣ E.g. cross-entropy ranges from [𝟎, ∞]

⬣ Check initial loss at small random weight 

values

⬣ E.g. −𝐥𝐨𝐠(𝒑) for cross-entropy, 

where 𝒑 = 𝟎. 𝟓

Another example: Start without 

regularization and make sure loss goes up 

when added

Key Principle: Simplify the dataset to make 

sure your model can properly (over)-fit 

before applying regularization

Sanity Checking 

Validation Loss



Change in loss indicates speed of 

learning:

⬣ Tiny loss change -> too small of a 

learning rate

⬣ Loss (and then weights) turn to NaNs -> 

too high of a learning rate

Other bugs can also cause this, e.g.:

⬣ Divide by zero

⬣ Forgetting the log!

In pytorch, use autograd’s detect 

anomaly to debug

Loss and Not a Number (NaN)

Learning 

Rate

Too Low

Learning 

Rate

Too High



⬣ Classic machine learning signs of 

under/overfitting still apply!

⬣ Over-fitting: Validation loss/accuracy starts to 

get worse after a while

⬣ Under-fitting: Validation loss very close to 

training loss, or both are high

⬣ Note: You can have higher training loss!

⬣ Validation loss has no regularization

⬣ Validation loss is typically measured at 

the end of an epoch

Overfitting

Validations

Training

Loss

Loss



Many hyper-parameters to tune!

⬣ Learning rate, weight decay 

crucial

⬣ Momentum, others more stable

⬣ Always tune hyper-parameters; 

even a good idea will fail un-

tuned!

Start with coarser search:

⬣ E.g. learning rate of {0.1, 0.05, 

0.03, 0.01, 0.003, 0.001, 0.0005, 

0.0001}

⬣ Perform finer search around good 

values

Hyper-Parameter Tuning

Automated methods are OK, but 

intuition (or random) can do well given 

enough of a tuning budget

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”, 

JMLR, 2012 
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Note that hyper-parameters and even module 

selection are interdependent!

Examples:

⬣ Batch norm and dropout maybe not be 

needed together (and sometimes the 

combination is worse)

⬣ The learning rate should be changed 

proportionally to batch size – increase 

the learning rate for larger batch sizes

⬣ One interpretation: Gradients are 

more reliable/smoother

Inter-dependence of Hyperparameters



Note that we are optimizing a loss 

function

What we actually care about is 

typically different metrics that we 

can’t differentiate:

⬣ Accuracy

⬣ Precision/recall

⬣ Other specialized metrics

The relationship between the two 

can be complex!

Relationship Between Loss and Other Metrics

relevant elements

selected elements

true positives false positives

false negatives true negatives

From https://en.wikipedia.org/wiki/Precision_and_recall



⬣ Example: Cross entropy loss

𝑳 = −𝒍𝒐𝒈 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

⬣ Accuracy is measured based on:

𝒂𝒓𝒈𝒎𝒂𝒙𝒊(𝑷 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊 )

⬣ Since the correct class score only has 

to be slightly higher, we can have flat 

loss curves but increasing 

accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 

inherent tradeoff between number of positive 

predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑+𝒇𝒏
 

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑+𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏

From 

https://en.wikipedia.org/wiki/Receiver_operating_

characteristic



Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the 

inherent tradeoff between number of positive 

predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑+𝒇𝒏
 

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑+𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏

⬣ We can obtain a curve by varying the 

(probability) threshold:

⬣ Area under the curve (AUC) common 

single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From 

https://en.wikipedia.org/wiki/Receiver_operating_

characteristic



Resource:

⬣ A disciplined approach to 

neural network hyper-

parameters: Part 1 --

learning rate, batch size, 

momentum, and weight 

decay, Leslie N. Smith

Resources 

Optimizer

Trajectory

Local

Minima

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820


ConvNeXt



ConvNeXt (2022)

2024-01-16 51



ConvNeXt (2022)

• To bridge the gap between the Conv Nets and Vision 
Transformers (ViT)
• ViT, Swin Transformer has been the SOTA visual model backbone

• Is convolutional networks really not as good as transformer models?

• Investigation
• The author start with ResNet-50 and reimplement the CNN networks 

with modern designs

• The results showing that ConvNeXt achieves beat the ViT models, 
again.

2024-01-16 Slides created for CS886 at UWaterloo 52



ConvNeXt (2022)

• What problem does this paper focus on?

– Is this new or already explored? 

– Is this important?

– What key applications this is relevant for?

– What assumptions does this paper make about 

2024-01-16 Slides created for CS886 at UWaterloo 53



ConvNeXt (2022)

• What is the key “golden nugget” – intuition, idea, etc. that 
leads to approach 

2024-01-16 Slides created for CS886 at UWaterloo 54



ConvNeXt (2022)

2024-01-16 55



ConvNeXt (2022)

• What approach does this paper take? 

2024-01-16 Slides created for CS886 at UWaterloo 56



ConvNeXt (2022)

2024-01-16 57

•Modern designs added:

•Macro Design
• Changing stage compute ratio

• Changing stem to “patchify”

•Micro Design
• ReLU -> GELU

• Fewer activation functions

• Fewer normalization layers

• BatchNorm -> LayerNorm

• Separate downsampling layers



ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 58

•Modern designs added:

•Use ResNeXt

• Apply Inverted Bottleneck

•Use larger kernel size

• Training strategy:
• 90 epochs -> 300 epochs

• AdamW optimizer

• Data augmentation like Mixup, CutMix

• Regularization Schemes like label smoothing

• …



ConvNeXt (2022)

• What prior approaches exist to solve this problem?

– Will need to explore related work to answer this

• How does this work validate their approach?

2024-01-16 Slides created for CS886 at UWaterloo 59



ConvNeXt (2022)

• How do they validate their approach?

– What data do they use?

– What baselines do they compare against? 

2024-01-16 Slides created for CS886 at UWaterloo 60



ConvNeXt (2022)

• Strengths?

2024-01-16 Slides created for CS886 at UWaterloo 61



ConvNeXt (2022)

• Weaknesses/limitations?

2024-01-16 Slides created for CS886 at UWaterloo 62
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