
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Transfer Learning

• ConvNeXt

• Recurrent Neural Networks (RNNs)

Administrivia

• Project Proposal – In grace period!

• Assignment 2 – Due June. 22nd

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf

• Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf

• HW2 Tutorial (@176)

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0)

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Administrivia

• Meta Office Hours – First one on language modeling Wed. 3pm ET

• GPU resources: Google Colab, PACE-ICE

• Google Cloud posted soon (for projects)

Number of Parameters

Number of parameters with N filters is: 𝑵 ∗ (𝒌𝟏∗ 𝒌𝟐 ∗ 𝟑 + 𝟏)

Example:

𝒌𝟏 = 𝟑, 𝒌𝟐 = 𝟑, 𝑵 = 𝟒 𝒊𝒏𝒑𝒖𝒕 𝒄𝒉𝒂𝒏𝒏𝒆𝒍𝒔 = 𝟑, then 𝟑 ∗ 𝟑 ∗ 𝟑 + 𝟏 ∗ 𝟒 =112

𝒌𝟐𝟑

𝒌
𝟏

𝟒

𝑾 − 𝒌𝟐 + 𝟏𝑯
−

𝒌
𝟏

+
𝟏

𝑾

𝟑

𝑯

Kernels
Feature MapsImage

AlexNet – Layers and Key Aspects

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Key aspects:

ReLU instead of sigmoid or tanh

Specialized normalization layers

PCA-based data augmentation

Dropout

Ensembling

Inception Architecture

But have become deeper and more complex

From: Szegedy et al. Going deeper with convolutions

Skip Connections

ResNet Details

Training ResNets

Computational Complexity

From: An Analysis Of Deep Neural Network Models For Practical Applications

Wide Residual Networks

DenseNet

Summary

Convolutional neural networks (CNNs) stack pooling, convolution, non-

linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!

Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,

diversity of features, number of parameters/capacity, etc.

What do

CNNs Learn?

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101

CNN101 and CNN Explainer

Transfer

Learning &

Generalization

Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Transfer Learning – Training on Large Dataset

What if we don’t have

enough data?

Step 1: Train on large-scale

dataset

Convolutional Neural

Networks

Input

Image
Predictions

Initializing with Pre-Trained Network

Step 2: Take your custom data and initialize the network with weights

trained in Step 1

Replace last layer with new fully-connected for

output nodes per new category

Finetuning on New Dataset

Step 3: (Continue to) train on new dataset

Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

Replace last layer with new fully-connected for

output nodes per new category

Surprising Effectiveness of Transfer Learning

From: Razavian et al., CNN Features off-the-shelf: an Astounding

Baseline for Recognition

This works

extremely well! It

was surprising upon

discovery.

Features learned

for 1000 object

categories will

work well for

1001st!

Generalizes even

across tasks

(classification to

object detection)

But it doesn’t always work that

well!

If the source dataset you train on

is very different from the target

dataset, transfer learning is not as

effective

If you have enough data for the

target domain, it just results in

faster convergence

See He et al., “Rethinking

ImageNet Pre-training”

Learning with Less Labels

Effectiveness of More Data

From: Hestness et al., Deep Learning Scaling Is

Predictable
From: Revisiting the Unreasonable

Effectiveness of Data

https://ai.googleblog.com/2017/07/revisiting-

unreasonable-effectiveness.html

Dealing with Low-Labeled Situations

Setting Source Target Shift Type

Semi-supervised Single labeled Single unlabeled None

Domain Adaptation Single labeled Single unlabeled Non-semantic

Domain Generalization Multiple labeled Unknown Non-semantic

Cross-Task Transfer Single labeled Single unlabeled Semantic

Few-Shot Learning Single labeled Single few-labeled Semantic

Un/Self-Supervised Single unlabeled Many labeled Both/Task

There is a large number of different low-labeled settings in DL research

Non-Semantic Shift Semantic Shift

Data

Augmentation

Data augmentation – Performing a range of transformations to

the data

⬣ This essentially “increases” your dataset

⬣ Transformations should not change meaning of the data (or

label has to be changed as well)

Simple example: Image Flipping

Data Augmentation: Motivation

Random crop

⬣ Take different crops during training

⬣ Can be used during inference too!

Random Crop

CutMix

Color Jitter

Color Jitter

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

We can apply generic affine

transformations:

⬣ Translation

⬣ Rotation

⬣ Scale

⬣ Shear

Geometric Transformations

We can combine these transformations to add even more variety!

Combining Transformations

From https://mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Other Variations

CowMix
From French et al., “Milking CowMask for Semi-Supervised Image Classification”

mix

Noise
CowMask m Masked

Image 𝑥

Unlabelled

Image ො𝑥

mix

Mean

Masked

Image ො𝑥𝑚

CowMask m

Unlabelled

Image ො𝑥𝑏

Unlabelled

Image ො𝑥𝑎

Mask proportion p

The Process

of Training

Neural

Networks

⬣ Training deep neural networks is an art

form!

⬣ Lots of things matter (together) – the key

is to find a combination that works

⬣ Key principle: Monitoring everything to

understand what is going on!

⬣ Loss and accuracy curves

⬣ Gradient statistics/characteristics

⬣ Other aspects of computation graph

The Process of Training

Optimizer

Trajectory

Local

Minima

Always start with proper methodology!

⬣ Not uncommon even in published papers

to get this wrong

Separate data into: Training, validation, test

set

⬣ Do not look at test set performance until

you have decided on everything (including

hyper-parameters)

Use cross-validation to decide on hyper-

parameters if amount of data is an issue

Proper Methodology

Check the bounds of your loss function

⬣ E.g. cross-entropy ranges from [𝟎, ∞]

⬣ Check initial loss at small random weight

values

⬣ E.g. −𝐥𝐨𝐠(𝒑) for cross-entropy,

where 𝒑 = 𝟎. 𝟓

Another example: Start without

regularization and make sure loss goes up

when added

Key Principle: Simplify the dataset to make

sure your model can properly (over)-fit

before applying regularization

Sanity Checking

Validation Loss

Change in loss indicates speed of

learning:

⬣ Tiny loss change -> too small of a

learning rate

⬣ Loss (and then weights) turn to NaNs ->

too high of a learning rate

Other bugs can also cause this, e.g.:

⬣ Divide by zero

⬣ Forgetting the log!

In pytorch, use autograd’s detect

anomaly to debug

Loss and Not a Number (NaN)

Learning

Rate

Too Low

Learning

Rate

Too High

⬣ Classic machine learning signs of

under/overfitting still apply!

⬣ Over-fitting: Validation loss/accuracy starts to

get worse after a while

⬣ Under-fitting: Validation loss very close to

training loss, or both are high

⬣ Note: You can have higher training loss!

⬣ Validation loss has no regularization

⬣ Validation loss is typically measured at

the end of an epoch

Overfitting

Validations

Training

Loss

Loss

Many hyper-parameters to tune!

⬣ Learning rate, weight decay

crucial

⬣ Momentum, others more stable

⬣ Always tune hyper-parameters;

even a good idea will fail un-

tuned!

Start with coarser search:

⬣ E.g. learning rate of {0.1, 0.05,

0.03, 0.01, 0.003, 0.001, 0.0005,

0.0001}

⬣ Perform finer search around good

values

Hyper-Parameter Tuning

Automated methods are OK, but

intuition (or random) can do well given

enough of a tuning budget

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”,

JMLR, 2012

Grid Layout Random Layout

Important

parameter

Important

parameter

U
n
im

p
o

rt
a
n

t

p
a

ra
m

e
te

r

U
n
im

p
o

rt
a
n

t

p
a

ra
m

e
te

r

Note that hyper-parameters and even module

selection are interdependent!

Examples:

⬣ Batch norm and dropout maybe not be

needed together (and sometimes the

combination is worse)

⬣ The learning rate should be changed

proportionally to batch size – increase

the learning rate for larger batch sizes

⬣ One interpretation: Gradients are

more reliable/smoother

Inter-dependence of Hyperparameters

Note that we are optimizing a loss

function

What we actually care about is

typically different metrics that we

can’t differentiate:

⬣ Accuracy

⬣ Precision/recall

⬣ Other specialized metrics

The relationship between the two

can be complex!

Relationship Between Loss and Other Metrics

relevant elements

selected elements

true positives false positives

false negatives true negatives

From https://en.wikipedia.org/wiki/Precision_and_recall

⬣ Example: Cross entropy loss

𝑳 = −𝒍𝒐𝒈 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

⬣ Accuracy is measured based on:

𝒂𝒓𝒈𝒎𝒂𝒙𝒊(𝑷 𝒀 = 𝒚𝒊 𝑿 = 𝒙𝒊)

⬣ Since the correct class score only has

to be slightly higher, we can have flat

loss curves but increasing

accuracy!

Simple Example: Cross-Entropy and Accuracy

Loss

Accuracy

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the

inherent tradeoff between number of positive

predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑+𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑+𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏

From

https://en.wikipedia.org/wiki/Receiver_operating_

characteristic

Example: Precision/Recall or ROC Curves

⬣ Precision/Recall curves represent the

inherent tradeoff between number of positive

predictions and correctness of predictions

⬣ Definitions

⬣ True Positive Rate: 𝑻𝑷𝑹 =
𝒕𝒑

𝒕𝒑+𝒇𝒏

⬣ False Positive Rate: 𝑭𝑷𝑹 =
𝒇𝒑

𝒇𝒑+𝒕𝒏

⬣ 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝒕𝒑+𝒕𝒏

𝒕𝒑+𝒕𝒏+𝒇𝒑+𝒇𝒏

⬣ We can obtain a curve by varying the

(probability) threshold:

⬣ Area under the curve (AUC) common

single-number metric to summarize

⬣ Mapping between this and loss is not simple!

From

https://en.wikipedia.org/wiki/Receiver_operating_

characteristic

Resource:

⬣ A disciplined approach to

neural network hyper-

parameters: Part 1 --

learning rate, batch size,

momentum, and weight

decay, Leslie N. Smith

Resources

Optimizer

Trajectory

Local

Minima

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820

ConvNeXt

ConvNeXt (2022)

2024-01-16 51

ConvNeXt (2022)

• To bridge the gap between the Conv Nets and Vision
Transformers (ViT)
• ViT, Swin Transformer has been the SOTA visual model backbone

• Is convolutional networks really not as good as transformer models?

• Investigation
• The author start with ResNet-50 and reimplement the CNN networks

with modern designs

• The results showing that ConvNeXt achieves beat the ViT models,
again.

2024-01-16 Slides created for CS886 at UWaterloo 52

ConvNeXt (2022)

• What problem does this paper focus on?

– Is this new or already explored?

– Is this important?

– What key applications this is relevant for?

– What assumptions does this paper make about

2024-01-16 Slides created for CS886 at UWaterloo 53

ConvNeXt (2022)

• What is the key “golden nugget” – intuition, idea, etc. that
leads to approach

2024-01-16 Slides created for CS886 at UWaterloo 54

ConvNeXt (2022)

2024-01-16 55

ConvNeXt (2022)

• What approach does this paper take?

2024-01-16 Slides created for CS886 at UWaterloo 56

ConvNeXt (2022)

2024-01-16 57

•Modern designs added:

•Macro Design
• Changing stage compute ratio

• Changing stem to “patchify”

•Micro Design
• ReLU -> GELU

• Fewer activation functions

• Fewer normalization layers

• BatchNorm -> LayerNorm

• Separate downsampling layers

ConvNeXt (2022)

2024-01-16 Slides created for CS886 at UWaterloo 58

•Modern designs added:

•Use ResNeXt

• Apply Inverted Bottleneck

•Use larger kernel size

• Training strategy:
• 90 epochs -> 300 epochs

• AdamW optimizer

• Data augmentation like Mixup, CutMix

• Regularization Schemes like label smoothing

• …

ConvNeXt (2022)

• What prior approaches exist to solve this problem?

– Will need to explore related work to answer this

• How does this work validate their approach?

2024-01-16 Slides created for CS886 at UWaterloo 59

ConvNeXt (2022)

• How do they validate their approach?

– What data do they use?

– What baselines do they compare against?

2024-01-16 Slides created for CS886 at UWaterloo 60

ConvNeXt (2022)

• Strengths?

2024-01-16 Slides created for CS886 at UWaterloo 61

ConvNeXt (2022)

• Weaknesses/limitations?

2024-01-16 Slides created for CS886 at UWaterloo 62

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: ConvNeXt (2022)
	Slide 52: ConvNeXt (2022)
	Slide 53: ConvNeXt (2022)
	Slide 54: ConvNeXt (2022)
	Slide 55: ConvNeXt (2022)
	Slide 56: ConvNeXt (2022)
	Slide 57: ConvNeXt (2022)
	Slide 58: ConvNeXt (2022)
	Slide 59: ConvNeXt (2022)
	Slide 60: ConvNeXt (2022)
	Slide 61: ConvNeXt (2022)
	Slide 62: ConvNeXt (2022)

