Topics:

* Transfer Learning

* ConvNeXt

 Recurrent Neural Networks (RNNs)

CS 4644-DL / 7643-A
ZSOLT KIRA

* Project Proposal — In grace period!

* Assighment 2 — Due June. 22"
Implement convolutional neural networks

Resources (in addition to lectures):

DL book: Convolutional Networks

CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

Backprop notes
https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf

HW2 Tutorial (@176)

Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizXOnPa?dI=0)

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

* Maeta Office Hours — First one on language modeling Wed. 3pm ET

* GPU resources: Google Colab, PACE-ICE

* Google Cloud posted soon (for projects)

Number of parameters with N filters is: N x (kq*x ko, *3 + 1)

Example:
ki =3k, =3, N=4input channels = 3,then (3*3*3+1)*4 =112

w ﬂ = W—k,+1
3 4

Kernels
Image Feature Maps

Number of Parameters

Full (simplified) AlexNet architecture:

[224%224x3] INPUT

[55x55x96) CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96]) MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONVS5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096) 4096 neurons

[4096] 4096 neurons

[1000] 1000 neurons (class scores)

78 \dense

128 204

Ny
=]

dense dense)

AN\ 000

\s 128 Max
28\\listride Max 128 Max pooling
“of 4 pooling pooling

204 2048

Key aspects:
RelLU instead of sigmoid or tanh
Specialized normalization layers
PCA-based data augmentation
Dropout
Ensembling

From: Slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231r

AlexNet — Layers and Key Aspects

But have become deeper and more complex

Conv MaxPool
1x1+1(S) 3x3+1(S)

From: Szegedy et al. Going deeper with convolutions

Georg l:

Inception Architecture

[He et al., 2015]

Solution: Change the network so learning identity functions as extra layers is easy

HX) = FQ) + T | |dentity mapping:
— X)= X X relu = ¥ | =
o) m: F00 + x H(x) = xif F(x) =0
T Use layers to
X fit residual
[relu ") Jrt dentity F(x) = H(x) - X
instead of
$ H(x) directly
X X
“Plain” layers Residual block

) Skip Connections

>>> import torch

>>> from torchvision.models import resnetl8

>>> model = resnet18()

>>> summary(model2, (3, 224, 224), device="cpu')

layer name | output size 18-layer 34-layer Layer (type) Output Shape e
convl 2 ST e e e
Conv2d-1 [-1, 64, 112, 112] 9,408

BatchNorm2d-2 [-1, 64, 112, 112] 128

ReLU-3 [-1, 64, 112, 112])

conv2_x 5656 3% 3, 64 33, 64 MaxPool2d-4 [-1, 64, 56, 56] 0
e) ’ Conv2d-5 [-1, 64, 56, 56] 36,864

BatchNorm2d-6 [-1, 64, 56, 56] 128

ReLU-7 [-1, 64, 56, 56] %)

Conv2d-8 [-1, 64, 56, 56] 36,864

BatchNorm2d-9 [-1, 64, 56, 56] 128

ReLU-10 [-1, 64, 56, 56])

BasicBlock-11 [-1, 64, 56, 56] (%]

Conv2d-12 [-1, 64, 56, 56] 36,864

w3 9 %3, 2 BatchNorm2d-13 [-1, 64, 56, 56] 128

conv4_x x 14 IO P IO 3 RelLU-14 [-1, 64, 56, 56])
Y X3 YX 3, 2D Conv2d-15 [-1, 64, 56, 56] 36,864

BatchNorm2d-16 [-1, 64, 56, 56] 128

RelU-17 [-1, 64, 56, 56])

BasicBlock-18 [-1, 64, 56, 56] (7]

Conv2d-19 [-1, 128, 28, 28] 73,728

BatchNorm2d-20 [-1, 128, 28, 28] 256

RelU-21 [-1, 128, 28, 28] %)

Conv2d-22 [-1

, 128, 28, 28] 147,456

.

- av
FLOPs 3.6x10°
ResNet Details

Training ResNet in practice:

- Batch Normalization after every CONV layer

- Xawvier initialization from He et al.

- SGD + Momentum

- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256

- Weight decay of 1e-5

- No dropout used

) Training ResNets

Computational Complexity

Inception-v4
Inception-v3
ResNet-50

ResNet-101
. ResNet-34
ﬂ ResNet-18

GoogLeNet
ENet

° BN-NIN

ResNet-152
VGG-16

g
>
9
©
“
3
V)
V)
]
—
o
(o]
=

>
=
>
o
[
[
=
=
o
1]
—
o
o
fit

125M ---155M

BN-AlexNet

et W et e »\fb A0 A9 o
\34* +$ AW e G AlexNet

e >
o° Q\eﬁ NC \‘Q\e$@ee

15 20 25
Operations [G-Ops]

From: An Analysis Of Deep Neural Network Models For Practical Applicati 0'

(=]

Geor §
Tech|]

Wide Residual Networks

[Zagoruyko et al. 2016]

- Argues that residuals are the
important factor, not depth
- Use wider residual blocks (F x k filters
instead of F filters in each layer) 1 1
- 50-layer wide ResNet outperforms
152-layer original ResNet
- Increasing width instead of depth
more computationally efficient Basic residual block Wide residual block
(parallelizable)

) Wide Residual Networks

Densely Connected Convolutional Networks (DenseNet)———
[Huang et al. 2017] 4 | FC

I Pool

- Dense blocks where each layer is
connected to every other layer in
feedforward fashion

- Alleviates vanishing gradient,
strengthens feature propagation,
encourages feature reuse

- Showed that shallow 50-layer
network can outperform deeper
152 layer ResNet

| DenseBlock 3

I Pool I

| Dense Block 2 |

| Pool |

| Dense Block 1 |

| Input |

Dense Block

) DenseNet Geordy \

Convolutional neural networks (CNNs) stack pooling, convolution, non-
linearities, and fully connected (FC) layers

Feature engineering => architecture engineering!
Tons of small details and tips/tricks

Considerations: Memory, compute/FLO, dimensionality reduction,
diversity of features, number of parameters/capacity, etc.

) Summary

What do

CNNs Learn?

Georgia
graia |

VGG Layer-by-Layer Visualization

i

| & £

RAS
b

g s
e)
.

w ==

Vo
|

: !f '1'] l;ﬂ}

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

Rt

- M

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

VGG Layer-by-Layer Visualization

From: “Visualizing and Understanding Convolutional Networks, Zeiler & Fergus, 2014.

Tech

08

CNN101 and CNN Explainer

CNN 101 Learn Convolutional Neural Network (CNN) in your browser!

https://poloclub.github.io/cnn-explainer/ https://fredhohman.com/papers/cnn101

Transfer

Learning &
Generalization

Georgia
groia |

Reality

Multi-class Logistic
Regression

| Softmax |

horse “person

| FC HxWx3 |

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Generalization Gegrgia |

=

AlexNet Reality

Softmax |

FC 1000 |

FC 4096 |

- horse “person
Fcaose —— Mmodel class —__ ‘ ‘

Pool I

)~ -

Pool I

Pool I

Input |

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegrgia |

=

VGG19 R
.
Qzﬁ‘/ Reality
model class —
Q horse perﬂ
;\\O
<L
Qx§ o
N
o
S %
—T— %%
(9,;.
()
>

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization Gegrgia |

=

What if we don’t have
enough data?

INESgE I T Eia™

Step 1: Train on large-scale

dataset
%ll =—» Predictions

Convolutional Neural
Networks

|y

Input
Image

Transfer Learning — Training on Large Dataset Seg%ia|

=

Step 2: Take your custom data and initialize the network with weights

trained in Step 1
. ||¢
| %

Replace last layer with new fully-connected for
output nodes per new category

Initializing with Pre-Trained Network Ge°’9'aQ

Step 3: (Continue to) train on new dataset
Finetune: Update all parameters

Freeze feature layer: Update only last layer weights (used when not

enough data)

ol

Replace last layer with new fully-connected for
output nodes per new category

Finetuning on New Dataset Gograla |

=

This works
extremely well! It

was surprising upon
discovery. ‘UU Best state of the art 00 CNN off-the-shelf 00 CNN off-the-shelf + augmentation 00 Specialized CNN
100}
Features learned 0 GEEE
for 1000 object H HHIH HIH
categories will O H
work well for Py e it g1 o
1001st s i e
C-‘ab.o " & .
Generalizes even
across tasks From: Razavian et al., CNN Features off-the-shelf: an Astounding
(classification to Baseline for Recognition

object detection)

Surprising Effectiveness of Transfer Learning Seg2ia/

=

Learning with Less Labels

But it doesn’t always work that
well!

If the source dataset you train on
is very different from the target
dataset, transfer learning is not as
effective

If you have enough data for the
target domain, it just results in
faster convergence

See He et al., “Rethinking
ImageNet Pre-training”

Georgia I&
Tech

Effectiveness of More Data

@—@ Fine-tuning
@—@ No Fine-tuning

10 30 100 300

Number of examples (in millions) —

From: Revisiting the Unreasonable
Effectiveness of Data
https://ai.googleblog.com/2017/07/revisiting-
unreasonable-effectiveness.html

)
©
o
i
o
s]
=
=
—
e
P
w
c
o
o
©
-
©
P
1]
c
(T}
&)

Small Data P | Redi Irreducible
. ower-law Region o
Region J Error

Region
Best Guess Error

Irreducible Error

Training Data Set Size (Log-scale)

Figure 6: Sketch of power-law learning curves

From: Hestness et al., Deep Learning Scaling Is
Predictable

Georgla I&

There is a large number of different low-labeled settings in DL research

Setting Source Target Shift Type
Semi-supervised Single labeled Single unlabeled None
Domain Adaptation Single labeled Single unlabeled | Non-semantic
Domain Generalization Multiple labeled Unknown Non-semantic
Cross-Task Transfer Single labeled Single unlabeled Semantic
Few-Shot Learning Single labeled Single few-labeled Semantic
Un/Self-Supervised Single unlabeled Many labeled Both/Task

Non-Semantic Shift Semantic Shift
@ ;'\ i 51 <
g |

) Dealing with Low-Labeled Situations Ge°r9-a@

Data

Augmentation

4 'o
o

Geol &?

Tech|)

Data augmentation — Performing a range of transformations to
the data

This essentially “increases” your dataset

Transformations should not change meaning of the data (or
label has to be changed as well)

Simple example: Image Flipping

» Data Augmentation: Motivation

Random crop
Take different crops during training

Can be used during inference too!

» Random Crop

Color Jitter

From https.//mxnet.apache.org/versions/1.5.0/tutorials/gluon/data_augmentation.html

Color Jitter

We can apply generic affine
transformations:

Translation
Rotation
Scale

Shear

) D Geometric Transformations

We can combine these transformations to add even more variety!

Combining Transformations

Unlabelled
Image %,

Unlabelled

4

WY y

» A

Mask proportion p

|]
@D = PN =

CowMask m

S

" Masked
CowMask m Masked Image %
Image % " '
Unlabelled
. Image x
CowMix ’

From French et al., “Milking CowMask for Semi-Supervised Image Classification”

Other Variations

The Process
of Training

Neural
Networks

4 'o
o

Geol &?

Tech|)

Training deep neural networks is an art
form!

Lots of things matter (together) — the key
is to find a combination that works

Key principle: Monitoring everything to
understand what is going on!

Loss and accuracy curves
Gradient statistics/characteristics

Other aspects of computation graph

) The Process of Training

Optimizer
Trajectory

Local
Minima

Proper Methodology

Always start with proper methodology!

Not uncommon even in published papers
to get this wrong

Separate data into: Training, validation, test
set

Do not look at test set performance until
you have decided on everything (including
hyper-parameters)

Use cross-validation to decide on hyper-
parameters if amount of data is an issue

Check the bounds of your loss function

E.g. cross-entropy ranges from [0, o]

Check initial loss at small random weight |
values : K\
PP T - gl

E.g. —log(p) for cross-entropy,
where p = 0.5 :

Another example: Start without 0
regularization and make sure loss goes up
when added

0 200 400 600 a00 1k

Validation Loss

Key Principle: Simplify the dataset to make
sure your model can properly (over)-fit
before applying regularization

) Sanity Checking

Change in loss indicates speed of
learning:

Tiny loss change -> too small of a
learning rate

Loss (and then weights) turn to NaNs ->

too high of a learning rate

Other bugs can also cause this, e.g.:

Divide by zero

Learning
Rate
Too Low

0 200 400 600 300 1K

Learning
Rate
Too High

Forgetting the log!

In pytorch, use autograd’s detect
anomaly to debug

with autograd.detect anomaly():
output = model(input)
loss = criterion(output, labels
loss.backward()

) Loss and Not a Number (NaN)

Classic machine learning signs of
under/overfitting still apply! 2
Validati

Over-fitting: Validation loss/accuracy starts to - —
get worse after a while : Training
Un_d_er-fitting: Validation Ic_>ss very close to ‘ Loss |
training loss, or both are high
Note: You can have higher training loss!

Validation loss has no regularization

Validation loss is typically measured at j e —

the end of an epoch Loss

) Overfitting

Many hyper-parameters to tune!

Learning rate, weight decay
crucial

Grid Layout Random Layout

Momentum, others more stable

Unimportant
parameter
Unimportant
parameter

Always tune hyper-parameters;

even a good idea will fail un-

Important Important
|
tuned! parameter parameter

Start with coarser search:

From: Bergstra et al., “Random Search for Hyper-Parameter Optimization”,

E.g. learning rate of {0.1, 0.05, LR, 2012
0.03, 0.01, 0.003, 0.001, 0.0005,

0.0001} Automated methods are OK, but
Perform finer search around good intuition (or random) can do well given
values enough of a tuning budget

) Hyper-Parameter Tuning

Inter-dependence of Hyperparameters

Note that hyper-parameters and even module
selection are interdependent!

Examples:

Batch norm and dropout maybe not be
needed together (and sometimes the
combination is worse)

The learning rate should be changed
proportionally to batch size — increase
the learning rate for larger batch sizes

One interpretation: Gradients are
more reliable/smoother

Note that we are optimizing a loss
function

What we actually care about is
typically different metrics that we
can’t differentiate:

Accuracy
Precision/recall
Other specialized metrics

The relationship between the two
can be complex!

)

relevant elements
I I

false negatives true negatives

true positives false positives

selected elements

From https://en.wikipedia.org/wiki/Precision_and_recall

Example: Cross entropy loss

L=-log P(Y =y;|X =x;) ., \

Accuracy is measured based on: 0 2w a0 &0 o

argmax;(P(Y = y; |X = x;))

Since the correct class score only has
to be slightly higher, we can have flat
loss curves but increasing e
accuracy! Accuracy

) Simple Example: Cross-Entropy and Accuracy

Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

Definitions

True Positive Rate: TPR = P
tp+fn

False Positive Rate: FPR = L2
fp+tn

tp+tn
tp+tn+fp+fn

Accuracy =

——
——
| —

08—
a
2 06—
[
=
E — NetChop C-term 3.0
S04 — TAP + ProteaSMM-i
B — ProteaSMM-i

0.2

0 1 I 1 | 1 | 1 |
0 0.2 0.4 0.6 0.8 1
False positive rate

From

https://en.wikipedia.org/wiki/Receiver_operating
characteristic

Precision/Recall curves represent the
inherent tradeoff between number of positive
predictions and correctness of predictions

Definitions
True Positive Rate: TPR = P
tp+fn
False Positive Rate: FPR = 1P
fp+tn
B tp+tn
Accuracy = tpt+tn+fpt+fn

We can obtain a curve by varying the
(probability) threshold:

Area under the curve (AUC) common
single-number metric to summarize

Mapping between this and loss is not simple!

0.8

o
=)
I

— NetChop C-term 3.0
— TAP + ProteaSMM-i
— ProteaSMM-i

True positive rate

o
B
T

1 1 | 1 | 1 | 1
0 0.2 0.4 0.6 0.8 1
False positive rate

From
https://en.wikipedia.org/wiki/Receiver_operating
characteristic

) Example: Precision/Recall or ROC Curves

Resource: Local
Minima
A disciplined approach to
neural network hyper-
parameters: Part 1 --
learning rate, batch size,
momentum, and weight

decay, Leslie N. Smith

Optimizer
Trajectory

) Resources

https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820
https://arxiv.org/abs/1803.09820

ConvNeXt (2022)

A ConvNet for the 2020s
Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie

The "Roaring 20s" of visual recognition began with the introduction of Vision Transformers (ViTs), which quickly superseded ConvNets as the state-of-the-
art image classification model. A vanilla ViT, on the other hand, faces difficulties when applied to general computer vision tasks such as object detection
and semantic segmentation. It is the hierarchical Transformers (e.g., Swin Transformers) that reintroduced several ConvNet priors, making Transformers
practically viable as a generic vision backbone and demonstrating remarkable performance on a wide variety of vision tasks. However, the effectiveness
of such hybrid approaches is still largely credited to the intrinsic superiority of Transformers, rather than the inherent inductive biases of convolutions. In
this work, we reexamine the design spaces and test the limits of what a pure ConvNet can achieve. We gradually "modernize" a standard ResNet toward
the design of a vision Transformer, and discover several key components that contribute to the performance difference along the way. The outcome of this
exploration is a family of pure ConvNet models dubbed ConvNeXt. Constructed entirely from standard ConvNet modules, ConvNeXts compete favorably
with Transformers in terms of accuracy and scalability, achieving 87.8% ImageNet top-1 accuracy and outperforming Swin Transformers on COCO
detection and ADE20K segmentation, while maintaining the simplicity and efficiency of standard ConvNets.

2024-01-16

ConvNeXt (2022)

* To bridge the gap between the Conv Nets and Vision
Transformers (ViT)
* ViT, Swin Transformer has been the SOTA visual model backbone
* |s convolutional networks really not as good as transformer models?

* Investigation

* The author start with ResNet-50 and reimplement the CNN networks
with modern designs

* The results showing that ConvNeXt achieves beat the ViT models,
again.

202401)

ConvNeXt (2022)

 What problem does this paper focus on?
— Is this new or already explored?
— Is this important?
— What key applications this is relevant for?
— What assumptions does this paper make about

202401)

ConvNeXt (2022)

* What is the key “golden nugget” — intuition, idea, etc. that
leads to approach

202401)

ConvNeXt (2022)

2024-01-16

ImageNet-1K Acc.

90
88
86 ConvNeXt |
Swin Transformer
(2021) ConvNeXit

84 | Swin Transformer

ResNet peil ViT (2021)

2015 2020) (2020)
@ ‘

Diamster
- B R N
% 48 16 256 GFLOPs
o

8 ImageNet-1K Trained ImageNet-22K Pre-trained

Figure 1. ImageNet-1K classification results for e ConvNets and

vision Transformers. Each bubble’s area is proportional to FLOPs
of a variant in a model family. ImageNet-1K/22K models here
take 224%/3842 images respectively. ResNet and ViT results were
obtained with improved training procedures over the original papers.
We demonstrate that a standard ConvNet model can achieve the
same level of scalability as hierarchical vision Transformers while
being much simpler in design.

ConvNeXt (2022)

 What approach does this paper take?

202401)

Nonlinearities
ImageNet=1K Acc,

ConvNeXt (2022) o

® Modern designs added: 88
® Macro Design o6 ConvNeXt |
® Changing stage compute ratio) L conen
* Changing stem to “patchify” 8 DT ' e ey
. . ng?‘;‘ (2020) (2020)
® Micro Design 8 .
* RelU -> GELU @ N
® Fewer activation functions 80 | i: T Zmcrons
® Fewer normalization layers ¢
® BatchNorm -> LayerNorm L ImageNet-1K Trained ImageNet=22K Pre-trained —

® Separate downsampling layers

) 2 .
f(x) = 0.5x(1 + tanh(‘[; (x+0.044715x)))

Georgia "
2024-01-16 Tech ||

ConvNeXt (2022)

® Modern designs added:

® Use ResNeXt

® Apply Inverted Bottleneck
® Use larger kernel size

® Training strategy:
® 90 epochs -> 300 epochs
® AdamW optimizer

® Data augmentation like Mixup, CutMix
® Regularization Schemes like label smoothing

2024-01-)

ResNet-50/200

Macro
Design

ResNeXt

Inverted
Bottleneck

Large
Kernel

Micro
Design

GFLOPs

I: stage ratio
“patchify” stem

depth conv g
— width T
inverting dims
— move T d. conv

kernel sz. - 5

— ReLU—-GELU
fewer activations

fewer norms

ConvNeXt-T/B

BN — LN

L sep.d.s. conv

/B

ImageNet

Top1 Acc (%) 78 80 82

ConvNeXt (2022)

 What prior approaches exist to solve this problem?

— Will need to explore related work to answer this

 How does this work validate their approach?

202401)

ConvNeXt (2022)

 How do they validate their approach?
— What data do they use?
— What baselines do they compare against?

202401)

ConvNeXt (2022)

e Strengths?

202401)

ConvNeXt (2022)

* Weaknesses/limitations?

202401)

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: ConvNeXt (2022)
	Slide 52: ConvNeXt (2022)
	Slide 53: ConvNeXt (2022)
	Slide 54: ConvNeXt (2022)
	Slide 55: ConvNeXt (2022)
	Slide 56: ConvNeXt (2022)
	Slide 57: ConvNeXt (2022)
	Slide 58: ConvNeXt (2022)
	Slide 59: ConvNeXt (2022)
	Slide 60: ConvNeXt (2022)
	Slide 61: ConvNeXt (2022)
	Slide 62: ConvNeXt (2022)

