Topics:
 Recurrent Neural Networks (RNNs)
* Long Short-Term Memory

CS 4644-DL / 7643-A
ZSOLT KIRA

* Assighment 2 — Due June. 22
* Implement convolutional neural networks
* Resources (in addition to lectures):

* DL book: Convolutional Networks

. CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643 spring/assets/L10 cnns notes.pdf

. Backprop notes https://www.cc.gatech.edu/classes/AY2023/cs7643 spring/assets/L10 cnns backprop notes.pdf
* HW2 Tutorial (@176)

* Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6)
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX Uy1TkpF yvizX0OnPa?dI=0)

 Meta Office Hours — First one on language modeling today 3pm ET

 GPU resources: Google Colab, PACE-ICE
 Google Cloud posted soon (for projects)

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0

Module 3

Introduction

Georgia
graia |

Input ' — Predictions Input — Predictions
Data Image

Fully Connected Convolutional Neural
Neural Networks Networks

—
—- -]
r Pttt

Recurrent Neural Attention-Based Graph-Based
Networks Networks Networks

) The Space of Architectures Gograla |

=

Input ' — Predictions Input — Predictions
Data Image

Fully Connected Convolutional Neural
Neural Networks Networks

o @ o
T

—
_,'* Same function! [y © ot

5 S
o
e

6‘0177 o /7//7
Pg 0,
Sg
Co, m,
Ma

0000¢)H0000
] h + transform

fe fe

fo

Recurrent Neural I : :
Networks 00000 00000 00000

<s> We the

) Recurrent Neural Networks & Transformers Ge%%ﬁ&

=

New Topic: RNNs

one to one one to many many to one many to many many to many
f t ot t t t ot

i A

INFINITE RECURSION

You GOTTA KNOW WHEN TO QUIT

Why model sequences?

il &

).

Sequences are everywhere...

7’07?:(?’3‘0 M/@/ mfl FOREIGN MINISTER.

W =l THE SOUND OF

=2 a=0 ay=1 @;=3 a;=4 ag=2 a;=5
= bringen sie bitte das auto zuriick

L X/

— please return

Sequences in Input or Output?
* |t's a spectrum...

one to one

Input: No sequence
Output: No sequence

Example: “standard”
classification /
regression problems

) Image Credit: Andrej Karpathy

Sequences in Input or Output?
* |t's a spectrum...

one to one one to many

Input: No sequence
P 9 Input: No sequence

Output: No sequence
P q Output: Sequence

Example: “standard”
classification /
regression problems

) Image Credit: Andrej Karpathy

Example: Im2Caption

Sequences in Input or Output?
* |t's a spectrum...

one to one one to many many to one

Input: No sequence

Input: No sequence Input: Sequence
Output: No sequence
P q Output: Sequence Output: No sequence
Example: “standard” . e
Example: Im2Caption Example: sentence classification,

classification /

regression problems multiple-choice question answering

Image Credit: Andrej Karpathy

Sequences in Input or Output?
* |t's a spectrum...

one to one one to many many to one many to many many to many

Input: No sequence
P g Input: No sequence Input: Sequence Input: Sequence
Output: No sequence
P d Output: Sequence Output: No sequence Output: Sequence
Example: “standard” . . . e
P Example: Im2Caption Example: sentence classification, Example: machine translation, video classification,

classification /

. iple-choi i i video captioning, open-ended question answerin
regression problems multiple-choice question answering p g, op q g

Image Credit: Andrej Karpathy

What’s wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

Output Layer
Hidden Layers

Input Layer

What’s wrong with MLPs?

* Problem 1: Can’t model sequences
— Fixed-sized Inputs & Outputs
— No temporal structure

Output Layer

* Problem 2: Pure feed-forward processing

Hidden Layers

— No “memory”, no feedback

)

Input Layer

3 Key Ideas

* The notion of memory (state)
— We want to propagate information across the sequence

— We will do this with state, represented by a vector
(embedding/representation)
* Key idea will be mixing new inputs with this state, to yield a new state
 All represented as vector operations

— Just as a CNN represents an image with the final hidden
vector/embedding before the final classifier

)

3 Key Ideas

* The notion of memory (state)

* Parameter Sharing

— in computation graphs = adding gradients

Computational Graph

(C) Dhruv Batra
Slide Credit: Marc Aurelio Ranzato

Gradients add at branches

3 Key Ideas

* The notion of memory (state)

* Parameter Sharing

— in computation graphs = adding gradients

e “Unrolling”

— in computation graphs with parameter sharing

)

New Words

Recurrent Neural Networks (RNNs)

Recursive Neural Networks
— General family; think graphs instead of chains

Types:
— “Vanilla” RNNs (Elman Networks)
— Long Short Term Memory (LSTMs)
— Gated Recurrent Units (GRUs)

Algorithms
— BackProp Through Time (BPTT)
— BackProp Through Structure (BPTS)

Recurrent Neural Network

* Idea: Input is a sequence and we will process it sequentially though a neural
network module with state

e For each timestep (element of sequence):

o [

Recurrent Neural Network

usually want to
predict a vector at
some time steps

=

)
Tech *

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt = Whyht + by

*
RNN

A hy = fW(ht—la il?t)
. v

hy = tanh(Wyphe 1 + Wyepay + by)

Georgia |
)

(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

y Yt = Whyht + by

*
RNN
f

X

h; = tanh(Whhht 1 + thxt)

= tanh ((Whh Wha) (ht 1))
o (v (%)

Geo ia’
)

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

f
he|= | fw|(Pe—1h|24) M:>
f

new state / old state input vector at
some time step

some function
with parameters W

Georgia | |
Tech) *

Recurrent Neural Network

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

f
he = fw (he—1, T¢) ME>

Notice: the same function and the same set x
of parameters are used at every time step.

Georgia ﬂ
Tech|)

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

RNN: Computational Graph

Re-use the same weight matrix at every time-step

N E_h
| >
>

RNN: Computational Graph: Many to Many

Y1 Yo Y3 YT

N E_h
| >
>

RNN: Computational Graph: Many to Many

Y+ P L, Yo P L, ys P Ls yr P Ly

N E_h
| >
>

RNN: Computational Graph: Many to Man

Y+ P L, Yo P L, ys P Ls yr P Ly

N E_h
| >
>

RNN: Computational Graph: Many to One

N E_h
| >
>

RNN: Computational Graph: One to Many

Y1 Yo Y3 Y1
£ £ f 1
hy % —>h1—>fW—>h2—>fW—>h3—>. —» h;

N E_h

Sequence to Sequence: Many-to-one + one-to-many

Many to one: Encode input
sequence in a single vector

Sequence to Sequence: Many-to-one + one-to-many

One to many: Produce output

sequence from single input vector
Many to one: Encode input
sequence in a single vector

Y1 Yo

E}fw>ﬂ>fw>h2+fw>h3+... E,m Ffw;m%fw.;...
w

/‘

et

How can we train this on language?

We have a generic sequence-in, sequence-out model
How do we train this on language?
Supervised Learning:

— Sentiment analysis (sentence -> negative/neutral/positive) labeled by humans
— Translation -> English and equivalent other language

Self-supervised: Predict the next letter or word!
— This is extremely powerful!!

— In order to predict what’s next, it needs to really understand not just language
statistics but world knowledge!
* Of course, we need scale for this level of loss reduction / understanding

Georgia "
Tech ||

Training: A large corpus of
text from the web
- Note: No annotation
required! It’s just “the text”

Inference: Just generate me

new text
- Can condition on some
ir]itiEaI iTIF)LJt (F)r()rr]r)t) static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue,)

pC>[11);

static void
os prefix(unsigned long sys)

{

PUT_PARAM RAID(2Z, sel) = get_state_state():
set pid sum((unsigned long)state, current state str(),
{(unsigned long)-=1->1r full; low;

Example:
Character-level
Language Model

Vocabulary:

[h,e,l,0]

Example training 1 0 0 0

Sequence: input layer 8 (1) (1) (1)

“hello” ? ° - :
input chars: “h” e &l I

)

Character-level
Language Model

Vocabulary: _ 0.3 1.0 0.1 | hn|-03

hidden layer | -0.1 > 0.3 > 0.5 > 0.9
[h,e,l,0] 0.9 0.1 03 0.7

- [R N %

Example training ; 5 5 5
sequence: input layer | . ; :
“hello” i B = =

input chars: “h” “e” I 1"

)

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

)

target chars:

output layer

hidden layer

input layer

input chars:

“e" fr i ‘o
1.0 0.5 0.1 0.2
23 0.3 0.5 1.5
-3.0 -1.0 1.9 -0.1
4.1 1.2 11 2.2
[ER Ry
03 1.0 0.1 |w hnl-0.3
-0.1 ~ 0.3 0.5 ——>{ 0.9
0.9 0.1 -0.3 0.7
P b e
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 0
"h” ﬂeH “I" KKI!!

Training Time: MLE / “Teacher Forcing”

target chars: “e” bilg 91 o
Example: 1.0 0.5 0.1 0.2
Character-level outputiayer | 28| | 09 0 i
Language Model 4.1 1.2 1.1 2.2
N R I
Vocabulary: _ 0.3 1.0 0.1 | hn|-03
hidden layer | 0.1 ~ 0.3 » 05 > 0.9
[h,e,l,0] 0.9 0.1 -0.3 0.7
- Lo we
Example training 1 0 0 0
Sequence: input layer 8 (1) (1) (1)
“hello” ° ° 0 °
input chars: “h” “e” I 1"

)

Test Time: Sample / Argmax

Example: Sample 4
Character-level %
Sof)
Language Model onmax 1
Sampling A
output layer _23%
4.1
Vocabulary:
[h,e,l,o] hidden layer _(())31 E—
0.9
At test-time sample I
characters one at a nputlayer | @
time, feed back to .
model

)

Test Time: Sample

Example: Sample _i]
Character-level 0
f .
Language Model Softmax | &
Sampling A
output layer _23%
41
Vocabulary: ‘
[h7e’|10] hidden layer .(())31 1
0.9
At test-time sample I .
characters one at a input ayer | O 5
time, feed back to —_— AR
model

)

Test Time: Sample

Example: Sample _i] IA
Character-level HE:
Soft : :
Language Model R A
Sampling s | o
output layer _23% 2%

4.1 1:2
Vocabulary: ‘ [
[h,e,l,O] hidden layer .(())31 :)g L

0.9 0.1
At test-time sample I I
characters one at a inputlayer | O 1
time, feed back to —_— AR
model

)

Test Time: Sample

Example: Sample _i] IA[\ I/\ o

Character-level ol s fanl ||
Language Model Softmax | o0 s || |0 79
Sampling b | b | e | s
ouputiaver | 501 | 15| | [d8] | |03
41 1:2 -1.1 2.2
Vocabulary: ‘ ! T T W_ny
[h,e,l,O] hidden layer .(())31 (1)g -%15 i L -(())g
0.9 0.1 -0.3 0.7
At test-time sample I I l lw-*“
characters one at a input ayer | 0 | 2 :
H 0 0 0 0
time, feed back to —_— AR \‘u,n \',
model

Can also feed in predictions during training (student forcing)

Georgia "
Tech|)

Multilayer RNNs 4
) A 4 4 4 4 4 4

i
hi_1

hi = tanh W (

peRt o W] LS Sy S S S Oy §

depth

Training: A large corpus of
text from the web
- Note: No annotation
required! It’s just “the text”

Inference: Just generate me

new text
- Can condition on some
ir]itiEaI iTIF)LJt (F)r()rr]r)t) static void stat PC_SEC _ read mostly offsetof(struct seq argsqueue,)

pC>[11);

static void
os prefix(unsigned long sys)

{

PUT_PARAM RAID(2Z, sel) = get_state_state():
set pid sum((unsigned long)state, current state str(),
{(unsigned long)-=1->1r full; low;

Searching for interpretable cells

II%I%I%I%I%I%I%I%I

@) (@) (@) (@) O

o1y

A A A 4 A 4 A A A A A A A A A A A AA

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

'b .'.? ae ki lter fifle d"SISitring FEpresE@ntation from WSeEr =space
ffer
(lhl'r M 1 t pACKZs tring (MBlid "Mmbufp, s zel: INEENED-, $Ezew: DHEn)

)
Emplem@lnted String fifields, " PATHINAX
st 1id th

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

quote detection cell

Karpathy Johnson, and Fei-Fei: Vlsuallzmg and Understandlng Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with per

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Cell sensitive to position in line:

The sole importance of the crossing of the Berezi
that it plainly and indubitably proved the fallac
cutting off the enemy's retreat and the soundness
line of action--the one Kutuzov and the general m
demanded--namely, simply to follow the enemy up.
at a continually increasing speed and all its ene
reaching its goal. It fled like a wounded animal
to block its path. This was shown not so much by
made for crossing as by what took place at the br
broke down, unarmed soldiers, people from Moscow
who were with the French transport, all--carried
pressed forward into boats and into the ice-cover

surrender .

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permissior

line length tracking cell

na lies in the fact

y of all the plans for
of the only possible
ass of the army

The French crowd fled
rgy was directed to

and it was impossible
the arrangements it
idges When the bridges

and women with children

on by vis inertiae- -

ed water and did not)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

(pending, mask);

TIF_SIGPENDING);

if statement cell

Karpathy Johnson and Fei-Fei: Vlsuallzmg and Understandlng Recurrent Networks, ICLR Workshop 2016

and Fei-Fei, 2015; reproduced with per

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

Cell that turns on inside comments and quotes:

_ quote/comment cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Searching for interpretable cells

fdef CONFIG_AUDITSYSCALL
atic inline int audit_match_class_bits(int class, u32 *mask)

(1 i AU D T THASHE

3 '. se X o
Er illSRiil & classes[class][]

S E LR
)

code depth cell

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permissior

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

he

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

ht = tanh(Whhht_l + th.SCt)

(e (1))

(17

Bengio et al, “Learning long-term dependencies with gradient descent

u L]
Va n I I I a I 2 N N G ra d Ie nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013

Backpropagation from h,
to h,, multiplies by W
(actually W,,)

4)
ht = tanh(Whhht_l + th.SCt)

W —» ;_V tanh ,
t—1
— tanh ((Whh th) (-))

h <—= stafck L h,
- | g — tanh (W (ht_1>)
Lt

v

Xt

Bengio et al, “Learning long-term dependencies with gradient descent

u L]
Va n I I I a I 2 N N G ra d Ie nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
W—-\C)—- tanh W—»C)—-— tanh W—-Q)—- el W_.C>_. tanh
b ik b i, L
hO —_— StEICk L—. h1 T stFIck L—.— h2 o — stEIck L—. h3 b . S[FICk L__,, h4
hN T oy pN / hN oy hN T /
| | | |
X4 Xo X3 Xy

Computing gradient
of hy involves many
factors of W

(and repeated tanh)

- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d Ie nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

W—-\C)—- tanh W—»C)—-— tanh W—»Q)—» tanh W—;-C)—-. tanh
! T } T ! T } L
hO P . SIEICk L—’ h1 u stlck I——-— h2 " steIck I——-— h3 o — SIETTck L: h 4
hN | oy pN | / hN | oy hN | /
X4 X, X5 X,

Oh;
Ohy 1

Georgia | |
Tech *'

= tanh’ (Whhht 7 = thwt)Whh

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

W—" (;)Z tanh W—* C)Z tanh

W—"(;)‘—_’ tanh W—*C)Z tanh
il i i 0L
hO o — steIck I——-— h 1 < — staIck I——-— h2 - — steIck I——-— h3 o — staIck L: h 4
AN T v A T vy AN T _ AN vy
I I I I
X4 X5

OL L T 8Lt 3ht . /
=21 g (o = tanh (Whnhiy + Wepay)Whp,

OLr OLy Ohy Ohy

oW Ohy Ohy_1 """ OW ~ Bhg t=2 9oh, , / OW

Georgia I
Tech|)

Vanilla RNN Gradient Flow

hy = — h, 1

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

—*> stack

W—" (;) = tanh

lT H——-— h3 —T > stack

oL Always < 1

- T 0L

ow Zt:l ow
Ly Oh, Oh
Ohr Ohyy1 =~ OW

OLr
ow

N

Vanishing gradients
OL T
Ohr (Ht:2

Georgia ﬂ
Tech ||

v

X3

Oh;
Ohi 1

Ohq
ow

)

- - Bengio et al, “Learning long-term dependencies with gradient descent
a n I a ra I e n OW is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
W—"ETD—' tanh W—*ER—’ tanh W—"ETD—’ tanh W—*EP—' tanh
hO -~ stack II——b h1 <" stack II——D h2 <> stack II——- h3 - " stack &—_ﬁ h4
N y AN Y N y N T Y
I I I I

With no non-linearity:
Computing gradient
of hy involves many Largest singular value > 1:

factors of W Exploding gradients
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients

Vanilla RNN Gradient Flow

Bengio et al, “Learning long-term dependencies with gradient descent
is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

y

-+

-

N

W_’C)_’ tanh W—*C)—’ tanh W_’CJ_' tanh

hgs—= itjck TL—- hya—* itick “——- h, Z—*> itjck

| P . iy | Y

X2 X3

Computing gradient

Largest singular value > 1:
Exploding gradients

of hy involves many
factors of W
(and repeated tanh)

Largest singular value < 1:
Vanishing gradients

Gradient clipping: Scale
gradient if its norm is too big
grad_norm = np.sum(grad * grad)

if grad_norm > threshold:
grad *= (threshold / grad norm)

Bengio et al, “Learning long-term dependencies with gradient descent

u L]
Va n I I I a I 2 N N G ra d Ie nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,

ICML 2013
W—-C)—- tanh W_’C)_’ tanh W—-C)—- el W_.CJ_.. tanh
il] | il a1l
hO —_— SIEICk L—. h1 T strIck L—.— h2 o — stEIck L—. h3 b . Stick L__,, h4
N T y AN Y N y N T Y
| | | |
X4 Xo X3 Xy

Largest singular value > 1:
Computing gradient Exploding gradients
of hy involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

—» Change RNN architecture

Long Short Term Memory (LSTM)

Vanilla RNN LSTM
) c
his i: -1 - W(h;j)
—) IS

c=fOc_1+1i0g
h: = 0 ® tanh(c;)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation
1997

Georgia |
)

Meet LSTMs
®)))

t t t
~ N\ N ™
—»—(f, ——— 1 -
A A
—FL?_'\E;M > -
‘\l J J \I J
© ® ©

Intuition: “Gating” mechanism similar to residual, but more
complex memory operations (forget/read, write)

LSTMs Intuition: Memory

e Cell State / Memory

Cp1 %

)
®

LSTMs Intuition: Forget Gate

e Should we continue to remember this “bit” of information or
not?

fi ft=0Ws-[hi—1,2:] + by)

hi—1

£t

LSTMs Intuition: Input Gate

* Should we update this “bit” of information or not?
— If so, with what?

it = J(Wi'[ht_l,il?t} —+ bz)

. ét — tanh(Wc-[ht_l,a:t] -+ bc)

LSTMs Intuition: Memory Update

* Forget that + memorize this

Ciy %

@

fi

—>

ifr-%t Cy = fex Co1 +ig * Cy

LSTMs Intuition: Output Gate

* Should we output this “bit” of information to “deeper” layers?

he A
@g’ op =0 Wy, [hiz1,] + bo)
- B3 . hi = oy * tanh (Cy)

r —

LSTMs Intuition: Additive Updates

Backpropagation from c,
to c,, only elementwise
multiplication by f, no
matrix multiply by W

LSTMs Intuition: Additive Updates
®) ®) %D

A
tlninterrupted gradipnt flow!

—- - -

T
A A
—FL?_'\E;M > =

LSTMs Intuition: Additive Updates

®) b 6
p— tlnmterrupted gradl ent flow! T\
R
S o
I!@ﬂnﬂf@nﬁnﬁ L i
) i ||||||Ili 5

Nndinoc- U

LSTMs
* A pretty sophisticated cell

Other RNN Variants MUTI:

z = sigm(Wez +b,)
r = sigm(Wex, + Wy he +5b)
[An Empirical Exploration of hiy1 = tanh(Win(r @ he) + tanh(z) + by) © 2
Recurrent Network Architectures, B O{15)
Jozefowicz et al., 2015]
MUT2:

(8]
|

= sigm(Wx, + Wi h, +b;)
r = sigm(x; + Wiyh, +b;)
hev1 = tanh(Whn(r @ he) + Wenze + bn) G
+ hO(1—2)

(5

MUT3:
z = sigm(Wyx, + Wy, tanh(h;) + b;)
r = sigm(Weze + Wihy + b))
hyyy = tanh(Wyn(r @ hy) + Wopa, +by) © 2

+ I'f'(l—:)

Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

(C) Dhruv Batra 78

Neural Image Captioning

4096-dim
O5-d%
~3 O ~9 QO
L J L J \ J \ J L J
T T T T T
Convolution Layer Pooling Layer Convolution Layer Pooling Layer Fully-Connected MLP
+ Non-Linearity + Non-Linearity

(C) Dhruv Batra

79

Neural Image Captioning

Image Embedding (VGGNet)

P(next) P(next) P(next) P(next) P(next) P(next)

] <start> Two people and two horses.

(C) Dhruv Batra 80

Neural Image Captioning

Image Embedding (VGGNet)

P(next) P(next) P(next) P(next) P(next) P(next)

R AR

Ty

i <start> Two people and two horses.

(C) Dhruv Batra 81

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6: New Topic: RNNs
	Slide 7: Why model sequences?
	Slide 8: Sequences are everywhere…
	Slide 9: Sequences in Input or Output?
	Slide 10: Sequences in Input or Output?
	Slide 11: Sequences in Input or Output?
	Slide 12: Sequences in Input or Output?
	Slide 13: What’s wrong with MLPs?
	Slide 14: What’s wrong with MLPs?
	Slide 15: 3 Key Ideas
	Slide 16: 3 Key Ideas
	Slide 17
	Slide 18: Gradients add at branches
	Slide 19: 3 Key Ideas
	Slide 20: New Words
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: How can we train this on language?
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Meet LSTMs
	Slide 68: LSTMs Intuition: Memory
	Slide 69: LSTMs Intuition: Forget Gate
	Slide 70: LSTMs Intuition: Input Gate
	Slide 71: LSTMs Intuition: Memory Update
	Slide 72: LSTMs Intuition: Output Gate
	Slide 73: LSTMs Intuition: Additive Updates
	Slide 74: LSTMs Intuition: Additive Updates
	Slide 75: LSTMs Intuition: Additive Updates
	Slide 76: LSTMs
	Slide 77
	Slide 78: Neural Image Captioning
	Slide 79: Neural Image Captioning
	Slide 80: Neural Image Captioning
	Slide 81: Neural Image Captioning

