
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Recurrent Neural Networks (RNNs)

• Long Short-Term Memory



Administrivia

• Assignment 2 – Due June. 22nd 

• Implement convolutional neural networks

• Resources (in addition to lectures):

• DL book: Convolutional Networks
• CNN notes https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf 

• Backprop notes https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf 

• HW2 Tutorial (@176) 

• Slower OMSCS lectures on dropbox: Module 2 Lessons 5-6 (M2L5/M2L6) 
(https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0) 

• Meta Office Hours – First one on language modeling today 3pm ET

• GPU resources: Google Colab, PACE-ICE

• Google Cloud posted soon (for projects)

https://www.deeplearningbook.org/contents/convnets.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L10_cnns_notes.pdf
https://www.cc.gatech.edu/classes/AY2023/cs7643_spring/assets/L10_cnns_backprop_notes.pdf
https://www.dropbox.com/sh/iviro188gq0b4vs/AADdHxX_Uy1TkpF_yvIzX0nPa?dl=0


Module 3 

Introduction
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New Topic: RNNs

(C) Dhruv Batra 6

Image Credit: Andrej Karpathy



Why model sequences?

Figure Credit: Carlos Guestrin



Sequences are everywhere…

(C) Dhruv Batra 8

Image Credit: Alex Graves and Kevin Gimpel



Sequences in Input or Output?
• It’s a spectrum… 

(C) Dhruv Batra 9

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Image Credit: Andrej Karpathy



Sequences in Input or Output?

(C) Dhruv Batra 10

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

Image Credit: Andrej Karpathy

• It’s a spectrum… 



Sequences in Input or Output?

(C) Dhruv Batra 11

Input: Sequence

Output: No sequence

Example: sentence classification, 

multiple-choice question answering

Image Credit: Andrej Karpathy

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

• It’s a spectrum… 



Sequences in Input or Output?

(C) Dhruv Batra 12

Input: Sequence

Output: Sequence

Example: machine translation, video classification, 

video captioning, open-ended question answering

Image Credit: Andrej Karpathy

Input: Sequence

Output: No sequence

Example: sentence classification, 

multiple-choice question answering

Input: No sequence

Output: No sequence

Example: “standard” 

classification / 

regression problems

Input: No sequence

Output: Sequence

Example: Im2Caption

• It’s a spectrum… 



What’s wrong with MLPs?

• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs

– No temporal structure

(C) Dhruv Batra 13

Image Credit: Alex Graves, book



What’s wrong with MLPs?

• Problem 1: Can’t model sequences

– Fixed-sized Inputs & Outputs

– No temporal structure

• Problem 2: Pure feed-forward processing

– No “memory”, no feedback

(C) Dhruv Batra 14

Image Credit: Alex Graves, book



3 Key Ideas

• The notion of memory (state)

– We want to propagate information across the sequence

– We will do this with state, represented by a vector 
(embedding/representation)

• Key idea will be mixing new inputs with this state, to yield a new state

• All represented as vector operations

– Just as a CNN represents an image with the final hidden 
vector/embedding before the final classifier

(C) Dhruv Batra 15



3 Key Ideas

• The notion of memory (state)

• Parameter Sharing

– in computation graphs = adding gradients

(C) Dhruv Batra 16



Slide Credit: Marc'Aurelio Ranzato
(C) Dhruv Batra 

17

Computational Graph



+

Gradients add at branches

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



3 Key Ideas

• The notion of memory (state)

• Parameter Sharing

– in computation graphs = adding gradients

• “Unrolling”

– in computation graphs with parameter sharing

(C) Dhruv Batra 19



New Words

• Recurrent Neural Networks (RNNs)

• Recursive Neural Networks
– General family; think graphs instead of chains

• Types:
– “Vanilla” RNNs (Elman Networks)
– Long Short Term Memory (LSTMs)
– Gated Recurrent Units (GRUs)
– …

• Algorithms
– BackProp Through Time (BPTT)
– BackProp Through Structure (BPTS)

(C) Dhruv Batra 20



Recurrent Neural Network

x

RNN

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

• Idea: Input is a sequence and we will process it sequentially though a neural 
network module with state

• For each timestep (element of sequence):

h



Recurrent Neural Network

x

RNN

y
usually want to 

predict a vector at 

some time steps

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h



(Vanilla) Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
Sometimes called a “Vanilla RNN” or an “Elman RNN” after Prof. Jeffrey Elman

h



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 

applying a recurrence formula at every time step:

new state old state input vector at 

some time step
some function

with parameters W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by 

applying a recurrence formula at every time step:

Notice: the same function and the same set 

of parameters are used at every time step.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h



h0 fW h1

x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2

x2x1

RNN: Computational Graph

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

… 

x2x1

RNN: Computational Graph

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W

RNN: Computational Graph

Re-use the same weight matrix at every time-step

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

yT

… 

x2x1
W

RNN: Computational Graph: Many to Many

hT

y3y2y1 L1
L2 L3 LT

L

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

x3

y

… 

x2x1
W

RNN: Computational Graph: Many to One

hT

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



h0 fW h1 fW h2 fW h3

yT

… 

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT

Many to one: Encode input 

sequence in a single vector

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Sequence to Sequence: Many-to-one + one-to-many

y1 y2

… 

Many to one: Encode input 

sequence in a single vector

One to many: Produce output 

sequence from single input vector

fW h1 fW h2 fW

W2

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

h0 fW h1 fW h2 fW h3

x3

… 

x2x1
W1

hT



How can we train this on language?

• We have a generic sequence-in, sequence-out model

• How do we train this on language?

• Supervised Learning: 
– Sentiment analysis (sentence -> negative/neutral/positive) labeled by humans

– Translation -> English and equivalent other language

• Self-supervised: Predict the next letter or word!
– This is extremely powerful!!

– In order to predict what’s next, it needs to really understand not just language 
statistics but world knowledge!

• Of course, we need scale for this level of loss reduction / understanding



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Training: A large corpus of 

text from the web 
- Note: No annotation 

required! It’s just “the text”

- Inference: Just generate me 

new text

- Can condition on some 

initial input (prompt)



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example: 

Character-level

Language Model

Vocabulary:

[h,e,l,o]

Example training

sequence:

“hello”

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Training Time: MLE / “Teacher Forcing” 



Example: 

Character-level

Language Model

Sampling

Vocabulary:

[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model
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Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax
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Test Time: Sample / Argmax
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Test Time: Sample / Argmax
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Language Model

Sampling
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[h,e,l,o]

At test-time sample 

characters one at a 

time, feed back to 

model

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Test Time: Sample / Argmax

Can also feed in predictions during training (student forcing)



time

depth

Multilayer RNNs

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

- Training: A large corpus of 

text from the web 
- Note: No annotation 

required! It’s just “the text”

- Inference: Just generate me 

new text

- Can condition on some 

initial input (prompt)



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote detection cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

line length tracking cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

if statement cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

quote/comment cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Searching for  interpretable cells

Karpathy, Johnson, and Fei-Fei: Visualizing and Understanding Recurrent Networks, ICLR Workshop 2016
Figures copyright Karpathy, Johnson, and Fei-Fei, 2015; reproduced with permission

code depth cell

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow
Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



ht-1

xt

W

stack

tanh

ht

Vanilla RNN Gradient Flow

Backpropagation from ht 

to ht-1 multiplies by W 

(actually Whh)

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 

of h0 involves many 

factors of W

(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

With no non-linearity:

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients

Computing gradient 

of h0 involves many 

factors of W

(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients

Gradient clipping: Scale 

gradient if its norm is too bigComputing gradient 

of h0 involves many 

factors of W

(and repeated tanh)

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Vanilla RNN Gradient Flow

h0 h1 h2 h3 h4

x1 x2 x3 x4

Computing gradient 

of h0 involves many 

factors of W

(and repeated tanh)

Largest singular value > 1: 

Exploding gradients

Largest singular value < 1:

Vanishing gradients
Change RNN architecture

Bengio et al, “Learning long-term dependencies with gradient descent 

is difficult”, IEEE Transactions on Neural Networks, 1994

Pascanu et al, “On the difficulty of training recurrent neural networks”, 

ICML 2013

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Long Short Term Memory (LSTM)

Hochreiter and Schmidhuber, “Long Short Term Memory”, Neural Computation 

1997

Vanilla RNN LSTM

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Meet LSTMs

• Intuition: “Gating” mechanism similar to residual, but more 
complex memory operations (forget/read, write) 

(C) Dhruv Batra 67

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory

• Cell State / Memory

(C) Dhruv Batra 68

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Forget Gate

• Should we continue to remember this “bit” of information or 
not?

(C) Dhruv Batra 69

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Input Gate

• Should we update this “bit” of information or not?

– If so, with what?

(C) Dhruv Batra 70

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Memory Update

• Forget that + memorize this

(C) Dhruv Batra 71

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Output Gate

• Should we output this “bit” of information to “deeper” layers?

(C) Dhruv Batra 72

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 73

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Backpropagation from ct 
to ct-1 only elementwise 
multiplication by f, no 
matrix multiply by W



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 74

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!



LSTMs Intuition: Additive Updates

(C) Dhruv Batra 75

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)

Uninterrupted gradient flow!

In
p

u
t

So
ftm

ax

3x3 co
n

v, 64

7x7 co
n

v, 64 / 2

FC
 1000

P
o

o
l

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 128

3x3 co
n

v, 128 / 2

3x3 co
n

v, 128

3x3 co
n

v, 128

3x3 co
n

v, 128

3x3 co
n

v, 128

...

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

3x3 co
n

v, 64

P
o

o
l

Similar to 
ResNet!



LSTMs
• A pretty sophisticated cell

(C) Dhruv Batra 76

Image Credit: Christopher Olah (http://colah.github.io/posts/2015-08-Understanding-LSTMs/)



Other RNN Variants

[An Empirical Exploration of 

Recurrent Network Architectures, 

Jozefowicz et al., 2015]



Neural Image Captioning

(C) Dhruv Batra 78

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

Image Embedding (VGGNet)

4096-dim



Neural Image Captioning

(C) Dhruv Batra 79

Convolution Layer
+ Non-Linearity

Pooling Layer Convolution Layer
+ Non-Linearity

Pooling Layer Fully-Connected MLP

4096-dim

Image Embedding (VGGNet)



Neural Image Captioning

(C) Dhruv Batra 80
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Neural Image Captioning

(C) Dhruv Batra 81
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