Topics:
e Attention and Transformers

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 2 extended

e Due June 25 (grace period June 27t")

Meta office hours on Neural Machine Translation Friday 06/27
3pm ET

e
Lecture Outline
 Machine Translation with RNNs
* RNNs with Attention

 From Attention to Transformers

 What can Transformers do?

Slides from Justin Johnson, modified by Arjun Madjumdar

Sequence Modeling with RNNs

one to one one to many many to one many to many many to many

- - Bengio et al, “Learning long-term dependencies with gradient descent
Va n I I I a R N N G ra d I e nt F I OW is difficult”, IEEE Transactions on Neural Networks, 1994
Pascanu et al, “On the difficulty of training recurrent neural networks”,
ICML 2013

—> h | <= stack

ht = tanh(Whhht_l -+ thmt)
he—1

— tanh (Whh W]m) 4

hi—1

Lt

= tanh | W

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

How can we train this on language?

« Supervised Learning:

« Sentiment analysis (sentence -> negative/neutral/positive)
labeled by humans

 Translation -> English and equivalent other language

» Self-supervised: Predict the next letter or word!
 This is extremely powerful!!

* |n order to predict what's next, it needs to really understand not
just language statistics but world knowledge!

 Of course, we need scale for this level of loss reduction /
understanding

Training: A large corpus of

text from the web
- Note: No annotation
required! It's just “the text”

Inference: Just generate me

new text
- Can condition on some
|n|t|a| |nput (prom pt) static void stat PC SEC _ read mostly offsetof(struct seq argsqueue, \

pC>[1]):

static void
o prefix(unsigned long ays)

{

PUT_PARAM RAID(2, sel) = get_state_state();
get pid sum([unsigned long)state, current state str(),;
(unsigned long)-1=>1r full: low:

- __
Test Time: Sample

Cxample wse 2] 1)) %

Character-level ol as|| | M
Language Model Softmax: 4| o)l s | |
. A A A A
Sampling wl| [os] | ror) | oz
output layer _23% _01% (1)2 :(1)?
4.1 12 1.1 2.2

Vocabulary: y] T tw_ny
[h,e,I,O] hidden layer .%?; > gg > .%15 W‘hrl -(?g
0.9 0.1 -0.3 0.7

At test-time sample I I l IW—X“
characters one at a input layer | 0 1 : 2
time, feed back to P \"’ \}f \“,’

model

Can also feed in predictions during training (student forcing)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

LSTMs Intuition: Additive Updates
0 Q, 6

ﬁninterrupted graditnt flow! T
a0)

A ﬁt A
RELEZRIIR X

| | |
2 ® &)

i . Sl Ak |l
Similar to E{L § (e | E1EL | EIE

21313 L0+ > L= IS loEHS S S
ResNet!

= 70 AU:) =>

Machine Translation

we are eating bread » estamos comiendo pan

Machine Translation

estamos comiendo pan

RNN Encoder » RNN Decoder

we are eating bread

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

h > h, > h, h, h,
A A
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

So = h,

we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y; St.q) estamos
Y1
hO g h1 g hz h3 h4 Sg — T S
X1 X2 X3 X4 yo

we are eating bread [START]

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Y St.1) estamos comiendo

Y1 Yo
X4 X2 X3 X4 Yo " Y1
we are eating bread [START] estamos

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Note [START]/[STOP] words.
This can be treated as
representation for entire sentence

Decoder: s, = gy(Vy Sus) estamos comiendo pan [STOP]
Y1 Yo Y3 Ys
A A A A
hy > h, > hy > hs " hy "So T TSt T [TS [T Ss T [T Sa
A A A A A A A A
X4 X2 X3 X4 Yo " Y1 Y2 "'Ys3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = » St
t= 9ulYe Sir) Problem: s; is used to

encode input and
maintain decoder state

h > h, > h, h, h, S ——T* Sy — TS, —[*S; — [S,
‘ 4 4 4 4
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c) Solution: add a
context vector c = h,
and predict s, from h,

h > h, > h, h, * h, » Sy — > Sy — TS, — T S3 — T S,
‘ 4 4 4 4
C
X4 Xy X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = gy(Ye Se1, estamos comiendo pan [STOP]
c) Solution: add a
context vector c = h, Y1 Y2 Y3 Y4
and predict s, from h, X 5 X 5
hy > h, > hy > hs " hy "So T TSt T [TS [T Ss T [T Sa
» C
X1 X2 X3 X4 Yo " Y4 Y2 "'Y3
we are eating bread [START] estamos comiendo pan

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Problem: Input sequence
hq * h, > h, h, h, Sy — bottlenecked through
5 x fixed-sized vector.
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson

Machine Translation with RNNs

Encoder: h, = f, (X, hq)

Decoder: s, = g(Yy Si.1s

c)
bottleneck
Idea: use new context
hg > h, > h, h, h, Sy — vector at each step of
“ X decoder!
c —
X4 X5 X3 X4
we are eating bread

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

From final hidden state:
Initial decoder state s,

h, " hy " hs " hy " S
X4 Xy X3 X4
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores
e = fatr(Se.q, i) (fo is an
MLP)

From final hidden state:

e11T e121 e13T €14 Initial decoder state s,
I .

h, " hy " hs " hy " S

X4 Xy X3 X4

we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Compute alignment scores

i = fau(Se.1, M) (fa is @n
a1 aq dq3 CEP MLP)
t t t t
softmax Normalize to get
t 1 t 1 From final hidden state: attention weights
€11 €12 23 €14 | Initial decoder state s, O<a, <1 Ya, =
4 A 4 | Dt
[| 1
h, " hy " hs " hy " S
X X5 X3 Xy
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

[Compute alignment scores

|
%@ %@ 2*@ 2*@ € = far(St1, i) (fart is an
a1 dqo dq3 IV MLP)

t t t t

softmax Normalize to get
t 1 t | From final hidden state: attention weights
ef11 \ 9‘1‘21 911‘3T \ €14 | Initial decoder state s O<a,;<1 Ya,=
NN LN I : 1
h, > h, > hg > h, > Sg + Set context vector ¢ to a
] ‘ I [linear combination of hidden
states

X1 Xy X3 X4 " C4 C; = ah,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

[Compute alignment scores

|
%@ %@ %@ 2*@ € = far(Se1s DY) (faee is @n
at“ a;z a;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
€11 €12 \ €13 €14 | Initial decoder state s 0O<a <1 Ya, =
el | { usl By
h, \ h, \ hs \ h, > So + S Set context vector ¢ to a
] ‘ I [‘ ‘ linear combination of hidden
states
X4 X, X3 X, " C1 | Yo C = 2@

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

|
X X /%@ A
a4 dqo dq3 IV
t t t t
softmax
|

From final hidden state:

\ 611‘4 Initial decoder state s,

SEUSRUSEN

we are eating

> h,

bread

:SO

estamos

Y1

|

Compute alignment scores
e = fatr(Se.q, i) (fo is an
MLP)

Normalize to get
attention weights
O<ay;<1 2@a;=

1

Set context vector ¢ to a
linear combination of hidden

S
> C1 || Yo

states

o C = D ah
This is all differentiable! Do notf

supervise attention weights —
backprop through everything

Can be seen as a input-dependent weighting

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

(rather than MLP)

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

[Compute alignment scores

|
%@ %@ %@ 2*@ € = far(St1, i) (fart is an
a11 1 a;z 8;3 8}4 estamos MLP)
softmax Normalize to get
f f f I From final hidden state: Y attention weights
€11 \ €12 €13 €14 | Initial decoder state s O<a;<1 Ya,=
O W W I =<1

1
h, \h2 \h3 \h4 > S, + S4

Set context vector ¢ to a

] ‘ I [‘ ‘ linear combination of hidden
Intuition: Context vector states
attends to the relevant
X1 . X3 X4 | part of the input sequence 1G] Yo Ct = 2,

“estamos” = “‘we are”
we are eating bread

a,=0.45, a,,=0.45, a,;,=0.05, a,,=0.05

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 fs %4 estamos context vector c,
softmax
f 1 | | Y1
€21 €22 €23 €24

X4 Xy X3 X4 Ci | Yo Co

we are eating bread
[START]

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

% % YA % Repeat: Use s,
34 a‘ a* a* to compute new
121 %2 f?’ %4 estamos comiendo context vector c,
soffmax Use c, to
t f t 1 Y Y2 compute s,, Y,
e‘%1 \ €22 efs \ ef4 } T ‘
) +

h, \h2 \h3 \h4 = R

I . 1N

X4 Xy X3 X4 Ci | Yo Co | | Yy

we are eating bread
[START] estamos

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

X R /R X
dyq dpo d3 Aoy

estamos comiendo

we are eating

bread

:SO

Intuition: Context vector

attends to the relevant part

of the input sequence
‘comiendo” = “eating”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Y1 Yo
— |
Sq > S,

Ci | Yo Co || Yy

[START] estamos

Repeat: Use s,
to compute new
context vector c,

Use c, to
compute s,, Y,

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Use a different context vector in each timestep of decoder

- Input sequence not bottlenecked through single vector

- At each timestep of decoder, context vector “looks at”
different parts of the input sequence

A 4

estamos comiendo

Y1

|

Yo

|

pan [STOP]

h1 h2 > h3 h4 SO 31 > 32 > S3 " S4
‘] RERIN iR
X1 X2 X3 X4 Cil Yo |Co || Yy Cs || Y2 Cq | Y3
we are eating bread
[START] estamos comiendo pan

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to S BE . . .
. @ Q = ©] S5 N go]

French translation ve 9285895 22 §
EF o oS oLuw<a 296 £ H Y,

y
Input: “The agreement on accord
. sur

the European Economic a
Area was signed in August o one
” economique
1992 européenne
a

(r s été

Output: “L’accord sur la signé
Zone economique en
” rq 7 . ” aout
europeenne a été signe en 1992

aolt 1992.”

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

<end>

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

European

Economic

Input: “The agreement on Diagonal attention accord
) means words sur

the European Economic correspond in order N
Area was signed in August - zone
’” economique
1992, européenne

Output: “L’accord sur la
Zone economique
europeenne a éteé signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

Machine Translation with RNNs and Attention

Visualize attention weights a,

Example: English to
French translation

agreement

European
Economic
Area

The

the

LI
accord
sur

Input: “The agreement on Diagonal attention
the means words

correspond in order la

Zone

was signed in August e
” économique
1 992 . européenne

Output: “L’accord sur la

a été signe en Diagonal attention

aout 1992.” means words
correspond in order

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

Slide credit: Justin Johnson

e
Machine Translation with RNNs and Attention

estamos comiendo pan [STOP]
Y+ Yo Y3 Ya
SO S1 > 32 > S3 " S4

’ N " N
dp1 do) do3 doy

t t t t

softmax

| | 1 |
€21 €20 €23 €24

h, h, > h, h,
X4 X5 X3 X,
we are eating bread

Bahdanau et al, “Neural machine translation by jointly learning to align and translate”, ICLR 2015

[START] estamos comiendo pan

Slide credit: Justin Johnson

Y1 Yo Y3 Y4

estamos comiendo

|
fim |
e || | E—
A AR\ |

Sp Sq Sg

I[dea: Can we use attention

B as a fundamental building X4 X, Xg | | Xg

we are eating bread block for a generic sequence
[START] estamos .
(input) to sequence (output)
layer?
Note: We just want a generic sequence-in, sequence-out model that will represent each
input contextualized with rest of inputs, and encode meaning of entire sequence

We will progressively develop a generic mechanism using idea of attention.
Don’t try to map to RNN translation example!

Attention Layer

Inputs:
State vector: s, (Shape: D)

Hidden vectors: h; (Shape: Ny x D)
Similarity function: f

Computation:

Similarities: e (Shape: Ny) e, =f_ (s, h;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = > .ah, (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: g (Shape: D) L
)

Input vectors: X (Shape: Ny x D
Similarity function: f_,

Make the module generic:

Input (X), Query (q)
Output (Weighted sum of inputs)

Computation:

Similarities: e (Shape: Ny) e, =f_(a, X;)
Attention weights: a = softmax(e) (Shape: Ny)
Output vector: y = Y aX. (Shape: Dy)

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function): dot produc

Computation:
Similarities: e (Shape: Ny) e =¢q " *,

Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector: y = aX; (Shape: Dy) - Use dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vector: ¢ (Shape: D)

Input vectors: X (Shape: Ny x D)
Similarity function: scaled dot product

Computation:
Similarities: e (Shape: NXI) e = q - X;/sqrt(Df)
Attention weights: a = softmax(e) (Shape: Ny) Changes:

Output vector: y = aX; (Shape: Dy) - Use scaled dot product for similarity

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x DlQ)
Input vectors: X (Shape: Ny x Dj)

Make the module generic:
Sequence Input (X), Sequence Query (Q)
Output: Sequence (Weighted sum/mixture of
inputs)

Computation:

Similarities: E = QX' (Shape: Ng X Ny) E;; = Q, - X;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny) Changes:

Output vectors: Y = AX (Shape: Ng X Dy) Y; = 2,4, X - Use dot product for similarity
- Multiple query vectors

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Separate concerns:
1) Matching (similarity) -> Key,
2) Output given weighting -> Value

Computation:

Key vectors: K = X (Shape: Ny x Dq
Value vectors: V = XW,, (Shape: Ny x Dy) Changes:

Similarities: E = QK" (Shape: Ng x Ny) E;; = Q, - K,/ sqrt(Dy) - Use dot product for similarity
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)) :

Output vectors: Y = AV (Shape: Ng x Dy) Y, = T AV, _ g/lglcl)t;pilaetguerya\;zc\tlzrli .

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ng x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:
Key vectors: K = X (Shape: Ny x Dy) X4
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = QK" (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)
Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) X, ™ K,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, — K,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, X; — K,

Slide credit: Justin Johnson

-
Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Softmax(T)
Computation:

Key vectors: K =X (Shape: Ny x Dy) Xy ™ Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, —1 K, = Eq5 E,, E;, E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, Sha Ess e

| S |

Q Q Q Q

1 2 3 4

Slide credit: Justin Johnson

-
Attention Layer

Inputs:

Query vectors: Q (Shape: Ny x Dg) "V, — A A Az 4 As
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D) " Vo, — A, A, Az, Ao

Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy) - Xy — Ky — Eyy E, E; ; E,
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg) X, 1 K, —1 | Eq, E,, E; E,,
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V, Xs — Ky — Eq, E,. Ess e

Slide credit: Justin Johnson

Attention Layer

Inputs:
Query vectors: Q (Shape: Ny x Dg)

Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))

Computation:

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))
Similarities: E = (Shape: Ng x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ng X Ny)

Output vectors: Y = AV (Shape: Ng xD,) Y; = > A}V,

E, E; E,

E,» Esp | Esp

Eys| |Ess| |Eags
R
Q Q Q
2 3 4

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: W, (Shape: Dy x Dy)

WMW) .
Query matrix: W, (Shape: Dy x D{)) Make the module generic:

Input: Sequence (X)
Output: Sequence (Weighted sum/mixture of

Computation: inputs)

Query vectors: Q = XW,

Key vectors: K = XW, (Shape: Ny x Dg)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;; = Q; - K;/ sqrt(Dq)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q

Attention weights: A = softmax(E, dim=1) (Shape: N, x Ny) ‘ b
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V, t t f
X1 X2 X3

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:
Query vectors: Q = XW, K,

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,)) K
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) Q
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f

c
'

b
X b
X L

Slide credit: Justin Johnson

-
Self-Attention Layer

One per input vector
Inputs:
Input vectors: X (Shape: Ny x Dy)
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O =X Ko = E;, | Eyn | Ej3
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5 (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, t f

Slide credit: Justin Johnson

-
Self-Attention Layer

One per input vector
Inputs: A3 Az As 3
Input vec_tors: X (Shape: Ny x Dy) Aol A, A;,
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D) Al Ay [Agy
Query matrix: (Shape: Dy x D) t
Softmax(1)

t
Computation: Ks |=1[E1a] |Eas Ess
Query vectors: O =X Ko |=||Ei2| |Ezs| |Esy
Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ki = By [Banl [Ba
Similarities: E = (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) (5

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson

-
Self-Attention Layer

One query per input vector

Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) oV, |~ A A, As,
Key matrix: (Shape: Dy x Dq) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL A A
Query matrix: W, (Shape: Dy x D) — t o
ortmax
t

Computation:

Query vectors: 0 = XW, Ko |=||Ei2| |Ezs| |Esy
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D, Ki | = E1] [Eaq| |EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson

-
Y1 Y2 Y3

Self-Attention Layer SRS N

One query per input vector f
Inputs: Vs |7 Al Az As 3
Input vectors: X (Shape: Ny x Dy) 1V, = AL, A, A,
Key matrix: (Shape: Dy x Dy) ’ ’ ’
Value matrix: W,, (Shape: Dy x D)) TV = AL Ay Ay
Query matrix: W, (Shape: Dy x D) t
Softrr;ax(T)

Computation:

Query vectors: O = XW, K, = Ein | Eyn | Ej,
Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D) Ki 1= Eiq| [Baq| [EBsq
Similarities: E = QK™ (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dy) & i &

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Slide credit: Justin Johnson

e
Self-Attention Layer SRS SR

Consider permuting , - !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) > —
Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D)) -
Query matrix: W, (Shape: Dy x Dg) — t

o rrflaX(T)
Computation: -
Query vectors: Q = XW, —
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) -
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) t t t
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, t t t
X3 X1 X2

Slide credit: Justin Johnson

e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) s —
Key matrix: (Shape: Dy x Dq) Queries and Keys will
Value matrix: W,, (Shape: Dy x D)) be the same, but -
Query matrix: W, (Shape: Dy x Dg) permuted t
Softrr;ax(T)
c jon: Ko T
omputation:
Query vectors: O = XW, K,
Key vectors: K = X (Shape: Ny x Dy)
Value Vectors: V = XW,, (Shape: N, x D) Ks 1T
Similarities: E = QK" (Shape: Ny x Ny) E;; = @, - K,/ sqrt(Dg)) 6 é
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)) ‘)
Output vectors: Y = AV (Shape: Ny x D) Y; = AV, 1 T T
X, X, X,

Slide credit: Justin Johnson

e
Self-Attention Layer SRS SR

Consider permuting , — !
Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy) : —
Key matrix: W, (Shape: Dy x Dq) Similarities will be the
Value matrix: W, (Shape: Dy x D,) same, but permuted -
Query matrix: W, (Shape: Dy x Dg) — nflaX(T)
4
Computation: Ko 1T/ Baz2] [Erz =%
Query vectors: O = XW, K, | Es; E EW
Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D)) Ks |7 Bss [Eial [Eos
Similarities: E = QK (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg) é é (5
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘)
Output vectors: Y = AV (Shape: Ny x D) Y, = 3 AV, f t 1
X3 X1 X2

Slide credit: Justin Johnson

e
Self-Attention Layer SRS SR

Consider permuting , i
Inputs: the input vectors: Asp| [Arz] [Ao
Input vectors: X (Shape: Ny x Dy) > - A A A
‘. . 3,1 1,1 2.1
Key matrix: W, (Shape: Dy x Dq) Attention weights will) 1
Value matrix: W,, (Shape: Dy x D,)) be the same, but ' Asz | Az [Ags
Softmax(1)
t
Computation: Ko |=|[Eaz] [Er2] [Ea
Query vectors: Q = XW, K, [—|| Es; E, E,,
Key vectors: K = XW, (Shape: Ny x Dy) |
Value vectors: V = XW,, (Shape: Ny x D)) Ks = Bss Bz Eags
Similarities: E = QKT (Shape: Ny x Ny) E;; = Q, - K;/ sqrt(Dy) & & &
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny) ‘)
Output vectors: Y = AV (Shape: Ny x D) Y; = YAV, f t 1
X3 X1 X2

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Values will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

v

4 4 4
Product(—), Sum(?1)
t

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson

Self-Attention Layer

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW,

Key vectors: K = X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK" (Shape: Ny x Ny) E;;

Consider permuting
the input vectors:

Outputs will be the
same, but permuted

=Q, - K;/sqart(Dy)

Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)

Output vectors: Y = AV (Shape: Ny x Dy))

Y= Zin,jVj

A

broduct(—»), Sum(Tl)

v

Ass | | Aqs Aoz
t

Softmax(1)

Slide credit: Justin Johnson

Self-Attention Layer

Consider permuting

Inputs: the input vectors:
Input vectors: X (Shape: Ny x Dy)

Key matrix: W, (Shape: Dy x Do) Outputs will be the
Value matrix: W,, (Shape: Dy x D)) same, but permuted

Query matrix: W, (Shape: Dy x Dg)

Self-attention layer is

_ Permutation
Computation: Equivariant

Query vectors: O = XW, f(s(x)) = s(f(x))
Key vectors: K = X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

v

Y3 Y1 Y2
]Droduct(—:), Sum(Tl)
t
A3,2 A1 2 A2,2
A3,1 A1 1 A2,1
A3,3 A1,3 A2,3
t
Softmax(1)
t
E3,2 E1 2 E2,2
E3,1 E1,1 E2,1
E3,3 E1,3 E2,3
1 1 1
Q Q Q
f t ¥
X, X, X,

Slide credit: Justin Johnson

Self-Attention Layer

Self attention doesn’t “know”
the order of the vectors it is
processing!

Inputs:
Input vectors: X (Shape: Ny x Dy)

Key matrix: (Shape: Dy x D)
Value matrix: W,, (Shape: Dy x D))
Query matrix: (Shape: Dy x Dg)

Computation:

Query vectors: O = X

Key vectors: K =X (Shape: Ny x Dy)

Value vectors: V = XW,, (Shape: Ny x D,))

Similarities: E = (Shape: Ny x Ny) E;; = Q, - K,/ sqrt(Dq)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

Yy Y, Y3

4 4 4
Product(—), Sum(?1)
t

A1 > A2,3 A3,3
A1 2 A2,2 A3,2

Aq 1 A 4 Az 4
t

Softmax(1)

Slide credit: Justin Johnson

Self-Attention Layer

Inouts: Self attention doesn’t “know” V,
NDLES. _ _ the order of the vectors it is

Input vectors: X (Shape: Ny x Dy) rocessing! V,
Key matrix: (Shape: Dy x D) P g

Value matrix: W, (Shape: Dy x D) Vi

In order to make processing
position-aware, concatenate
input with positional

encoding K,

Query matrix: W, (Shape: Dy x Dg)

Computation:

Query vectors: Q = XW

Key vectors: K =X (Shape: Ny x Dy)
Value vectors: V = XW,, (Shape: Ny x D,
Similarities: E = QK' (Shape: Ny x Ny) E;; = Q; - K,/ sqrt(Dg)
Attention weights: A = softmax(E, dim=1) (Shape: Ny x Ny)
Output vectors: Y = AV (Shape: Ny x D) Y; = > A}V,

E can be learned lookuptable, K
S)r fixed function

Y1 Y2 Y3
4 4 4
Product(—), Sum(?1)

t
A1 '3 A2,3 A3,3
A1 2 A2,2 A3,2
A1,1 A2,1 A3,1
t
Softmax(1)
t

E1 '3 E2,3 E3,3

E1 ,2 E2,2 E3,2

E1 A E2,1 E3,1
1 1 1

Q Q Q
t f f

X1 X2 X3

E(1) [E@2) [EQ)

Slide credit: Justin Johnson

Summary

- We have made a generic sequence-in to sequence-out layer
- This is what we want for language processing!
- Each output is a contextualized representation of the
corresponding input word
- Vector for stop word can be treated as representation of entire
sentence (e.g. project its output to classifier and add loss)

- Unlike RNNs/LSTMs, it processes all inputs (e.g. entire sentence) at
once
- Highly parallelizable
- => SCALE! -> Reduction of loss -> Magic

- Next time: Entire transformer architecture that combines this new layer
with other layers/concepts we know about (fully-connected,
normalization, residual/skip connections)

Paper Discussion

Recurrent Neural Networks for
Multivariate Time Series with
Missing Values

Zhengping Che(®!, Sanjay Purushotham?, Kyunghyun Cho?, David Sontag® & Yan Liu!

Multivariate time series data in practical applications, such as health care, geoscience, and biology,
are characterized by a variety of missing values. In time series prediction and other related tasks, it
has been noted that missing values and their missing patterns are often correlated with the target
labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns
for effective imputation and improving prediction performance. In this paper, we develop novel deep
learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit
(GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns,
i.e., masking and time interval, and effectively incorporates them into a deep model architecture so
that it not only captures the long-term temporal dependencies in time series, but also utilizes the
missing patterns to achieve better prediction results. Experiments of time series classification tasks
on real-world clinical datasets (MIMIC-1lI, PhysioNet) and synthetic datasets demonstrate that our
models achieve state-of-the-art performance and provide useful insights for better understanding and
utilization of missing values in time series analysis.

Problem Statement

 What problem does this paper focus on?
— Is this new or already explored?
— Is this important?
— What key applications this is relevant for?
— What assumptions does this paper make about

202401)

Recurrent Neural Networks for
Multivariate Time Series with
Missing Values

Zhengping Che(®!, Sanjay Purushotham?, Kyunghyun Cho?, David Sontag® & Yan Liu!

[

Multivariate time series data in practical applications, such as health care, geoscience, and biology,
are characterized by a variety of missing values. In time series prediction and other related tasks, it

has been noted that missing values and their missing patterns are often correlated with the target
labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns
for effective imputation and improving prediction performance. In this paper, we develop novel deep
learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit
(GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns,
i.e., masking and time interval, and effectively incorporates them into a deep model architecture so
that it not only captures the long-term temporal dependencies in time series, but also utilizes the
missing patterns to achieve better prediction results. Experiments of time series classification tasks
on real-world clinical datasets (MIMIC-1lI, PhysioNet) and synthetic datasets demonstrate that our
models achieve state-of-the-art performance and provide useful insights for better understanding and
utilization of missing values in time series analysis.

-
Key idea — Informative missingness

Nice!

Absclute Values of Pearson Correlations between Variable Missing Rates and Labels
(Mortality and ICD-9 Diagonsis Categories on MIMIC-III Dataset)

0.0 0.1 0.2 0.3

ICD=9
Diagonsis
Category

Index

1

Corr. with
weery LHNIIA T HHETNTN — THEN 11
1.0

Missing
Rate

0.8
1 a0 &0 60 a0 99

Input Variable Index

Figure 1. Demonstration of informative missingness on MIMIC-III dataset. The bottom figure shows

the missing rate of each input variable. The middle figure shows the absolute values of Pearson correlation
coefhicients between missing rate of each variable and mortality. The top figure shows the absolute values of
Pearson correlation coefficients between missing rate of each variable and each ICD-9 diagnosis category. More
details can be found in supplementary information Section SI.

Related Work / Situation of Work

 What prior approaches exist to solve this problem?

In the past decades, various approaches have been developed to address missing values in time series’. A sim-
ple solution is to omit the missing data and to perform analysis only on the observed data, but it does not provide
good performance when the missing rate is high and inadequate samples are kept. Another solution is to fill in the
missing values with substituted values, which is known as data imputation. Smoothing, interpolation®, and spline
methods are simple and efhcient, thus widely applied in practice. However, these methods do not capture variable
correlations and may not capture complex pattern to perform imputation. A variety of imputation methods have
been developed to better estimate missing data. These include spectral analysis®, kernel methods’, EM algorithm®,
matrix completion” and matrix factorization'’. Multiple imputation'"!? can be further applied with these impu-
tation methods to reduce the uncertainty, by repeating the imputation procedure multiple times and averaging
the results. Combining the imputation methods with prediction models often results in a two-step process where
imputation and prediction models are separated. By doing this, the missing patterns are not effectively explored
in the prediction model, thus leading to suboptimal analyses results'. In addition, most imputation methods also
have other requirements which may not be satisfied in real applications, for example, many of them work on data

2024-01-16

Approach and Key Nugget

 What approach does this paper take?

* What is the key “golden nugget” — intuition, idea, etc. that
leads to approach
— Lower-level

— Higher-level?

202401)

Paper Discussion

Recurrent Neural Networks for
Multivariate Time Series with
Missing Values

Zhengping Che(®!, Sanjay Purushotham?, Kyunghyun Cho?, David Sontag® & Yan Liu!

Multivariate time series data in practical applications, such as health care, geoscience, and biology,
are characterized by a variety of missing values. In time series prediction and other related tasks, it
has been noted that missing values and their missing patterns are often correlated with the target
labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns

or effective imputation and improving prediction performance. In this paper, we develop novel deep
learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit
GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns,
\.e., masking and time interval, and effectively incorporates them into a deep model architecture so
that it not only captures the long-term temporal dependencies in time series, but also utilizes the
missing patterns to achieve better prediction results. Experiments of time series classification tasks
on real-world clinical datasets (MIMIC-1lI, PhysioNet) and synthetic datasets demonstrate that our
models achieve state-of-the-art performance and provide useful insights for better understanding and
utilization of missing values in time series analysis.

Method — masking & Time Interval

Methods
Notations. We denote a multivariate time series with D variables of length Tas X = (x,, x,, ..., x7)" € R/,
where foreacht€{1,2,..., T x, € RP represents the {-th observations (a.k.a., measurements) Df all variables and

X, 4 denotes the measurement of d-th variable of x,. Let s, € R denote the time-stamp when the tth observation is
obtamed and we assume that the first observation is made at time-stamp 0 (i.e., s; =0). A time series X could have
missing values. We introduce a masking vector m, € {0, 1}” to denote which variables are missing at time step ¢,

and also maintain the time interval fﬂfd € I for each variable d since its last observation. To be more specific, we
have

I
md — L 1fx, is observed
f 0, otherwise (1)

S.I‘_ ‘Sf—l—i_ éfﬂip r:} 11 mF_IZO
§,d= . d __
34 Sp_ f}].:- mr_l—l
0, = 2)

Three Methods for Imputing

xfr — mrdxrd + (1 — mf}ffd (7)

where ¥ = PO D mr X n,fz” Dy rﬂr - %?is calculated on the training dataset and used for both training
and testing datasets. We refer to this appmach as GRU-Mean.

A second approach is to exploit the temporal structure. For example, we may assume any missing value is the
same as its last measurement and use forward imputation (GRU-Forward), i.e.,

= mix®+ (1 — mix] (8)

where t' < t is the last time the d-th variable was observed.

Instead of explicitly imputing missing values, the third approach simply indicates which variables are missing
and how long they have been missing as a part of input by concatenating the measurement, masking and time

interval vectors as
xr(u:l - [x (u (u E{nj] (9)

where xf”:' can be either from Equation (7) or (8). We later refer to this approach as GRU-Simple.

GRU

The structure of GRU is shown in Fig. 3(a). For each j-th hidden unit, GRU has a reset gate r/ and an update
gate z/ to control the hidden state h/ at each time t. The update functions are as follows:

rn=oWx,+ Uh,_, +b) (3)
z,=0(Wx,+ Uh, | +b) (4)
h, = tanh(Wx, + U(r,® h,_,) + b) (5)

hy=(1—2)Oh_+20h, (6)

GRU-D

we aim at learning decay rates from the training data rather than fixed a priori. That is, we model a vector of d_eca}'
rates -y as

Y = exp{—max(0,W, 0, + b.)} (10)

xf— m"]x,‘f (1 — m, 9 (v x,a + (1 — ‘f);f‘f} (11)

Xy

where xr‘f is the last observation of the d-th variable (' <) and %% is the empirical mean of the d-th variable.
When decaying the input variable directly, we constrain W, to be diagonal, which effectively makes the decay rate

of each variable independent from the others.

' Hidden state ,
| decay term

=~

— IN (x)

» OUT (h)

MASK (m)

— IN (x)

» OUT (h)

(b) GRU-D (Parts in cyan refer to the modifications.)

Inputs:
Variable (x;)
Masking (m;)

Time Interval (&;)

Target Predictions:
E.g., Mortality or ICD-9

Prediction Layer

GRU-D

GRU-D

:

i

i

GRU-D [—» GRLU-D

(&)
()

()
()

1

e |G
e |G
ey |G

(c¢) Proposed prediction model architecture with GRU-D.

Figure 3. Graphical illustrations of the original GRU (top-left), the proposed GRU-D (bottom-left), and the

whole network architecture (right).

Validation

* How do they validate their approach?
— What data do they use?
— What baselines do they compare against?

202401)

Paper Discussion

Recurrent Neural Networks for
Multivariate Time Series with
Missing Values

Zhengping Che(®!, Sanjay Purushotham?, Kyunghyun Cho?, David Sontag® & Yan Liu!

Multivariate time series data in practical applications, such as health care, geoscience, and biology,
are characterized by a variety of missing values. In time series prediction and other related tasks, it
has been noted that missing values and their missing patterns are often correlated with the target
labels, a.k.a., informative missingness. There is very limited work on exploiting the missing patterns
for effective imputation and improving prediction performance. In this paper, we develop novel deep
learning models, namely GRU-D, as one of the early attempts. GRU-D is based on Gated Recurrent Unit
(GRU), a state-of-the-art recurrent neural network. It takes two representations of missing patterns,
i.e., masking and time interval, and effectively incorporates them into a deep model architecture so
that it not only captures the long-term temporal dependencies in time series, but also utilizes the
missing patterns to achieve better prediction results. Experiments of time series classification tasks
on real-world clinical datasets (MIMIC-IIl, PhysioNet) and synthetic datasets demonstrate that our
models achieve state-of-the-art performance and provide useful insights for better understanding an
utilization of missing values in time series analysis.

ICD-9 20 Taskson | All 4 Tasks on
Models MIMIC-III Dataset | PhysioNet Dataset
GRU-Mean 0.7070£0.001 0.8099 £0.011
GRU-Forward 0.7077 £0.001 0.8091 £0.008
GRU-Simple 0.7105+0.001 0.8249 +0.010
GRU-CubicSpline 0.6372£0.005 0.7451 £0.011
GRU-MICE 0.6717 £0.005 0.7955+0.003
GRU-MF 0.6805+0.004 0.7727 £0.003
GRU-PCA 0.7040£0.002 0.8042 £0.006
GRU-MissForest 0.711540.003 0.8076 £0.009

Proposed GRU-D

0.7123+0.003

0.8370+0.012

Table 2. Model performances measured by average AUC score (mean =+ std) for multi-task predictions on real

datasets.

Non-RNN Models

RNN Models

Mortality Prediction On MIMIC-IIT Dataset

LSTM-Mean

0.8142+0.014

LR-Mean 0.7589+0.015 SVM-Mean 0.7908 +0.006 RF-Mean 0.8293 £ 0.004 GRU-Mean 0.8252+0.011
LR-Forward 0.7792+0.018 SVM-Forward 0.8010£0.004 RF-Forward 0.8303 £0.003 GRU-Forward 0.8192+0.013
LR-Simple 0.7715x£0.015 SVM-Simple 0.8146 =0.008 RF-Simple 0.8294 +£0.007 GRU-Simple wjo & 0.8367 £0.009
LR-Softimpute 0.7598 £0.017 SVM-SoftImpute 0.7540£0.012 RF-Softimpute 0.7855x0.011 GRU-Simple w/o m>* 0.8266 £0.009
LE-ENN 0.6877 £0.011 SVM-KNN 0.7200£=0.004 RF-KNN 0.7135+0.015 GRU-Simple 0.8380 +£0.008
LR-CubicSpline 0.7270£0.005 SVM-CubicSpline 0.6376 £0.018 RF-CubicSpline 0.8339 £ 0.007 GRU-CubicSpline 0.8180+£0.011
LE-MICE 0.6965+0.019 SVM-MICE 0.7169+0.012 RE-MICE 0.7159 £ 0.005 GRU-MICE 0.7527 +£0.015
LR-MF 0.7158 £0.018 SVM-MF 0.7266 £0.017 RF-MEF 0.7234+0.011 GRU-ME 0.7843+£0.012
LE-PCA 0.7246 £0.014 SVM-PCA 0.7235£0.012 RE-PCA 0.7747 £0.009 GRU-PCA 0.8236 +=0.007
LR-MissForest 0.7279+0.016 SVM-MissForest 0.7482+0.016 RF-MissForest 0.7858 £0.010 GRU-MissForest 0.8239 +£0.006

Proposed GRU-D 0.8527 £0.003
Mortality Prediction On PhysioNet Dataset LSTM-Mean 0.8025+£0.013
LR-Mean 0.7423£0.011 SVM-Mean 0.8131=0.018 RF-Mean 0.8183+£0.015 GRU-Mean 0.8162+0.014
LR-Forward 0.7479+0.012 SVM-Forward 0.8140+0.018 RF-Forward 0.8219+0.017 GRU-Forward 0.8195+0.004
LR-Simple 0.7625+0.004 SVM-Simple 0.8277 £0.012 RF-Simple 0.8157 £0.014 GRU-Simple 0.8226 £0.010
LR-SoftImpute 0.7386 £0.007 SVM-Softimpute 0.8057 =0.019 RF-Softimpute 0.8100+£0.016 GRU-SoftImpute 0.8125+0.005
LE-KNN 0.7146 £0.011 SVM-KNN 0.7644 £0.018 RF-KNN 0.7567 £0.012 GRU-KNN 0.8155+0.004
LR-CubicSpline 0.6913+0.022 SVM-CubicSpline 0.6364£0.015 RF-CubicSpline 0.8151+0.015 GRU-CubicSpline 0.7596 £0.020
LR-MICE 0.6828 £0.015 SVM-MICE 0.7690 £0.016 RE-MICE 0.7618 £0.007 GRU-MICE 0.8153 £0.013
LR-MF 0.6513+0.014 SVM-MF 0.7515+0.022 RF-MEF 0.7355+0.022 GRU-MEF 0.7904 +0.012
LR-PCA 0.6890£0.019 SVM-PCA 0.7741£0.014 RE-PCA 0.7561+£0.025 GRU-PCA 0.8116 =0.007
LR-MissForest 0.7010£0.018 SVM-MissForest 0.7779£0.008 RF-MissForest 0.7890+0.016 GRU-MissForest 0.8244+0.012

Proposed GRU-D 0.84244-0.012

Table 1. Model performances measured by AUC score (mean £ sid) for mortality prediction.

Strengths / Weaknesses

e Strengths?

 Weakness / Limitations?

202401)

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Lecture Outline
	Slide 4: Sequence Modeling with RNNs
	Slide 5
	Slide 6: How can we train this on language?
	Slide 7
	Slide 8
	Slide 9: LSTMs Intuition: Additive Updates
	Slide 10: Machine Translation
	Slide 11: Machine Translation
	Slide 12: Machine Translation with RNNs
	Slide 13: Machine Translation with RNNs
	Slide 14: Machine Translation with RNNs
	Slide 15: Machine Translation with RNNs
	Slide 16: Machine Translation with RNNs
	Slide 17: Machine Translation with RNNs
	Slide 18: Machine Translation with RNNs
	Slide 19: Machine Translation with RNNs
	Slide 20: Machine Translation with RNNs
	Slide 21: Machine Translation with RNNs
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Attention Layer
	Slide 39: Attention Layer
	Slide 40: Attention Layer
	Slide 41: Attention Layer
	Slide 42: Attention Layer
	Slide 43: Attention Layer
	Slide 44: Attention Layer
	Slide 45: Attention Layer
	Slide 46: Attention Layer
	Slide 47: Attention Layer
	Slide 48: Attention Layer
	Slide 49: Attention Layer
	Slide 50: Self-Attention Layer
	Slide 51: Self-Attention Layer
	Slide 52: Self-Attention Layer
	Slide 53: Self-Attention Layer
	Slide 54: Self-Attention Layer
	Slide 55: Self-Attention Layer
	Slide 56: Self-Attention Layer
	Slide 57: Self-Attention Layer
	Slide 58: Self-Attention Layer
	Slide 59: Self-Attention Layer
	Slide 60: Self-Attention Layer
	Slide 61: Self-Attention Layer
	Slide 62: Self-Attention Layer
	Slide 63: Self-Attention Layer
	Slide 64: Self-Attention Layer
	Slide 65: Self-Attention Layer
	Slide 66: Summary
	Slide 67: Paper Discussion
	Slide 68: Problem Statement
	Slide 69
	Slide 70: Key idea – Informative missingness Nice!
	Slide 71: Related Work / Situation of Work
	Slide 72: Approach and Key Nugget
	Slide 73: Paper Discussion
	Slide 74: Method – masking & Time Interval
	Slide 75: Three Methods for Imputing
	Slide 76: GRU
	Slide 77: GRU-D
	Slide 78
	Slide 79: Validation
	Slide 80: Paper Discussion
	Slide 81
	Slide 82
	Slide 83: Strengths / Weaknesses

