
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Generative Adversarial Networks

• LLaVA-OneVision Discussion

• Assignment 3

• Due July 13th 11:59pm EST

• Projects

• Project proposal due July 26th

• Next Meta office hours 07/09
3pm ET on bias/fairness
• NOT recorded!

Image to

Image CNNs

Computer Vision Tasks

Semantic Segmentation
(Class distribution per pixel)

Car Coffee Cup Bird

Classification
(Class distribution per image)

Instance Segmentation
(Class distribution per pixel with unique ID)

Object Detection
(List of bounding boxes with class distribution per box)

Segmentation Tasks

Given an image, output another image

⬣ Each output contains class distribution per pixel

⬣ More generally an image-to-image problem

Semantic Segmentation
(Class distribution per pixel)

Instance Segmentation
(Class distribution per pixel with unique ID)

Input & Output

Probability distribution over

classes for this one pixel

?

𝑯

𝑾

𝟑

𝑯

𝑾
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

Model

Idea 1: Fully-Convolutional Network

Fully connected layers no longer explicitly retain spatial information (though the

network can still learn to do so)

Idea: Convert fully connected layer to convolution!

Fully

Connected

Layers

Loss

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Converting FC Layers to Conv Layers

Each kernel has the size of entire input! (output is 1 scalar)

⬣ This is equivalent to Wx+b!

⬣ We have one kernel per output node

Convolution +

Non-Linear

Layer

Convolution +

Non-Linear

Layer

Pooling

Layer

Fully

Convolutional

Hidden Layer

Loss

Fully

Convolutional

Hidden Layer

Fully

Convolutional

Output Layer

… … …

Same Kernel, Larger Input

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Original:

Larger:

Input Conv Kernel Output

𝑾 = 𝟕

𝑯
=

𝟕

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

Fully

Convolutional

Layer Kernel

Fully

Convolutional

Layer Kernel

Inputting Larger Images

Original sized image

Larger Image

Larger Output Maps

Larger

Output

Size!

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

Why does this matter?

⬣ We can stride the “fully connected” classifier across larger

inputs!

⬣ Convolutions work on arbitrary input sizes (because of striding)

Idea 2: “De”Convolution and UnPooling

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+

Non-Linear

Layer

(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

We can develop learnable

or non-learnable

upsampling layers!

Encoder

Decoder

Max Unpooling

Example : Max pooling

Stride window across image but perform per-patch max operation

X(𝟎: 𝟏, 𝟎: 𝟏) =
𝟏𝟎𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟐𝟎𝟎

max(0:1,0:1) = 𝟐𝟎𝟎

𝑾 = 𝟓

𝑯
=

𝟓

𝑾 = 𝟓

𝑯
=

𝟓

Idea: Remember max elements in encoder! Copy value from equivalent position,

rest are zeros

Copy value to position chosen as max

in encoder, fill reset of this window

with zeros

Pooling UnPooling

Max Unpooling Example (one window)

𝟐𝐱𝟐 max unpool

𝐘 =
𝟎 𝟑𝟎𝟎 −
𝟎 𝟎 −
− − −

𝐗 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Decoder

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

Encoder

Max Unpooling Example

𝐗𝐞𝐧𝐜 =
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐘𝐞𝐧𝐜 =
𝟏𝟓𝟎 𝟏𝟓𝟎
𝟏𝟎𝟎 𝟏𝟏𝟎

𝟐𝐱𝟐 max pool

𝟐𝐱𝟐 max unpool

𝐘𝐝𝐞𝐜 =
𝟎 𝟑𝟎𝟎 + 𝟒𝟓𝟎 𝟎

𝟏𝟎𝟎 𝟎 𝟐𝟓𝟎
 𝟎 𝟎 𝟎

𝐗𝐝𝐞𝐜 =
𝟑𝟎𝟎 𝟒𝟓𝟎
𝟏𝟎𝟎 𝟐𝟓𝟎

Encoder

Decoder

Contributions from

multiple windows

are summed

Symmetry in Encoder/Decoder

We pull max indices from

corresponding layers

(requires symmetry in

encoder/decoder)

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

“Image”
(De)Convolution

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Encoder

Decoder

“De”Convolution (Transposed Convolution)

𝑾 = 𝟓

𝑯
=

𝟓

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

How can we upsample using convolutions and learnable kernel?

Normal Convolution

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)

Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

𝒌
𝟏

=
𝟑

𝒌𝟐 = 𝟑

𝑯
=

𝟓
𝑯

−
𝒌

𝟏
+

𝟏

𝑾 − 𝒌𝟐 + 𝟏

Transposed Convolution Example

X=
𝟏𝟐𝟎 𝟏𝟓𝟎 𝟏𝟐𝟎
𝟏𝟎𝟎 𝟓𝟎 𝟏𝟏𝟎
𝟐𝟓 𝟐𝟓 𝟏𝟎

𝐊 =
𝟏 − 𝟏
𝟐 − 𝟐

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 𝟎 𝟎
𝟐𝟒𝟎 − 𝟐𝟒𝟎 𝟎 𝟎
 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎

Contributions from

multiple windows

are summed

 𝟏𝟐𝟎 − 𝟏𝟐𝟎 + 𝟏𝟓𝟎 − 𝟏𝟓𝟎 𝟎
 𝟐𝟒𝟎 − 𝟐𝟒𝟎 + 𝟑𝟎𝟎 − 𝟑𝟎𝟎 𝟎

 𝟎 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

Incorporate
X(0,0)

Incorporate
X(1,0)

Symmetry in Encoder/Decoder

We can either learn the kernels,

or take corresponding encoder

kernel (no decoder learning)

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Decoder

Transfer Learning

We can start with a

pre-trained

trunk/backbone (e.g.

network pretrained on

ImageNet)!

Input

Image
PredictionsCNN

CNN

U-Net

You can

have skip

connections

to bypass

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

⬣ Various ways to get image-like outputs, for

example to predict segmentations of input

images

⬣ Fully convolutional layers essentially apply

the striding idea to the output classifiers,

supporting arbitrary input sizes

⬣ (without output size depending on what

the input size is)

⬣ We can have various upsampling layers that

actually increase the size

⬣ Encoder/decoder architectures are popular

ways to leverage these to perform general

image-to-image tasks

Summary

Generative

Models:

Introduction

Spectrum of Low-Labeled Learning

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning

output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation, etc.

Less Labels

Unsupervised Learning

Density

Estimation

Classification

Regression

Clustering

Dimensionality

Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) Sample from

Distribution

What to Learn?

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling 𝑷 𝒙 Comparing/

Grouping

Representation

Learning

Principal

Component

Analysis

Clustering
Density

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the

parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Diffusion Models

PixelRNN &

PixelCNN

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)
next

word

history

Same as language modeling!

Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over

sequences of words.

next

wor

d

history

⬣ RNNs are a family of neural architectures for modeling sequences.

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 ෑ

𝒊=𝟐

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

1. Choose ordering (upper left,

top to bottom, left to right.

Separate out pixel 1

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Model this as RNN with parameters

⬣ Training:

⬣ We can train similar to language models:

⬣ Maximum likelihood approach

⬣ Downsides:

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Downsides?

Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution

as a convolution layer!

⬣ Because of spatial locality in images

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by

applying a mask, zeroing out “future”

pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images

Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Can we update this to modern times?

Multi/Mixed-Modal Large Language Models

Chameleon: Mixed-Modal Early-Fusion Foundation Models

In a few weeks

Generative

Adversarial

Networks

(GANs)

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Implicit Models

⬣ Implicit generative models do not actually learn an explicit model for 𝒑 𝒙

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ Learn good feature representations

⬣ Perform data augmentation

⬣ Learn world models (a simulator!) for reinforcement learning

⬣ How?

⬣ Decode architecture

⬣ Learn to sample from a neural network output

What architecture lets us generate images?

How do we generate a different

image every time?

Learning to Sample

⬣ We would like to sample from 𝒑 𝒙 using a neural network

⬣ Idea:

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to 𝒑 𝒙

𝑵 𝝁, 𝝈 Neural Network

Samples Samples

𝒑 𝒙

Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of
Random
Numbers

Generator

How do we train this (loss)?

Implicit Models

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ How?

⬣ Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

⬣ Lots of tricks to make the optimization more stable

Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the

network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated

(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

⬣ Can be seen as a dynamic (adversarial) loss!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of
Random
Numbers

Generator Discriminator

Real or
Fake?

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Mini-batch of
real & fake data

Question: What loss functions can we use (for each network)?

⬣ Generator: Update weights to improve

realism of generated images

⬣ Discriminator: Update weights to better

discriminate

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Sample from real Sample from fake

Discriminator Perspective

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

⬣ The discriminator wants to maximize this:

⬣ 𝐷 𝑥 is pushed up (to 1) because 𝑥 is a real image

⬣ 1 − 𝐷 𝐺 𝑧 is also pushed up to 1 (so that D G z is pushed down to 0)

⬣ In other words, discriminator wants to classify real images as real (1) and

fake images as fake (0)

Generator Perspective

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

⬣ The generator wants to minimize this:

⬣ First term: G(..) doesn’t appear in it!

⬣ 1 − 𝐷 𝐺 𝑧 is pushed down to 0 (so that D G z is pushed up to 1)

⬣ This means that the generator is fooling the discriminator, i.e. succeeding

at generating images that the discriminator can’t discriminate from real

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generator minimizes How well discriminator
does (0 for fake)

Sample from fake

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

How well discriminator
does (1 for real)

Discriminator maximizes How well discriminator
does (0 for fake)

Sample from fakeSample from real

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of
real & fake data

Final Algorithm

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Converting to Max-Max Game

⬣ The generator part of the objective does not have good gradient properties

⬣ High gradient when 𝐷 𝐺 𝑧 is high (that is, discriminator is wrong)

⬣ We want it to improve when samples are bad (discriminator is right)

⬣ Alternative objective, maximize:

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung G(z) -> Generated

Bad generator
Good generator
(fooling)

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Mini-batch of
real & fake data

⬣ At the end, we have:

⬣ An implicit generative model!

⬣ Features from discriminator

Early Results

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ Low-resolution

images but look

decent!

⬣ Last column are

nearest neighbor

matches in dataset

Difficulty in Training

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ GANs are very difficult to train due to the mini-max objective

⬣ Advancements include:

⬣ More stable architectures

⬣ Regularization methods to improve optimization

⬣ Progressive growing/training and scaling

DCGAN

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Regularization

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

⬣ Training GANs is difficult due to:

⬣ Minimax objective – For example, what if generator learns to memorize

training data (no variety) or only generates part of the distribution?

⬣ Mode collapse – Capturing only some modes of distribution

⬣ Several theoretically-motivated regularization methods

⬣ Simple example: Add noise to real samples!

Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Samples

from the

model look

much

better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Interpolating

between

random

points in

latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris

https://www.youtube.com/watch?v=PCBTZh41Ris
https://www.youtube.com/watch?v=PCBTZh41Ris
https://www.youtube.com/watch?v=PCBTZh41Ris

Summary

⬣ Generative Adversarial Networks (GANs) can produce amazing

images!

⬣ Several drawbacks

⬣ High-fidelity generation heavy to train

⬣ Training can be unstable

⬣ No explicit model for distribution

⬣ Larger number of extensions:

⬣ GANs conditioned on labels or other information

⬣ Adversarial losses for other applications

Comparison of Methods

Problem Statement

• What problem does this paper focus on?

– Is this new or already explored?

– Is this important?

– What key applications this is relevant for?

– What assumptions does this paper make about

2024-01-16 Slides created for CS886 at UWaterloo 69

Related Work / Situation of Work

• What prior approaches exist to solve this problem?

2024-01-16 Slides created for CS886 at UWaterloo 70

Related Work / Situation of Work

• Built on LLaVA-NeXT

2024-01-16 Slides created for CS886 at UWaterloo 71

Related Work / Situation of Work

• Built on LLaVA-NeXT

2024-01-16 Slides created for CS886 at UWaterloo 72

Approach and Key Nugget

• What approach does this paper take?

• What is the key “golden nugget” – intuition, idea, etc. that
leads to approach

– Lower-level

– Higher-level?

2024-01-16 Slides created for CS886 at UWaterloo 73

Contributions

2024-01-16 Slides created for CS886 at UWaterloo 74

Architecture

2024-01-16 Slides created for CS886 at UWaterloo 75

Multi-Resolution

2024-01-16 Slides created for CS886 at UWaterloo 76

To strike a balance of performance and cost, we observe that the scaling of
resolution is more effective than that of token numbers, and recommend an
AnyRes strategy with pooling.

Data

2024-01-16 Slides created for CS886 at UWaterloo 77

Training

2024-01-16 Slides created for CS886 at UWaterloo 78

Training

2024-01-16 Slides created for CS886 at UWaterloo 79

Validation

• How do they validate their approach?

– What data do they use?

– What baselines do they compare against?

2024-01-16 Slides created for CS886 at UWaterloo 80

Strengths / Weaknesses

• Strengths?

• Weakness / Limitations?

2024-01-16 Slides created for CS886 at UWaterloo 82

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Generative Adversarial Nets: Convolutional Architectures
	Slide 62: Generative Adversarial Nets: Convolutional Architectures
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Comparison of Methods
	Slide 68
	Slide 69: Problem Statement
	Slide 70: Related Work / Situation of Work
	Slide 71: Related Work / Situation of Work
	Slide 72: Related Work / Situation of Work
	Slide 73: Approach and Key Nugget
	Slide 74: Contributions
	Slide 75: Architecture
	Slide 76: Multi-Resolution
	Slide 77: Data
	Slide 78: Training
	Slide 79: Training
	Slide 80: Validation
	Slide 81
	Slide 82: Strengths / Weaknesses

