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Assignment 3

Due July 13t 11:59pm EST

Projects

Next Meta office hours 07/09

Project proposal due July 26th

3pm ET on bias/fairness

NOT recorded!

WO: July 7

W9: July 9

W10: July 14

W10: July 16

W11: July 21

Generative Models (Part |): Generative Adversarial
Networks
READING: LLaVA-OneVision

Generative Models (Part Il): Diffusion Models
PS3/HW3 due July 13th 11:59pm (grace period July
15th)

Variational Autoencoders (VAEs)

Open topic! (please suggest). Otherwise default is
Object Detection and Segmentation

Fairness/Bias Discussion, open topics not covered,
Wrap-up

Final Project Due July 26th 11:59pm (grace period July
28th)
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Classification ELAE .25

(Class distribution per image) Object Detection
(List of bounding boxes with class distribution per box)

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Computer Vision Tasks Gegrata)
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Given an image, output another image

Each output contains class distribution per pixel

More generally an image-to-image problem

Semantic Segmentation Instance Segmentation
(Class distribution per pixel) (Class distribution per pixel with unique ID)

) Segmentation Tasks Gegrala |
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3 Classes

) Input & Output

Probability distribution over
classes for this one pixel
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Fully connected layers no longer explicitly retain spatial information (though the
network can still learn to do so)

Idea: Convert fully connected layer to convolution!

) Idea 1: Fully-Convolutional Network Ge°r9'aQ
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Convolution + Pooling Convolution + Fully Fully Fully
Non-Linear Layer Non-Linear Convolutional  Convolutional  Convolutional
Layer Layer Hidden Layer  Hidden Layer  Output Layer

Each kernel has the size of entire input! (output is 1 scalar)
This is equivalent to Wx+Db!
We have one kernel per output node

) Converting FC Layers to Conv Layers Ge°r9'aﬁ
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Why does this matter?

We can stride the “fully connected” classifier across larger
inputs!

Convolutions work on arbitrary input sizes (because of striding)
& 66 3%“3%0‘1‘36&0_9'&0:\_0_0

convolutlonahzat10n

v

Original sized image

tabby cat heatmap

- | Larger
Larger Image g@%@ﬁ Output
'1,‘96/3 o SiZE!
Larger Output Maps

Long, et al., “Fully Convolutional Networks for Semantic Segmentation”, 2015

) Inputting Larger Images Gograla |



Convolutional Neural Network (CNN)

Image
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Idea 2: “De”’Convolution and UnPooling Gogratn |



Example : Max pooling
Stride window across image but perform per-patch max operation

X(0:1,0:1) = Hgg ;(5)8] =) max(0:1,0:1) =200

Copy value to position chosen as max
in encoder, fill reset of this window
with zeros

H
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N
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Pooling

Idea: Remember max elements in encoder! Copy value from equivalent position,
rest are zeros

) Max Unpooling Gegraia
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120 150 120
150 150
X=1100 50 110 |:> Y=[100110
25 25 10 2x2 max pool
Encoder
Decoder
2x2 max unpool
0 300 -
300450
= Y = _
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) Max Unpooling Example (one window) Gegrala |
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_ 120150 120:> v = [150150 Contributions from
I o -¢ 1100110 multiple windows

25 25 102
are summed

max pool

Encoder
Decoder
2x2 max unpool 0 300+450 O
Y. = 300450 |:> Y;:..=1100 0 250
dec ~ (100 250] dee 0 0 0

) Max Unpooling Example Gegrala)



Convolutional Neural Network (CNN)

Image
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! We pull max indices from
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How can we upsample using convolutions and learnable kernel?

Normal Convolution

el 121 -1
 ENET=
|| NG -
x AR =
S=EEEE k=3

W=>5 W—k,+1

3

Transposed Convolution (also known as “deconvolution”, fractionally strided conv)
Idea: Take each input pixel, multiply by learnable kernel, “stamp” it on output

“De”Convolution (Transposed Convolution) Ge%%'ﬁ@




120 150 120 . .
— Contributions from
X=1100 50 110] K= ; — ;] multiple windows
25 25 10 uitip
are summed
[ 120 —120 0 O 120 —-120+ 150 — 150 O |
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) Transposed Convolution Example Ge%%'ﬁ&



Convolutional Neural Network (CNN)

7

| We can either learn the kernels,
| or take corresponding encoder
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We can start with a
mage —| CNN —> Predictions runkhackoone (6.6
network pretrained on

//@ ImageNet)!

CNN

) Transfer Learning Gogratn |



input
image

output
tile

| segmentation
g map

\

388x388

You can
have skip
connections
to bypass
bottleneck!

= CONV 3X3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= CONnv 1x1

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015
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Summary

Various ways to get image-like outputs, for
example to predict segmentations of input
images

Fully convolutional layers essentially apply
the striding idea to the output classifiers,
supporting arbitrary input sizes
(without output size depending on what
the input size is)

We can have various upsampling layers that
actually increase the size

Encoder/decoder architectures are popular
ways to leverage these to perform general
image-to-image tasks
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Supervised
Learning

Train Input: {X, Y}

Learning output:
f:X =Y, P(ylx)

e.g. classification

Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.
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Supervised Learning

« == (ERS) —
« = (R =

Unsupervised Learning

o= () ==
= iy —>

x == -|::> p(x)

) Unsupervised Learning

Discrete

Continuous

Discrete

Continuous

Sample from
Distribution
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Traditional unsupervised learning methods:

Density
estimation

Modeling P(x)

Deep Generative Models

a N

.

: : "gﬂ' _ . Principal
Gy o Clustering ' Component
‘,1‘::»;.‘ Analysis
‘*!\

Comparing/ Representation
Grouping Learning

Metric learning & clustering

.

J

Almost all deep learning!

Similar in deep learning, but from neural network/learning perspective

) . What to Learn?




Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw. orks

) Generative Models Ge‘%



Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

We can parameterize our model as P(x, 8) and use maximum likelihood to optimize the
parameters given an unlabeled dataset: " _
0" =arg IllaXHmede] (:B(l)', 9)
o i

m
= arg max log H Pmodel (;I:(""); 9)
o .
i=1

=argmax ¥ log pmodel (m(i): 9) :

They are called generative because they can often generate samples

Example: Multivariate Gaussian with estimated parameters u, o
Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netv orks

) Generative Models Ge‘%



Maximum le@llhOOd‘ / GAN
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Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixeRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA )

Diffusion Models

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




PixeIRNN &

PixelCNN
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Maximum leethOd‘ / GAN
N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixeRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




We can use chain rule to decompose the joint distribution

Factorizes joint distribution into a product of conditional distributions
Similar to Bayesian Network (factorizing a joint distribution)
Similar to language models!

Same as language modeling!

p) = | [plz ) Hp Wi | Wiit, ..., ws)

next history
word

Requires some ordering of variables (edges in a probabilistic graphical model)

We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

) Factorizing P(x)



Language modeling involves estimating a probability distribution over
sequences of words.

p(S) — p(W~|,W2, e 7Wn) = H p(W, ‘ Wi_1,..., W1)
i next history

wor
d

RNNs are a family of neural architectures for modeling sequences.

h; ho
fo % e —— £ hn

XA X2 Xn

) Language Models as an RNN




p(x) — np('xl X1, '"in—l)
p() = plx) r p(xil, . X 1)

1. Choose ordering (upper left,
top to bottom, left to right.

Separate out pixel 1

Oord et al., Pixel Recurrent Neural Networks

) Factorized Models for Images Ge‘%



p() = PP )P lxn) | [pGrilxs, - xi0)
i=1

Model this as RNN with parameters i’
Training: I
We can train similar to language models:

Maximum likelihood approach
Downsides?
Downsides:
Slow sequential generation process

Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

) Factorized Models for Images Ge‘%{f




Idea: Represent conditional distribution
as a convolution layer!

Because of spatial locality in images

Considers larger context (receptive field)

olo|l~|~|~

(=1 =l e

=Nl e
o |l o[ |~ |~

o |l o= | —=| =

Practically can be implemented by
applying a mask, zeroing out “future”
pixels

Faster training but still slow generation
Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decodors

) Pixel CNN Ge%




occluded completions original




Can we update this to modern times?

Oord et al., Conditional Image Generation with PixelCNN Decocdzrs

Example Images (PixelCNN)




In a few weeks

“Here is a recipe for
banana bread.” &L

IMAGE OUTPUT

TEXT OUTPUT

[Mixed-l\flodal Auto-Regressive LM}
T 1[ )
t
T T Image Tokenizer }
{ “What can | bake }
with this?”

18E=00E

Mixed Modal Auto-Regressive LM
! { ! f f t

200000

(b) Mixed-Modal Generation

/—.\\If—"\
S
T

Chameleon: Mixed-Modal Early-Fusion Foundation Models




Generative
Adversarial

Networks
(GANSs)
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Maximum leethOd‘ / GAN
N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




Implicit generative models do not actually learn an explicit model for p(x)

Instead, learn to generate samples from p(x)
Learn good feature representations
Perform data augmentation

Learn world models (a simulator!) for reinforcement learning

What architecture lets us generate images?

How do we generate a different Generator 1,
Decode architecture image every time?

How?

Learn to sample from a neural network output

) Implicit Models



We would like to sample from p(x) using a neural network
Idea:
Sample from a simple distribution (Gaussian)
Transform the sample to p(x)

Samples I I Samples M

N(u, o) Neural Network p(x)

) Learning to Sample eeo S




Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator
Vector of
Random
Numbers
N(u,0)  Neural Network p(x)

How do we train this (loss)?

) Generating Images G'e‘%f



Instead, learn to generate samples from p(x)

How?

Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

Lots of tricks to make the optimization more stable

) Implicit Models



Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

Idea: Have another network try to distinguish a real image from a generated
(fake) image

Why? Signal can be used to determine how well it's doing at generation
Can be seen as a dynamic (adversarial) loss!

Generator Discriminator

Vector of
Random
Numbers

Real or

Adversarial Networks



Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANSs)



Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

mén mSX V(D G) — Emdiata(m) [log D(:BH —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Sample from real Sample from fake

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The discriminator wants to maximize this:
D(x) is pushed up (to 1) because x is a real image
1—D(G(2)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)

In other words, discriminator wants to classify real images as real (1) and
fake images as fake (0)

) Discriminator Perspective




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The generator wants to minimize this:
First term: G(..) doesn’t appear in it!
1— D(G(2)) is pushed down to O (so that D(G(z)) is pushed up to 1)

This means that the generator is fooling the discriminator, i.e. succeeding
at generating images that the discriminator can’t discriminate from real

) Generator Perspective Ge‘%




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:
Sample from fake

mén mB,X V(D G) — Emdiata(m) [log D(:I:)} —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Generator minimizes How well discriminator
does (0 for fake)
where D(x) is the discriminator outputs probability ([0,1]) of real image

x is a real image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

Sample from real Sample from fake
Discriminator maximizes How well discriminator How well discriminator
does (1 for real) does (0 for fake)

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Generator

Vector of
Random
Numbers

Vo, 2ok (120 (6 ()

Generator Loss

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the

answer (self-
supervised)

vgd%g; log D (@) +1og (1= D (¢ (17)))]

Discriminator Loss

) Generative Adversarial Networks (GANSs)



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
E‘XIJGTi[‘IIGI][S.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l}, e ._z(m}} from noise prior p,(z).

e Sample minibatch of m examples {z™), ... (™} from data generating distribution

pdata(az)‘

e Update the discriminator by ascending its stochastic gradient:

Va3 loe D («) + 1og (1- D (¢ (=9)))].

1=

end for
e Sample minibatch of 1 noise samples {z() ..., z(™)} from noise prior py(z).

e Update the generator by descending its stochastic gradient:

Va3 tox (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

Final Algorithm




The generator part of the objective does not have good gradient properties

High gradient when D(G(z)) is high (that is, discriminator is wrong)
We want it to improve when samples are bad (discriminator is right)

Alternative objective, maximize:
max ]Ezwp(z) log(ng (GQQ (Z))) 2t

0 ator
g -Bad generator

—4 |

0.0 0.2 0:4
G(z) -> Generated >

I
0.6 0.8 10

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game



Vector of
Random
Numbers

)

Generator

B

At the end, we have:
An implicit generative model!
Features from discriminator

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the

answer (self-
supervised)

Generative Adversarial Networks (GANSs)



Low-resolution
images but look
decent!

Last column are
nearest neighbor
matches in dataset




GANSs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training




Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

1024
(—‘—\

l—‘% -
R i &
g T==dEEE——————— | | SO > Stride 2
ppeeeeeeseeend - - NI |5 | .

8

Project and reshape

CCNV 3 64

convs -
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks




Training GANSs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

2
A- ]E'I‘NPreahéde{oacj) [HvXD@(;r’ +0)[l = k}

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization




Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

)




Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016
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Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN




(a) 128128 (b) 256 x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., éar_ge Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN



Source Video

Source to Target 1 Result Smmto!-gn?ﬂ‘l

» »l o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

Video Generation



https://www.youtube.com/watch?v=PCBTZh41Ris
https://www.youtube.com/watch?v=PCBTZh41Ris
https://www.youtube.com/watch?v=PCBTZh41Ris

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary




Comparison of Methods

GAN: Adversarial I

X X » Z >
training D(x) G(z)

VAE: maximize X _| Encoder z Decoder N
variational lower bound q¢,(z|x) Peo (x|z)
Flow-based models: x | Flow Loz . Inlrfrse .
Invertible transform of f(x) f(2z)

distributions
Diffusion models:l X0 . X1 - Xo L

Gradually add Gaussian - - - --1 Te-------- "R ouEs --------
noise and then reverse

Discriminator

Generator




LLaVA-OneVision: Easy Visual Task Transfer

Bo Li>¥ Yuanhan Zhang®>® Dong Guo' Renrui Zhang®“ Feng Li*” Hao Zhang*"
Kaichen Zhang? Peiyuan Zhang? Yanwei Li*¥ Ziwei Liu> Chunyuan Li'

'ByteDance “S-Lab. NTU “CUHK *HKUST

https://1lava-vl.github.io/blog/llava-onevision

Abstract

We present LLaVA-OneVision, a family of open large multimodal models (LMMs)
developed by consolidating our insights into data, models, and visual representa-
tions in the LLaVA-NeXT blog series. Our experimental results demonstrate that
LLaVA-OneVision is the first single model that can simultaneously push the per-
formance boundaries of open LMMs in three important computer vision scenarios:
single-image, multi-image, and video scenarios. Importantly, the design of LLaVA-
OneVision allows strong transfer learning across different modalities/scenarios,
yielding new emerging capabilities. In particular, strong video understanding and
cross-scenario capabilities are demonstrated through task transfer from images to
videos.



Problem Statement

 What problem does this paper focus on?
— Is this new or already explored?
— Is this important?
— What key applications this is relevant for?
— What assumptions does this paper make about

202401)




Related Work / Situation of Work

e What prior approaches exist to solve this problem?

The SoTA proprietary LMMs, such as GPT-4V [109], GPT-40 [110], Gemini [ 131] and Claude-3.5 [3],
exhibit excellent performance in versertile vision scenarios, including single-image, multi-image and
video settings. In the open research community, existing works typically develop models tailored to
each individual scenario separately. Specifically, most focus on pushing the performance limits in
single-image scenarios [26, 83, 173, 73, 164, 35], only a few recent papers have begun to explore
multi-image scenarios [70, 47]. While video LMMs excel in video understanding, they often do so
at the expense of image performance [72, 76]. It is rare to have a single open model that reports
excellent performance in all three scenarios. LLaVA-OneVision aims to fill this gap by demonstrating
state-of-the-art performance across a broad range of tasks, and showcasing interesting emerging
capabilities through cross-scenario task transfer and composition.

To the best of our knowledge, LLaVA-NeXT-Interleave [68] is the first attempt to report good
performance in all three scenarios, LL.aVA-OneVision inherits its training recipe and data for improved

202401)




Related Work / Situation of Work

e Built on LLaVA-NeXT

Compared with LLaVA-1.5, LLaVA-NeXT has several improvements:

1. Increasing the input image resolution to 4x more pixels. This allows it to grasp more visual details. It supports three aspect ratios, up to 672x672, 336x1344, 1344x336 resolution.
2. Better visual reasoning and OCR capability with an improved visual instruction tuning data mixture.
3. Better visual conversation for more scenarios, covering different applications. Better world knowledge and logical reasoning.

4 Ffficient denlovment and inference with Gl ann

2024-01-16




Related Work / Situation of Work

(1) Dynamic High Resolution

We design our model at high resolution with an aim to preserve its data efficiency. When provided with high-resolution images and representations that preserve these details, the
model’s capacity to perceive intricate details in an image is significantly improved. It reduces the model hallucination that conjectures the imagined visual content when confronted with
low-resolution images. Our 'AnyRes’ technique is designed to accommodate images of various high resolutions. We employ a grid configuration of {2 x 2,1 x {2,3,4},{2,3,4} x 1},
balancing performance efficiency with operational costs. See our updated LLaVA-1.5 technical report for more details.

flatten

LLM

resize

encode . . flatten

Hlustration of dynamic high resolution scheme: a grid configuration of 2 X 2
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Approach and Key Nugget

 What approach does this paper take?

 What is the key “golden nugget” — intuition, idea, etc. that
leads to approach
— Lower-level

— Higher-level?
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Contributions

recipe, Please see the detailed development timeline in Section A. In particular, our paper makes the
following contributions:

» Large multimodal models. We develop LLaVA-OneVision, a family of open large multimodal
models (LMMs) that improves the performance boundaries of open LMMs in three important
vision settings, including single-image, multi-image, and video scenarios.

» Emerging Capabilities with Task Transfer. Our design in modeling and data representations
allow task transfer across different scenarios, suggesting a simple approach to yield new emgerg-

ing capabilities. In particular, LLaVA-OneVision demonstrate strong video understanding
through task transfer from images.

» Open-source. To pave the way towards building a general-purpose visual assistant, we release
the following assets to the public: the generated multimodal instruction data, the codebase, the
model checkpoints, and a visual chat demo.

2024-01-)




Architecture

Language Response X%
— ]

|
N | 2
| Qwen-2 | i | Language Model f¢
| alalafalatal
- £ | @
2-Layer MLP ! | Projection Pg
. & i s A ZV Hv *Hq
\ SigLIP | Vision Encoder J1) }\ X, Xq
|
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~
~
I
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—

“ @

» . EEEEEES
Single Image Multi-Image Video

Figure 1: LLaVA-OneVision network architecture. Left: The current model instantiation; Right: the
general form of LLaVA architecture in [83], but is extended to support more visual signals.
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Multi-Resolution

To strike a balance of performance and cost, we observe that the scaling of
resolution is more effective than that of token numbers, and recommend an
AnyRes strategy with pooling.

. Bilinear
split == encode Interpolation flatten

I resize encode . flatten
= >

(a) Higher AnyRes with Bilinear Interpolation

w
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Figure 4: Single-Image 3.2M. A High-Quality Single-Image Dataset Collection. Left: Data Distribution within
Each Category. The outer circle shows the distribution of all data categories and the inner circle shows the

distribution of data subsets. Right: The detailed quantities of datasets.
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Figure 5: OneVision 1.6M. A high-quality single-image, multi-image and video dataset collection. Left: Data
Distribution within each category. The outer circle shows the distribution of all data categories and the inner
circle shows the distribution of data subsets. Right: The detailed quantities of datasets. “MI” means it is the

multi-image version dataset proposed by DEMON [69].
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Training

* Stage-1: Language-Image Alignment. The goal is to well align the visual features into the word
embedding space of LLMs.

» Stage-1.5: High-Quality Knowledge Learning. To strike a balance between compute-efficiency
and injecting new knowledge into LMMs, we recommend to consider the high-quality knowl-
edge for LMM learning. The training configuration mirrors the settings used in Stage-2, ensuring
consistency and allowing the model to integrate new information seamlessly.

* Stage-2: Visual Instruction Tuning. To teach LMM to solve a diverse set of visual task
with preferred responces, we organize the instruction data into different groups, described in
Section 4.2. The model is scheduled to train on these groups in order.

2024-01-)




Training

2024-01-16

Stage-1

.\ Language-lmage Alignme;)\ — Kﬁ

Stage-1.5

//- High-Quality

Knowledge Learning / \-

e

N

~

ﬁ_? Visual Instruction Tuning |

Stage-1 | Stage-1.5 Stage-2
| Single-Image | OmeVision

E Resolution 384 384 {22, 1 {23 {23} 1} 3B ({11}, -- -, {6x6}] 384 {{lx1},---, [6x6})
= #Tokens 720 Max 729x5 Max 72910 Max 720:10 (See Fig. 3)
- Dataset LCS Image (Sec. 4.1) Image (Sec. 4.2) (Multi)}-Image & Video (Sec. 4.7)
= #5amples 558K 4M 3.2M 1.6M
- Trainable Projector Full Model Full Model Full Model
'% 0.5B LLM 1.EM 0.8B 0.8B 0.8B
= 7.6B LLM 20.0M 8.0B 8.0B 5.0B

T27B LLM T2.0M 73.2B 73.2B T3.2B
= Batch Size 512 256/512 256512 256/512
E LEB: 9 gon 11073 21078 2 =108 2 %1078
S LR: {8 prg. dyppnt 1x10-3 1 x10-5 1 x10-5 1 x10-3

Epoch 1 1 1 1

Table 1: Detailed configuration for each training stage of the LLaVA-OneVision model. The table
outlines the progression of vision parameters, dataset characteristics, model specifications, and
training hyperparameters across different stages of the curriculum learning process. We use a global
batch size of 512 for the 0.5B model, and 256 for the 7B and 72B models.




Validation

 How do they validate their approach?
— What data do they use?
— What baselines do they compare against?
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Capability ~Benchmark LLaVA LLaVA LLaVA GPT4V  GPT-4o |AI2D ChartQA DocVQA InfoVQA MathVerse MathVista MMBench MME MMMU

OpeVison 5B OneVison7B  OnmeVision72B  (V-Preview) Model
AIZD [53] sT1% B14% 85.6% 780% 04.2% | test test valftest valltest mini-vision testmini en-dev test val
Smglelmage +ChacQA [101] 61.4% 837% T85% 85.7% Qwen-VL-Max [8] 79.3 79.8 -/93.1 = 23.0 51.0 776 2281 51.4
+DocVQA [103] fes) 70.0% ER4% 92.8% Gemini-1.5-Pro [130] 944 872 -193.1 -/81.0 - 639 - - 62.2
HnfaV QA [102] test T i i Claude 3.5 Sonnet [3] 947 90.8 -195.2 19.7 - 67.7 - - 68.3
GPT-4V [109] 782 785 /884 5 328 499 75.0 5171400 56.8
MathVerse [163] (vision-mini)  17.9% 328% 502% GPT-do | 1 ]Ul 94.2 85.7 /928 _ 50.2 63.8 ~ . 69.1
MathVista [90] (estmini) 348% 49.9% 63.8%
) i Cambrian-34B [133] | 797 738 115.5 - - 532 814 - 49.7
MMBench [86] ien-dev) 521% B3.9% T5.0% -
MME [28 1238 ST/ 68: 51741400 VILA-34B [77] N N - . . N 824 1762 519

28] ) 240012 79/1682 - .

(2] ontperp ) ) [XC-2.5-7B [162] 815 822 -/90.9 -70.0 20.0 59.6 82.2 2229 429
MMStar [19] BT SLIS Ces % - InternVL-2-8B [22] | 83.8 83.3 -191.6 -14.8 275 58.3 81.7 210 49.3
MMMU [157) e 314% 5684 S6.8% 60.1% InternVL-2-26B [22] | 845 849 -192.9 759 313 59.4 83.4 2260 483
MMVet [153] 20.1% 49,95 76.2% 1LaVA-OV-0.5B (SI)  54.2 510 750712 448413 173 1o TEr 27371217 312
SecdBench [66] (mge) A Te LLaVA-OV-0.5B 57.1 614 737700 463418 17.9 348 5.1 24001238 314
+8cienceQA [93] 75.7% - LLaVA-OV-7RB (S1) Bl.6 788 80 3/86.9 69 5.3 26.9 56.1 81.7 4831626 47 3
; . LLaVA-OV-TB 84 800  90.287.5 70.7/68.8 26.2 63.2 80.8 4181580 488
mageDC [63] 91.5% -

RealworkiQA [141] 6L4% LLaVA-OV-72B (SI)  85.1 849  93.5/91.8 T7.ITAG 37.7 66.5 866 3631706 574
v : i LLaVA-OV-72B 856 837  93.1/913 79.2/74.9 39.1 67.5 850  579/1682 568
Vibe-Eval [112] 51.9% 63.1%
04 LimcBonch 15110500 RO Al - 924 |MMVet MMStar S-Bench S-QA ImageDC MMLBench RealWorldQA. Vibe-Eval LLaVA-W L-Wilder
LLaVA-Wilder [65] (small)  55.0% 67.5% 7205 81.0% B5.9% Model
| test test image  test test 2024-06 test test test small
LLaVA-Intereave [68] 70.04 60.3% - Qwen-VL-Max [8] - - R _ R ~ _ ~ _ R
MuirBench [135] 5t 548% 623% - Gemini-15-Pro [130] - - - - - 85.9 04 60.4 - -
Multi-Tmage  Mantis [47] 30.6% 64.24 TT.6% 627% - Claude 3.5 Sonnet [3] 754 - - - - 923 59.9 66.2 102.9 83.1
BLINK 1] R ror sLie i GPT-4V [109] 499 511 499 757 915 - 61.4 57.9 98.0 81.0

Visua - o i GPT-4o [110] 76.2 - 762 - 92.5 924 58.6 63.1 106.1 85.9

+Text-rich VOA [84] 65.0% 80.1% 54.5% -
— . . - Cambrian-34B [133] | - - - 856 - - 678 - - -
ActivityNetQA [155] 50.5% 56,64 62.3% .05 R VILA 348 [77] s30 ) 758 ) i ] i} 813 ] i
Video EgoSchema [08] Gaky GLos - - IXC-2.5-7TB [162] 517 59.9 75.4 - 87.5 - 452 78.1 61.4
PerceptionTest [115] 2% 66.9% - - InemVI-2-8B[22] | 60.0 594 760 970 8.1 734 167 845 625
SecdBench [66] k) 4472 S6.0% 614 5% . InemVI-2-26B[22] | 654 604 768 975 910 71.2 515 9.6 70.2
LongVideoBench [138] tval)  45.8% 56.3% 63.2% 60.7% 66.7% I A-OV-0.5B(SI) 269 36,3 634 678 830 43.2 34.9 71.2 51.5
MLYU [170] o o 025 . LLaVA-OV-0.5B 375 655 672 499 338 74.2 55.0
MVBench [71] 67 50.4% 5% _ A-OV-7B (SI) 60.9 748  96.6 75.8 47.2 86.9 697
LLaVA-OV-7B 6L7 754 960 77.1 517 90.7 67.8
VideoChatGPT [97] 312 349 3.62 4.06 - A-OV-72B (SI) 60.0 65.2 776 91.3 91.5 844 73.8 467 93.7 720
VideoMME [29] H0u 5824 66.2% 30.0% TL9% LLaVA-OV-72B 637 661 T80 903 912 815 71.9 507 935 72.0
Table 2: Performance comparison to state-of-the-art commercial models with our LLaVA-OneVision Table 3: LLaVA-OneVision performance on single-image benchmarks. *GPT-4V reports 4-shot

models (0.5B to 72B parameters) across diverse evaluation benchmarks spanning multiple modalities.
t indicates that the training set has been observed in our data mixture.

results on ChartQA. All results are reported as O-shot accuracy.




Strengths / Weaknesses

e Strengths?

 Weakness / Limitations?
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