
Machine Learning Applications

CS 4803-DL / 7643-A
ZSOLT KIRA

Topics:

• Variational Autoencoders



• Assignment 3

• Due July 13th 11:59pm EST

• Projects

• Project proposal due July 26th

• Next Meta office hours today 
3pm ET on bias/fairness
• NOT recorded!



Back to 

Generative 

Models



Spectrum of Low-Labeled Learning

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 

output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, etc.

Less Labels



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Variational 

Autoencoders 

(VAEs)



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Comparison



Autoencoders

Encoder Decoder

Low dimensional embedding

Minimize the difference (with MSE)

Linear layers with reduced 

dimension or Conv-2d 

layers with stride

Linear layers with increasing 

dimension or Conv-2d layers 

with bilinear upsampling



Formalizing the Generative Model

What is this?

Hidden/Latent variables

Factors of variation that 

produce an image:

(digit, orientation, scale, etc.)

𝑃 𝑋 = න 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

⬣ We cannot maximize this likelihood due to the integral

⬣ Instead we maximize a variational lower bound (VLB) that we can compute

Kingma & Welling, Auto-Encoding Variational Bayes

𝑍



Variational Autoencoder: Decoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 

approximate optimization

⬣ Just as before, sample 𝑍 from simpler distribution

⬣ We can also output parameters of a probability 
distribution!

⬣ Example: 𝜇, 𝜎 of Gaussian distribution

⬣ For multi-dimensional version output 

diagonal covariance

⬣ How can we maximize 

𝑃 𝑋 = ׬ 𝑃 𝑋 𝑍; 𝜃 𝑃 𝑍 𝑑𝑍

𝑍

𝜇𝑥 𝜎𝑥

Decoder
𝑃 𝑋|𝑍; 𝜃



Variational Autoencoder: Encoder

⬣ We can combine the probabilistic view, sampling, autoencoders, and 

approximate optimization

⬣ Given an image, estimate 𝑍

⬣ Again, output parameters of a 

distribution

𝜇𝑧 𝜎𝑧

X

Encoder
Q 𝑍|𝑋; 𝜙



Putting Them Together

⬣ We can tie the encoder and decoder together into a probabilistic autoencoder

⬣ Given data (X), estimate 𝜇𝑧 , 𝜎𝑧 and sample from 𝑁(𝜇𝑧 , 𝜎𝑧) 

⬣ Given 𝑍, estimate 𝜇𝑥, 𝜎𝑥 and sample from 𝑁(𝜇𝑥, 𝜎𝑥) 

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥



Maximizing Likelihood

⬣ How can we optimize the parameters of the two networks?

Now equipped with our encoder and decoder networks, let’s work out the (log) 

data likelihood:

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



KL-Divergence

Aside: KL Divergence (distance measure for distributions), always >= 0

𝐾𝐿(𝑎| 𝑏 = 𝐻𝑐 𝑎, 𝑏 − 𝐻(𝑎) = ∑ 𝑎 𝑥 log 𝑎 𝑥 − ∑ 𝑎 𝑥 log 𝑏 𝑥

Definition of Expectation



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Maximizing Likelihood

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Putting it all together: maximizing the 

likelihood lower bound

Make approximate 

posterior distribution 

close to prior

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the 

likelihood lower bound

Sample from 𝑸(𝒁|𝑿)~𝑵(𝝁𝒛, 𝝈𝒛) 

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung



Forward and Backward Passes

Encoder
Q 𝑍|𝑋; 𝜙

𝜇𝑧 𝜎𝑧

X

Decoder
𝑃 𝑋|𝑍; 𝜃

𝑍

𝜇𝑥 𝜎𝑥

Putting it all together: maximizing the 

likelihood lower bound

From CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

෠𝑋

Sample from 𝑷(𝑿|𝒁; 𝜽)~𝑵(𝝁𝒙, 𝝈𝒙) 

Maximize likelihood of 

original input being 

reconstructed



Problem

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908 

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 

⬣ Problem with respect to the 

VLB: updating 𝜙 

⬣ 𝑍~𝑄(𝑍|𝑋; 𝜙) : need to 

differentiate through the 

sampling process w.r.t 𝜙 

(encoder is probabilistic)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/


Reparameterization Trick: Solution

From: Tutorial on Variational Autoencoders

https://arxiv.org/abs/1606.05908 

From: http://gokererdogan.github.io/2016/07/01/reparameterization-trick/ 

⬣ Solution: make the randomness 

independent of encoder output, 

making the encoder deterministic

⬣ Gaussian distribution example:

⬣ Previously: encoder output = 

random variable 𝑧~𝑁(𝜇, 𝜎)

⬣ Now encoder output = 

distribution parameter [𝜇, 𝜎]

⬣ 𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

https://arxiv.org/abs/1606.05908
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/
http://gokererdogan.github.io/2016/07/01/reparameterization-trick/


Interpretability of Latent Vector

Kingma & Welling, Auto-Encoding Variational Bayes

𝑧1

𝑧2



Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform 

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions) 

⬣ Samples are often not as competitive as diffusion models or GANs 

⬣ Latent features (learned in an unsupervised way!) often good for 

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018



De-noising Auto-encoder

As close as possible

NN
Encoder

NN
Decoder

vecto
r

Vincent, Pascal, et al. "Extracting and composing robust features 
with denoising autoencoders." ICML, 2008.

Add noises

Slide by Hung-yi Lee 



Discrete Representation

• Vector Quantized Variational Auto-encoder (VQVAE)

NN
Encoder

NN
Decoder

vecto
r

vecto
r 1

Codebook
(a set of vectors)

vecto
r 2

vecto
r 3

vecto
r 4

vecto
r 5

vecto
r 3

https://arxiv.org/abs/1711.00937

Compute similarity 

Learn from data
The most similar one 
is the input of decoder.

(c.f. attention)

Slide by Hung-yi Lee 



Summary

⬣ Variational Autoencoders (VAEs) provide a principled way to perform 

approximate maximum likelihood optimization

⬣ Requires some assumptions (e.g. Gaussian distributions) 

⬣ Samples are often not as competitive as GANs 

⬣ Latent features (learned in an unsupervised way!) often good for 

downstream tasks:

⬣ Example: World models for reinforcement learning (Ha et al., 2018)

Ha & Schmidhuber, World Models, 2018



Slide by Krishna & Pratt



Slide by Krishna & Pratt



Slide by Krishna & Pratt



Slide by Krishna & Pratt



Slide by Krishna & Pratt



Slide by Krishna & Pratt



Overall Summary

⬣ Several ways to learn generative models via deep learning

⬣ Generative Adversarial Networks (GANs): 

⬣ Pro: Amazing results across many image modalities

⬣ Con: Unstable/difficult training process, computationally heavy for good results

⬣ Con: Limited success for discrete distributions (language)

⬣ Con: Hard to evaluate (implicit model)

⬣ Variational Autoencoders: 

⬣ Pro: Principled mathematical formulation

⬣ Pro: Results in disentangled latent representations

⬣ Con: Approximation inference, results in somewhat lower quality reconstructions

⬣ Diffusion Models

⬣ Pro: Great results and diversity!

⬣ Con: Slow generation (though lots of tricks to address)

Ha & Schmidhuber, World Models, 2018



Comparison



Taxonomy of Generative Models

38

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Variational Autoencoder

Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow 

- Ffjord



Denoising Diffusion Probabilistic 

Models (DDPMs)
And Conditional Diffusion Models



https://openai.com/dall-e-2/



Landscape Highlights of Diffusion Models (Nov 2022)

● Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

● Noise-conditioned score network (NCSN; Yang & Ermon, 2019)

● Denoising diffusion probabilistic models (DDPM; Ho et al. 2020)

● Classifier-guided conditional generation (Dhariwal and Nichole, 2021)

● Classifier-free Diffusion Guidance (Ho and Salimans, 2022)

● Latent-space Diffusion (StableDiffusion; Rombach and Blattmann et al., 2022)

● Planning with Diffusion for Flexible Behavior Synthesis (Diffuser; Janner et al., 2022)

● DreamFusion: Text-to-3D using 2D Diffusion (Poole and Jain et al., 2022)

● Make-A-Video: Text-to-Video Generation without Text-Video Data (Singer et al., 2022)

basic 
principles

conditional & 
high-res  
image 

generation

new 
applications

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/2209.14792


How to make a new generative model

● Setting: Given unlabeled dataset of data, I want to learn to sample from P(x)

● Define the generative process

● Parameterize it

● Maximum likelihood (often -> KL-divergence)

● Approximations

● Optimize parameters! 

● Add conditioning, e.g. text



● Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

● Noise-conditioned score network (NCSN; Yang & Ermon, 2019)

● Denoising diffusion probabilistic models (DDPM; Ho et al. 2020)

● Classifier-guided conditional generation (Dhariwal and Nichole, 2021)

● Classifier-free Diffusion Guidance (Ho and Salimans, 2022)

● Latent-space Diffusion (StableDiffusion; Rombach and Blattmann et al., 2022)

● Planning with Diffusion for Flexible Behavior Synthesis (Diffuser; Janner et al., 2022)

● DreamFusion: Text-to-3D using 2D Diffusion (Poole and Jain et al., 2022)

● Make-A-Video: Text-to-Video Generation without Text-Video Data (Singer et al., 2022)

basic 
principles

conditional & 
high-res  
image 

generation

new 
applications

Landscape Highlights of Diffusion Models (Nov 2022)

https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.09991
https://arxiv.org/abs/2209.14988
https://arxiv.org/abs/2209.14792


The Denoising Diffusion Process

𝑥0

image from 
dataset



The Denoising Diffusion Process

𝑥0 𝑥1

image from 
dataset

…

The “forward diffusion” process: 
add Gaussian noise each step



The Denoising Diffusion Process

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

image from 
dataset

noise 𝒩(0, 𝐼)

…

The “forward diffusion” process: 
add Gaussian noise each step



The Denoising Diffusion Process

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

image from 
dataset

noise 𝒩(0, 𝐼)

…

The “denoising diffusion” process: 
generate an image from noise by 

denoising the gaussian noises

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

The “forward diffusion” process: 
add Gaussian noise each step

Ties/inspiration form Annealed 
Imporantce Sampling in physics



Comparison



Forward/Reverse Processes

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

U-

Net

Output: Noise 
mean to remove, 
sample & use w/ 𝑥𝑡 
to get 𝑥𝑡−1 

Input:
𝑥𝑡



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

Use the denoising decoding process to 
generate new images.

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

The known forward process



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

The known forward process

Conditional Gaussian

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

The known forward process

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

Notation: A Gaussian distribution “for” 𝑥𝑡

Conditional Gaussian



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝛽𝑡 is the variance schedule at the diffusion step 𝑡 

The known forward process

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

Conditional Gaussian



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝛽𝑡 is the variance schedule at the diffusion step 𝑡

0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 < 1, typical value range 0.0001, 0.02 , with 𝑇 = 1000

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

Conditional Gaussian

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝛽𝑡 is the variance schedule at the diffusion step 𝑡

0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 < 1, typical value range 0.0001, 0.02 , with 𝑇 = 1000

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

Conditional Gaussian



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑥0 𝑥1

… …

𝑥𝑡 𝑥𝑇−1 𝑥𝑇

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡; ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

, where 𝛼𝑡 = (1 − 𝛽𝑡), ത𝛼𝑡 = ς𝑠=1
𝑡 𝛼𝑠

Probability Chain Rule (Markov Chain)

Conditional Gaussian



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡; ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

Gaussian reparameterization trick:
𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

Probability Chain Rule (Markov Chain)

Conditional Gaussian

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s

(square root appears because reparameterization trick has just 𝜎) 

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝒩(0, 𝐼)

Intuition: We know all 
distributions in forward 
process, and can in fact 
directly compute for any t 
based on X0



The Diffusion and Denoising Process

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

…


	Slide 1: CS 4803-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Comparison
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Discrete Representation
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Comparison
	Slide 38: Taxonomy of Generative Models
	Slide 39
	Slide 40
	Slide 41: Landscape Highlights of Diffusion Models (Nov 2022)
	Slide 42: How to make a new generative model
	Slide 43: Landscape Highlights of Diffusion Models (Nov 2022)
	Slide 44: The Denoising Diffusion Process
	Slide 45: The Denoising Diffusion Process
	Slide 46: The Denoising Diffusion Process
	Slide 47: The Denoising Diffusion Process
	Slide 48: Comparison
	Slide 49: Forward/Reverse Processes
	Slide 50: Forward/Reverse Processes
	Slide 51: Forward/Reverse Processes
	Slide 52: Forward/Reverse Processes
	Slide 53: The Diffusion (Encoding) Process
	Slide 54: The Diffusion (Encoding) Process
	Slide 55: The Diffusion (Encoding) Process
	Slide 56: The Diffusion (Encoding) Process
	Slide 57: The Diffusion (Encoding) Process
	Slide 58: The Diffusion (Encoding) Process
	Slide 59: The Diffusion (Encoding) Process
	Slide 60: The Diffusion (Encoding) Process
	Slide 61: The Diffusion (Encoding) Process
	Slide 62: The Diffusion and Denoising Process

