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• Assignment 3 

• In Grace period (ends July 15th 11:59pm EST)

• Projects

• Project proposal due July 26th



Taxonomy of Generative Models
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Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.
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Denoising Diffusion Probabilistic 

Models (DDPMs)
And Conditional Diffusion Models



https://openai.com/dall-e-2/



The Denoising Diffusion Process
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The “forward diffusion” process: 
add Gaussian noise each step
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The Denoising Diffusion Process

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

image from 
dataset

noise 𝒩(0, 𝐼)

…

The “denoising diffusion” process: 
generate an image from noise by 

denoising the gaussian noises

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

The “forward diffusion” process: 
add Gaussian noise each step

Ties/inspiration form Annealed 
Imporantce Sampling in physics



Forward/Reverse Processes

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

U-

Net

Output: Noise 
mean to remove, 
sample & use w/ 𝑥𝑡 
to get 𝑥𝑡−1 

Input:
𝑥𝑡



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

Use the denoising decoding process to 
generate new images.

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



Forward/Reverse Processes

Known / predefined: 
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝛽𝑡 is the variance schedule at the diffusion step 𝑡

0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 < 1, typical value range 0.0001, 0.02 , with 𝑇 = 1000

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

Conditional Gaussian



The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; ( 1 − 𝛽𝑡 )𝑥𝑡−1, 𝛽𝑡𝐼)

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡; ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

Gaussian reparameterization trick:
𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

Probability Chain Rule (Markov Chain)

Conditional Gaussian

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s

(square root appears because reparameterization trick has just 𝜎) 

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝒩(0, 𝐼)

Intuition: We know all 
distributions in forward 
process, and can in fact 
directly compute for any t 
based on X0



The Diffusion and Denoising Process

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

Known / predefined: 
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Unknown / learned: 

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

…



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝜃 𝑥𝑡 , 𝑡 ) Conditional Gaussian

Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 ) Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification) 

Probability Chain Rule (Markov Chain)

What is the shape of 
the mean?



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝑞 𝑡 ) Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification) 

How do we form a learning objective?

Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝑞 𝑡 )



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 )



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 )

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

What does it look like? 



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 )

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

What does it look like? 

The “ground truth” noise that brought 𝑥𝑡−1 to 𝑥𝑡 

Recall: Gaussian 
reparameterization trick 

𝑞 𝑥𝑡−1 𝑥𝑡 = 𝒒 𝒙𝒕−𝟏 𝒙𝒕, 𝒙𝟎  (markov assumption)

                     =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞(𝑥𝑡−1|𝑥0)

𝑞(𝑥𝑡|𝑥0)
 (Bayes rule)

                     =
𝒩 𝑥𝑡; 𝑎𝑡𝑥𝑡−1,𝛽𝑡𝐼 𝒩 𝑥𝑡−1; ഥ𝛼𝑡−1𝑥𝑡−1, 1−ഥ𝛼𝑡−1 𝐼

𝒩 𝑥𝑡; ഥ𝛼𝑡𝑥0, 1−ഥ𝛼𝑡−1 𝐼

                     ∝ 𝒩 𝑥𝑡−1;
𝑎𝑡 1−ഥ𝛼𝑡−1 𝑥𝑡+ ഥ𝛼𝑡−1(1−𝑎𝑡)𝑥0

1− ഥ𝛼𝑡
, Σ𝑞(𝑡)  (Property of Gaussian)



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 )

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡What does it look like? 

argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)| 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

Assuming identical variance Σ𝑞 𝑡 , we have:

Should be variance-dependent, but constant 
works better in practice

𝝁𝒒 𝒕 =
𝟏

𝜶𝒕
𝒙𝒕 −

𝜷𝒕

𝟏 − ഥ𝜶𝒕

𝝐



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0  and 
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡  to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 )

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡What does it look like? 

argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)| 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

Assuming identical variance Σ𝑞 𝑡 , we have:

Simplified learning objective: argmin𝜽||𝝐 − 𝝐𝜽 𝒙𝒕, 𝒕 ||2 Predict the one-step 
noise that was added 

(and remove it)!



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 ) Conditional Gaussian

Assume fixed / known variance

How did we arrive at the learning objective?
See slides at the end! Variational models …

Probability Chain Rule (Markov Chain)



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 )

Simplified learning objective: argmin𝜽||𝝐 − 𝝐𝜽 𝒙𝒕, 𝒕 ||2 Predict the one-step 
noise that was added 

(and remove it)!



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 ) Conditional Gaussian

We know how to learn Assume fixed / known variance

Probability Chain Rule (Markov Chain)

Inference time: 𝜇𝜃 𝑥𝑡, 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1−ഥ𝛼𝑡
𝜖𝜃 𝑥𝑡, 𝑡

U-

Net𝑥𝑡 ⇒ 𝑥𝑡−1

𝜖



The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡 ) Conditional Gaussian

We know how to learn Assume fixed / known variance

Probability Chain Rule (Markov Chain)

𝑥𝑇~𝒩(0, 𝐼) 𝑥0𝑥𝑇−1

𝑝𝜃(𝑥𝑇 𝑥𝑇−1 𝑝𝜃(𝑥𝑇−1 𝑥𝑇−2 … 𝑝𝜃(𝑥1 𝑥0

Generate new images!



The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020



The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020



The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 )

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝒩(0, 𝐼)



Conditional Diffusion Models

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style

Simple idea: just condition the model on some text labels 𝑦! 
𝜖𝜃 𝑥𝑡, 𝑦, 𝑡



Conditional Diffusion Models

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style

Simple idea: just condition the model on some text labels 𝑦! 
𝜖𝜃 𝑥𝑡, 𝑦, 𝑡

Problem: Very blurry generation



Classifier-guided Diffusion

Better idea: use the gradients from a image captioning model 𝑓𝜑(𝑦|𝑥𝑡) to 

guide the diffusion process!

ҧ𝜖𝜃 𝑥𝑡, 𝑡 = 𝜖𝜃 𝑥𝑡, 𝑡 − 1 − ത𝛼𝑡𝛻𝑥𝑡
log𝑓𝜑(𝑦|𝑥𝑡)

Dhariwal & Nichol, 2021

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style



Slide by Soumyadip (Roni) Sengupta
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Classifier-free Guided Diffusion

Ho and Salimans, 2022

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style

Classifier-free Guided Diffusion: estimate the gradient of the classifier 
model with conditional diffusion models!

𝛻𝑥𝑡
log𝑓𝜑 𝑦 𝑥𝑡 = −

1

1 − ത𝛼𝑡

(𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝜖𝜃 𝑥𝑡, 𝑡 )



Slide by Soumyadip (Roni) Sengupta



Classifier-free Guided Diffusion

Ho and Salimans, 2022

Conditional 
Diffusion

An astronaut riding 
a horse in a 
photorealistic style

Classifier-free Guided Diffusion: estimate the gradient of the classifier 
model with conditional diffusion models!

𝛻𝑥𝑡
log𝑓𝜑 𝑦 𝑥𝑡 = −

1

1 − ത𝛼𝑡

(𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝜖𝜃 𝑥𝑡, 𝑡 )

ҧ𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 = 𝑤 + 1 𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝑤𝜖𝜃 𝑥𝑡, 𝑡



Latent-space Diffusion

Esser and Rombach et al., 2021

Problem: Hard to learn diffusion process on high-resolution images

Solution: learn a low-dimensional latent space using a transformer-based 
autoencoder and do diffusion on the latent space!

The latent space autoencoder



“StableDiffusion”

Rombach and Blattmann et al., 2022



“StableDiffusion”

Rombach and Blattmann et al., 2022

Layout-Conditional Generation



“StableDiffusion”

Rombach and Blattmann et al., 2022

Segmentation-Conditional Generation



“StableDiffusion”

Rombach and Blattmann et al., 2022

Inpainting



https://openai.com/dall-e-2/



Additional resources / tutorials

● Overview of the research landscape: What are Diffusion Models?

● More math! Understanding Diffusion Models: A Unified Perspective

● Tutorial with hands-on example: The Annotated Diffusion Model

● Nice introduction videos: 

○ What are Diffusion Models?

○ Diffusion Models | Math Explained

○ Three hours of the math! https://www.youtube.com/watch?v=rLepfNziDPM 

● CVPR Tutorial: Denoising Diffusion-based Generative Modeling: 

Foundations and Applications

● Score functions:

○ In general

○ For Diffusion models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://huggingface.co/blog/annotated-diffusion
https://www.youtube.com/watch?v=fbLgFrlTnGU
https://www.youtube.com/watch?v=fbLgFrlTnGU
https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s
https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s
https://www.youtube.com/watch?v=rLepfNziDPM
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://ericmjl.github.io/score-models/
https://ericmjl.github.io/score-models/
https://cbmm.mit.edu/video/diffusion-and-score-based-generative-models


Summary

● Denoising Diffusion model is a type of generative model that learns the 

process of “denoising” a known noise source (Gaussian).

● We can construct a learning problem by deriving the evidence lower 

bound (ELBO) of the denoising process.

● The learning objective is to minimize the KL divergence between the 

“ground truth” and the learned denoising distribution.

● A simplified learning objective is to estimate the noise of the forward 

diffusion process.

● The diffusion process can be guided to generate targeted samples.

● Can be applied to many different domains. Same underlying principle.

● Very hot topic! 



Reinforcement 

Learning 

Introduction



Reinforcement 

Learning

⬣ Evaluative 

feedback in  the 

form of reward

⬣ No supervision on 

the right action

Types of Machine Learning

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 

output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, 

etc.

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe



RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action, 
Response, 
Control

State, 
Stimulus, 
Situation

Reward, 
Gain, Payoff, 
Cost

Environment
(world)

Figure Credit: Rich Sutton



RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the 

policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton



Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move 

forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright 

and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission. 

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission. 



Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece 

down

⬣ Reward: +1 if win at the end of game, 

0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history
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Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple 

   : Set of possible states

   : Set of possible actions

        : Distribution of reward

        : Transition probability distribution, also written as p(s’|s,a)

   : Discount factor

⬣ Interaction trajectory:  

⬣ Markov property: Current state completely characterizes state of the 

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history



⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and 

look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP



⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution 

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Deep RL: Use neural network to estimate V/Q, policy, R/T

⬣ Let’s first assume that we know the true reward and transition distribution and 

look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP



Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!
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⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic
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Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Discount factor: 



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards



Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy, 
next states from transition distribution



Optimal policy examples

⬣ Some optimal policies for three different grid world MDPs (gamma=0.99)

⬣ Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

R(s) = -0.03 R(s) = -0.4 R(s) = -2.0



Overview



Pong from Pixels



Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/



⬣ Slightly re-writing the notation

  Let              denote a trajectory

Gathering Data/Experience



⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories                 by acting according to 

Gathering Data/Experience



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

The REINFORCE Algorithm

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

Slide credit: Sergey Levine

?



⬣ Sample trajectories                                            by acting according to 

⬣ Compute policy gradient as

⬣ Update policy parameters: 

Run the policy and 
sample trajectories

Compute policy 
gradient

Update policy

The REINFORCE Algorithm

Slide credit: Sergey Levine



Drawbacks of Policy Gradients

Slide credit: Dhruv Batra



.... 86

We finetune the Action Space Adaptors (ASAs), downsampler, and MLLM

Szot et al., Grounding Multimodal Large Language Models in Actions, NeurIPS 2024
Szot et al., From Multimodal LLMs to Generalist Embodied Agents: Methods and Lessons, CVPR 2025





(Quick) Derivation!



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational 
Inference



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational 
Inference

Simplify to 
KL



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

= Ε𝑞 log
𝑝 𝑥𝑇 ς𝑡=1

𝑇 𝑝𝜃(𝑥𝑡−1 𝑥𝑡

ς𝑡=1
𝑇 𝑞(𝑥𝑡|𝑥𝑡−1) forward diffusion

reverse denoising

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Variational 
Inference

Simplify to 
KL



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational 
Inference

Simplify to 
KL



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

Variational 
Inference

Simplify to 
KL



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧
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        ≥ Ε𝑞 log
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… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

fixed Easy to optimize / sometimes omitted

Variational 
Inference

Simplify to 
KL
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… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

ς

Maximize the agreement between the predicted reverse diffusion 
distribution 𝑝𝜃 and the “ground truth” reverse diffusion distribution 𝑞

Variational 
Inference

Simplify to 
KL



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!
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        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

𝑞 𝑥𝑡−1 𝑥𝑡 = 𝒒 𝒙𝒕−𝟏 𝒙𝒕, 𝒙𝟎  (markov assumption)

                     =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞(𝑥𝑡−1|𝑥0)

𝑞(𝑥𝑡|𝑥0)
 (Bayes rule)

                     =
𝒩 𝑥𝑡; 𝑎𝑡𝑥𝑡−1,𝛽𝑡𝐼 𝒩 𝑥𝑡−1; ഥ𝛼𝑡−1𝑥𝑡−1, 1−ഥ𝛼𝑡−1 𝐼

𝒩 𝑥𝑡; ഥ𝛼𝑡𝑥0, 1−ഥ𝛼𝑡−1 𝐼

                     ∝ 𝒩 𝑥𝑡−1;
𝑎𝑡 1−ഥ𝛼𝑡−1 𝑥𝑡+ ഥ𝛼𝑡−1(1−𝑎𝑡)𝑥0

1− ഥ𝛼𝑡
, Σ𝑞(𝑡)  (Property of Gaussian)

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Proof using bayes rule and 
gaussian reparameterization trick

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

ς

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Proof using bayes rule and 
gaussian reparameterization trick

The “ground truth” noise that brought 𝑥𝑡−1 to 𝑥𝑡 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization



𝑝 𝑥 =  𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧        Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

        ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇  

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − 
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡 ) + log 𝑝𝜃(𝑥0|𝑥1)

Minimize the difference of distribution means (assuming identical variance)

argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡 , 𝑡 ||2 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Do we actually need to learn the entire 𝜇𝜃 𝑥𝑡, 𝑡 ? 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

known during inference
Unknown during 

inference

Recall: this is the “ground truth” 
noise that brought 𝑥𝑡−1 to 𝑥𝑡 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

known during inference
Unknown during 

inference

Idea: just learn 𝜖 with 𝜖𝜃 𝑥𝑡, 𝑡 ! 

Recall: this is the “ground truth” 
noise that brought 𝑥𝑡−1 to 𝑥𝑡 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 𝑥𝑡, 𝑡 ||2 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Recall: the simplified 𝑡-step forward sample:

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 𝑥𝑡, 𝑡 ||2 

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝑡 ||2

Recall: the simplified 𝑡-step forward sample:

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡 ) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝑡 ||2

Variational 
Inference

Simplify to 
KL

Reverse Process 
=> Normal

Bayes + 
Reparameterization

Remove (variance-
dependent) constant

Predict the 
noise!!!



Math for Classifier Guidance



Slide by Soumyadip (Roni) Sengupta



Slide by Soumyadip (Roni) Sengupta



Solution 1 (DALL-E 2): Use CLIP Model
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