
CS 4644-DL / 7643-A
ZSOLT KIRA

Generative Models:

Denoising Diffusion Probabilistic Models (DDPMs)

Slides adapted from those by Danfei Xu

• Assignment 3

• In Grace period (ends July 15th 11:59pm EST)

• Projects

• Project proposal due July 26th

Taxonomy of Generative Models

3

Generative models

Explicit density Implicit density

Direct

Tractable density Approximate density
Markov Chain

Variational Markov Chain

Variational Autoencoder

Denoising Diffusion Models

Boltzmann Machine

GSN

GAN

Figure copyright and adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Fully Visible Belief Nets

- NADE

- MADE

- PixelRNN/CNN

- NICE / RealNVP

- Glow

- Ffjord

Denoising Diffusion Probabilistic

Models (DDPMs)
And Conditional Diffusion Models

https://openai.com/dall-e-2/

The Denoising Diffusion Process

𝑥0

image from
dataset

The Denoising Diffusion Process

𝑥0 𝑥1

image from
dataset

…

The “forward diffusion” process:
add Gaussian noise each step

Comparison

The Denoising Diffusion Process

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

image from
dataset

noise 𝒩(0, 𝐼)

…

The “forward diffusion” process:
add Gaussian noise each step

The Denoising Diffusion Process

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

image from
dataset

noise 𝒩(0, 𝐼)

…

The “denoising diffusion” process:
generate an image from noise by

denoising the gaussian noises

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

The “forward diffusion” process:
add Gaussian noise each step

Ties/inspiration form Annealed
Imporantce Sampling in physics

Forward/Reverse Processes

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

Forward/Reverse Processes

Known / predefined:
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned:

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

U-

Net

Output: Noise
mean to remove,
sample & use w/ 𝑥𝑡
to get 𝑥𝑡−1

Input:
𝑥𝑡

Forward/Reverse Processes

Known / predefined:
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned:

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

Use the denoising decoding process to
generate new images.

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

Forward/Reverse Processes

Known / predefined:
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned:

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

…

The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; (1 − 𝛽𝑡)𝑥𝑡−1, 𝛽𝑡𝐼)

𝛽𝑡 is the variance schedule at the diffusion step 𝑡

0 < 𝛽1 < 𝛽2 < ⋯ < 𝛽𝑇 < 1, typical value range 0.0001, 0.02 , with 𝑇 = 1000

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1) Probability Chain Rule (Markov Chain)

𝑥0 𝑥𝑇𝑥1 𝑥𝑇−1

…

Conditional Gaussian

The Diffusion (Encoding) Process

𝑥0 𝑥𝑇𝑥1 …The known forward process

𝑞(𝑥𝑡 𝑥𝑡−1 = 𝒩(𝑥𝑡; (1 − 𝛽𝑡)𝑥𝑡−1, 𝛽𝑡𝐼)

𝑞 𝑥1:𝑇 𝑥0 = ෑ

𝑡=1

𝑇

𝑞(𝑥𝑡|𝑥𝑡−1)

Nice property: samples from an arbitrary forward step are also Gaussian-distributed!

𝑞 𝑥𝑡 𝑥0 = 𝒩(𝑥𝑡; ത𝛼𝑡𝑥0, (1 − ത𝛼𝑡)𝐼)

Gaussian reparameterization trick:
𝑧 = 𝜇 + 𝜖 ∗ 𝜎, 𝜖~𝑁(0,1)

Probability Chain Rule (Markov Chain)

Conditional Gaussian

https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s

(square root appears because reparameterization trick has just 𝜎)

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝒩(0, 𝐼)

Intuition: We know all
distributions in forward
process, and can in fact
directly compute for any t
based on X0

The Diffusion and Denoising Process

𝑥0

𝑥𝑇

noise 𝒩(0, 𝐼)

…

forward diffusion: encoding

෦𝑥0

denoising diffusion: decoding

𝑥1 𝑥1

Known / predefined:
𝑞(𝑥1:𝑇|𝑥0)

Unknown / learned:

𝑝𝜃(𝑥0:𝑇) = 𝑝(𝑥𝑇) ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1|𝑥𝑡)

…

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 Probability Chain Rule (Markov Chain)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝜃 𝑥𝑡 , 𝑡) Conditional Gaussian

Probability Chain Rule (Markov Chain)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡) Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification)

Probability Chain Rule (Markov Chain)

What is the shape of
the mean?

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝑞 𝑡) Conditional Gaussian

Want to learn time-
dependent mean

Assume fixed / known variance
(simplification)

How do we form a learning objective?

Probability Chain Rule (Markov Chain)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ𝑞 𝑡)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

What does it look like?

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

What does it look like?

The “ground truth” noise that brought 𝑥𝑡−1 to 𝑥𝑡

Recall: Gaussian
reparameterization trick

𝑞 𝑥𝑡−1 𝑥𝑡 = 𝒒 𝒙𝒕−𝟏 𝒙𝒕, 𝒙𝟎 (markov assumption)

 =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞(𝑥𝑡−1|𝑥0)

𝑞(𝑥𝑡|𝑥0)
 (Bayes rule)

 =
𝒩 𝑥𝑡; 𝑎𝑡𝑥𝑡−1,𝛽𝑡𝐼 𝒩 𝑥𝑡−1; ഥ𝛼𝑡−1𝑥𝑡−1, 1−ഥ𝛼𝑡−1 𝐼

𝒩 𝑥𝑡; ഥ𝛼𝑡𝑥0, 1−ഥ𝛼𝑡−1 𝐼

 ∝ 𝒩 𝑥𝑡−1;
𝑎𝑡 1−ഥ𝛼𝑡−1 𝑥𝑡+ ഥ𝛼𝑡−1(1−𝑎𝑡)𝑥0

1− ഥ𝛼𝑡
, Σ𝑞(𝑡) (Property of Gaussian)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡What does it look like?

argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)| 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

Assuming identical variance Σ𝑞 𝑡 , we have:

Should be variance-dependent, but constant
works better in practice

𝝁𝒒 𝒕 =
𝟏

𝜶𝒕
𝒙𝒕 −

𝜷𝒕

𝟏 − ഥ𝜶𝒕

𝝐

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

High-level intuition: derive a ground truth denoising distribution 𝑞(𝑥𝑡−1 𝑥𝑡, 𝑥0 and
train a neural net 𝑝𝜃(𝑥𝑡−1 𝑥𝑡 to match the distribution.

The learning objective: argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡What does it look like?

argmin𝜃𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)| 𝑝𝜃 𝑥𝑡−1 𝑥𝑡 = argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

Assuming identical variance Σ𝑞 𝑡 , we have:

Simplified learning objective: argmin𝜽||𝝐 − 𝝐𝜽 𝒙𝒕, 𝒕 ||2 Predict the one-step
noise that was added

(and remove it)!

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡) Conditional Gaussian

Assume fixed / known variance

How did we arrive at the learning objective?
See slides at the end! Variational models …

Probability Chain Rule (Markov Chain)

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡)

Simplified learning objective: argmin𝜽||𝝐 − 𝝐𝜽 𝒙𝒕, 𝒕 ||2 Predict the one-step
noise that was added

(and remove it)!

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡) Conditional Gaussian

We know how to learn Assume fixed / known variance

Probability Chain Rule (Markov Chain)

Inference time: 𝜇𝜃 𝑥𝑡, 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1−ഥ𝛼𝑡
𝜖𝜃 𝑥𝑡, 𝑡

U-

Net𝑥𝑡 ⇒ 𝑥𝑡−1

𝜖

The Denoising (Decoding) Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡 , 𝑡 , Σ𝑞 𝑡) Conditional Gaussian

We know how to learn Assume fixed / known variance

Probability Chain Rule (Markov Chain)

𝑥𝑇~𝒩(0, 𝐼) 𝑥0𝑥𝑇−1

𝑝𝜃(𝑥𝑇 𝑥𝑇−1 𝑝𝜃(𝑥𝑇−1 𝑥𝑇−2 … 𝑝𝜃(𝑥1 𝑥0

Generate new images!

The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

The Denoising Diffusion Algorithm

The Denoising Diffusion Probabilistic Models, Ho et al., 2020

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡)

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝜖~𝒩(0, 𝐼)

Conditional Diffusion Models

Conditional
Diffusion

An astronaut riding
a horse in a
photorealistic style

Simple idea: just condition the model on some text labels 𝑦!
𝜖𝜃 𝑥𝑡, 𝑦, 𝑡

Conditional Diffusion Models

Conditional
Diffusion

An astronaut riding
a horse in a
photorealistic style

Simple idea: just condition the model on some text labels 𝑦!
𝜖𝜃 𝑥𝑡, 𝑦, 𝑡

Problem: Very blurry generation

Classifier-guided Diffusion

Better idea: use the gradients from a image captioning model 𝑓𝜑(𝑦|𝑥𝑡) to

guide the diffusion process!

ҧ𝜖𝜃 𝑥𝑡, 𝑡 = 𝜖𝜃 𝑥𝑡, 𝑡 − 1 − ത𝛼𝑡𝛻𝑥𝑡
log𝑓𝜑(𝑦|𝑥𝑡)

Dhariwal & Nichol, 2021

Conditional
Diffusion

An astronaut riding
a horse in a
photorealistic style

Slide by Soumyadip (Roni) Sengupta

Slide by Soumyadip (Roni) Sengupta

Classifier-free Guided Diffusion

Ho and Salimans, 2022

Conditional
Diffusion

An astronaut riding
a horse in a
photorealistic style

Classifier-free Guided Diffusion: estimate the gradient of the classifier
model with conditional diffusion models!

𝛻𝑥𝑡
log𝑓𝜑 𝑦 𝑥𝑡 = −

1

1 − ത𝛼𝑡

(𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝜖𝜃 𝑥𝑡, 𝑡)

Slide by Soumyadip (Roni) Sengupta

Classifier-free Guided Diffusion

Ho and Salimans, 2022

Conditional
Diffusion

An astronaut riding
a horse in a
photorealistic style

Classifier-free Guided Diffusion: estimate the gradient of the classifier
model with conditional diffusion models!

𝛻𝑥𝑡
log𝑓𝜑 𝑦 𝑥𝑡 = −

1

1 − ത𝛼𝑡

(𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝜖𝜃 𝑥𝑡, 𝑡)

ҧ𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 = 𝑤 + 1 𝜖𝜃 𝑥𝑡, 𝑡, 𝑦 − 𝑤𝜖𝜃 𝑥𝑡, 𝑡

Latent-space Diffusion

Esser and Rombach et al., 2021

Problem: Hard to learn diffusion process on high-resolution images

Solution: learn a low-dimensional latent space using a transformer-based
autoencoder and do diffusion on the latent space!

The latent space autoencoder

“StableDiffusion”

Rombach and Blattmann et al., 2022

“StableDiffusion”

Rombach and Blattmann et al., 2022

Layout-Conditional Generation

“StableDiffusion”

Rombach and Blattmann et al., 2022

Segmentation-Conditional Generation

“StableDiffusion”

Rombach and Blattmann et al., 2022

Inpainting

https://openai.com/dall-e-2/

Additional resources / tutorials

● Overview of the research landscape: What are Diffusion Models?

● More math! Understanding Diffusion Models: A Unified Perspective

● Tutorial with hands-on example: The Annotated Diffusion Model

● Nice introduction videos:

○ What are Diffusion Models?

○ Diffusion Models | Math Explained

○ Three hours of the math! https://www.youtube.com/watch?v=rLepfNziDPM

● CVPR Tutorial: Denoising Diffusion-based Generative Modeling:

Foundations and Applications

● Score functions:

○ In general

○ For Diffusion models

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://calvinyluo.com/2022/08/26/diffusion-tutorial.html
https://huggingface.co/blog/annotated-diffusion
https://www.youtube.com/watch?v=fbLgFrlTnGU
https://www.youtube.com/watch?v=fbLgFrlTnGU
https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s
https://www.youtube.com/watch?v=HoKDTa5jHvg&t=517s
https://www.youtube.com/watch?v=rLepfNziDPM
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://cvpr2022-tutorial-diffusion-models.github.io/
https://ericmjl.github.io/score-models/
https://ericmjl.github.io/score-models/
https://cbmm.mit.edu/video/diffusion-and-score-based-generative-models

Summary

● Denoising Diffusion model is a type of generative model that learns the

process of “denoising” a known noise source (Gaussian).

● We can construct a learning problem by deriving the evidence lower

bound (ELBO) of the denoising process.

● The learning objective is to minimize the KL divergence between the

“ground truth” and the learned denoising distribution.

● A simplified learning objective is to estimate the noise of the forward

diffusion process.

● The diffusion process can be guided to generate targeted samples.

● Can be applied to many different domains. Same underlying principle.

● Very hot topic!

Reinforcement

Learning

Introduction

Reinforcement

Learning

⬣ Evaluative

feedback in the

form of reward

⬣ No supervision on

the right action

Types of Machine Learning

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning

output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation,

etc.

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:

𝑓 ∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe

RL: Sequential decision making in an environment with evaluative feedback.

What is Reinforcement Learning?

⬣ Environment may be unknown, non-linear, stochastic and complex.

⬣ Agent learns a policy to map states of the environments to actions.

⬣ Seeking to maximize cumulative reward in the long run.

Agent

Action,
Response,
Control

State,
Stimulus,
Situation

Reward,
Gain, Payoff,
Cost

Environment
(world)

Figure Credit: Rich Sutton

RL: Challenges

Signature Challenges in Reinforcement Learning

⬣ Evaluative feedback: Need trial and error to find the right action

⬣ Delayed feedback: Actions may not lead to immediate reward

⬣ Non-stationarity: Data distribution of visited states changes when the

policy changes

⬣ Fleeting nature of time and online data

Slide adapted from: Richard Sutton

Examples of RL tasks

Robot Locomotion

⬣ Objective: Make the robot move

forward

⬣ State: Angle and position of the joints

⬣ Action: Torques applied on joints

⬣ Reward: +1 at each time step upright

and moving forward

Figures copyright John Schulman et al., 2016. Reproduced with permission.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Examples of RL tasks

Atari Games

⬣ Objective: Complete the game with the highest score

⬣ State: Raw pixel inputs of the game state

⬣ Action: Game controls e.g. Left, Right, Up, Down

⬣ Reward: Score increase/decrease at each time step

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figures copyright Volodymyr Mnih et al., 2013. Reproduced with permission.

Examples of RL tasks

Go

⬣ Objective: Defeat opponent

⬣ State: Board pieces

⬣ Action: Where to put next piece

down

⬣ Reward: +1 if win at the end of game,

0 otherwise

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

Markov Decision Processes (MDPs)

⬣ MDPs: Theoretical framework underlying RL

⬣ An MDP is defined as a tuple

 : Set of possible states

 : Set of possible actions

 : Distribution of reward

 : Transition probability distribution, also written as p(s’|s,a)

 : Discount factor

⬣ Interaction trajectory:

⬣ Markov property: Current state completely characterizes state of the

environment

⬣ Assumption: Most recent observation is a sufficient statistic of history

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Let’s first assume that we know the true reward and transition distribution and

look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

⬣ In Reinforcement Learning, we assume an underlying MDP with unknown:

⬣ Transition probability distribution

⬣ Reward distribution

⬣ Evaluative feedback comes into play, trial and error necessary

⬣ Deep RL: Use neural network to estimate V/Q, policy, R/T

⬣ Let’s first assume that we know the true reward and transition distribution and

look at algorithms for solving MDPs i.e. finding the best policy

MDPs in the context of RL

MDP

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

Solving MDPs: Optimal policy

⬣ Solving MDPs by finding the best/optimal policy

⬣ Formally, a policy is a mapping from states to actions

⬣ Deterministic

⬣ Stochastic

⬣ What is a good policy?

⬣ Maximize current reward? Sum of all future rewards?

⬣ Discounted sum of future rewards!

⬣ Discount factor:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Solving MDPs: Optimal policy

⬣ Formally, the optimal policy is defined as:

discounted sum of future rewards

Expectation over initial state, actions from policy,
next states from transition distribution

Optimal policy examples

⬣ Some optimal policies for three different grid world MDPs (gamma=0.99)

⬣ Varying reward for non-absorbing states (states other than +1/-1)

Image Credit: Byron Boots, CS 7641

R(s) = -0.03 R(s) = -0.4 R(s) = -2.0

Overview

Pong from Pixels

Policy Gradient: Loss Function

Image Source: http://karpathy.github.io/2016/05/31/rl/

⬣ Slightly re-writing the notation

 Let denote a trajectory

Gathering Data/Experience

⬣ How to gather data?

⬣ We already have a policy:

⬣ Sample N trajectories by acting according to

Gathering Data/Experience

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

The REINFORCE Algorithm

Run the policy and
sample trajectories

Compute policy
gradient

Update policy

Slide credit: Sergey Levine

?

⬣ Sample trajectories by acting according to

⬣ Compute policy gradient as

⬣ Update policy parameters:

Run the policy and
sample trajectories

Compute policy
gradient

Update policy

The REINFORCE Algorithm

Slide credit: Sergey Levine

Drawbacks of Policy Gradients

Slide credit: Dhruv Batra

.... 86

We finetune the Action Space Adaptors (ASAs), downsampler, and MLLM

Szot et al., Grounding Multimodal Large Language Models in Actions, NeurIPS 2024
Szot et al., From Multimodal LLMs to Generalist Embodied Agents: Methods and Lessons, CVPR 2025

(Quick) Derivation!

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

= Ε𝑞 log
𝑝 𝑥𝑇 ς𝑡=1

𝑇 𝑝𝜃(𝑥𝑡−1 𝑥𝑡

ς𝑡=1
𝑇 𝑞(𝑥𝑡|𝑥𝑡−1) forward diffusion

reverse denoising

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

fixed Easy to optimize / sometimes omitted

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

ς

Maximize the agreement between the predicted reverse diffusion
distribution 𝑝𝜃 and the “ground truth” reverse diffusion distribution 𝑞

Variational
Inference

Simplify to
KL

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

𝑞 𝑥𝑡−1 𝑥𝑡 = 𝒒 𝒙𝒕−𝟏 𝒙𝒕, 𝒙𝟎 (markov assumption)

 =
𝑞 𝑥𝑡 𝑥𝑡−1, 𝑥0 𝑞(𝑥𝑡−1|𝑥0)

𝑞(𝑥𝑡|𝑥0)
 (Bayes rule)

 =
𝒩 𝑥𝑡; 𝑎𝑡𝑥𝑡−1,𝛽𝑡𝐼 𝒩 𝑥𝑡−1; ഥ𝛼𝑡−1𝑥𝑡−1, 1−ഥ𝛼𝑡−1 𝐼

𝒩 𝑥𝑡; ഥ𝛼𝑡𝑥0, 1−ഥ𝛼𝑡−1 𝐼

 ∝ 𝒩 𝑥𝑡−1;
𝑎𝑡 1−ഥ𝛼𝑡−1 𝑥𝑡+ ഥ𝛼𝑡−1(1−𝑎𝑡)𝑥0

1− ഥ𝛼𝑡
, Σ𝑞(𝑡) (Property of Gaussian)

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Proof using bayes rule and
gaussian reparameterization trick

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

ς

𝑞 𝑥𝑡−1 𝑥𝑡 , 𝑥0 = 𝒩 𝑥𝑡−1; 𝜇𝑞 𝑡 , Σ𝑞 𝑡

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Proof using bayes rule and
gaussian reparameterization trick

The “ground truth” noise that brought 𝑥𝑡−1 to 𝑥𝑡

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

𝑝 𝑥 = ׬ 𝑝 𝑥 𝑧 𝑝(𝑧)𝑑𝑧 Intractable to estimate!

log 𝑝 𝑥 = Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
+ 𝐷𝐾𝐿(𝑞(𝑧|𝑥)| 𝑝 𝑧 𝑥

 ≥ Ε𝑞 log
𝑝 𝑥 𝑧 𝑝 𝑧

𝑞 𝑧 𝑥
 Evidence Lower Bound (ELBO)

log 𝑝(𝑥0) ≥ Ε𝑞 log
𝑝 𝑥0 𝑥1:𝑇 𝑝(𝑥1:𝑇)

𝑞 𝑥1:𝑇 𝑥0
 𝑥 = 𝑥0, 𝑧 = 𝑥1:𝑇

… (derivation omitted, see Sohl-Dickstein et al., 2015 Appendix B)

Deep Unsupervised Learning using Nonequilibrium Thermodynamics, Sohl-Dickstein et al., 2015

= −Ε𝑞[𝐷𝐾𝐿 𝑞 𝑥𝑇 𝑥0 𝑝 𝑥𝑇 − ෍
𝑡=2

𝑇

𝐷𝐾𝐿(𝑞(𝑥𝑡−1|𝑥𝑡, 𝑥0)||𝑝𝜃 𝑥𝑡−1 𝑥𝑡) + log 𝑝𝜃(𝑥0|𝑥1)

Minimize the difference of distribution means (assuming identical variance)

argmin𝜃𝑤||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡 , 𝑡 ||2

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

Do we actually need to learn the entire 𝜇𝜃 𝑥𝑡, 𝑡 ?

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

known during inference
Unknown during

inference

Recall: this is the “ground truth”
noise that brought 𝑥𝑡−1 to 𝑥𝑡

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Learning objective: argmin𝜃||𝜇𝑞 𝑡 − 𝜇𝜃 𝑥𝑡, 𝑡 ||2

𝜇𝑞 𝑡 =
1

𝛼𝑡
𝑥𝑡 −

𝛽𝑡

1 − ത𝛼𝑡

𝜖 , 𝜖~𝒩(0, 𝐼)

known during inference
Unknown during

inference

Idea: just learn 𝜖 with 𝜖𝜃 𝑥𝑡, 𝑡 !

Recall: this is the “ground truth”
noise that brought 𝑥𝑡−1 to 𝑥𝑡

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 𝑥𝑡, 𝑡 ||2

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Recall: the simplified 𝑡-step forward sample:

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 𝑥𝑡, 𝑡 ||2

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝑡 ||2

Recall: the simplified 𝑡-step forward sample:

𝑥𝑡 = ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Learning the Denoising Process

𝑥0 𝑥𝑇𝑥1 …The learned denoising process

𝑝𝜃 𝑥0:𝑇 = 𝑝 𝑥𝑇 ෑ

𝑡=1

𝑇

𝑝𝜃(𝑥𝑡−1 𝑥𝑡

𝑝𝜃(𝑥𝑡−1 𝑥𝑡 = 𝒩(𝑥𝑡−1; 𝜇𝜃 𝑥𝑡, 𝑡 , Σ 𝑡) Conditional Gaussian

Simplified learning objective: argmin𝜃||𝜖 − 𝜖𝜃 ത𝛼𝑡𝑥0 + 1 − ത𝛼𝑡𝜖, 𝑡 ||2

Variational
Inference

Simplify to
KL

Reverse Process
=> Normal

Bayes +
Reparameterization

Remove (variance-
dependent) constant

Predict the
noise!!!

Math for Classifier Guidance

Slide by Soumyadip (Roni) Sengupta

Slide by Soumyadip (Roni) Sengupta

Solution 1 (DALL-E 2): Use CLIP Model

Slide by Soumyadip (Roni) Sengupta

Slide by Soumyadip (Roni) Sengupta

Slide by Soumyadip (Roni) Sengupta

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3: Taxonomy of Generative Models
	Slide 4
	Slide 5
	Slide 6: The Denoising Diffusion Process
	Slide 7: The Denoising Diffusion Process
	Slide 8: Comparison
	Slide 9: The Denoising Diffusion Process
	Slide 10: The Denoising Diffusion Process
	Slide 11: Forward/Reverse Processes
	Slide 12: Forward/Reverse Processes
	Slide 13: Forward/Reverse Processes
	Slide 14: Forward/Reverse Processes
	Slide 15: The Diffusion (Encoding) Process
	Slide 16: The Diffusion (Encoding) Process
	Slide 17: The Diffusion and Denoising Process
	Slide 18: The Denoising (Decoding) Process
	Slide 19: The Denoising (Decoding) Process
	Slide 20: The Denoising (Decoding) Process
	Slide 21: The Denoising (Decoding) Process
	Slide 22: The Denoising (Decoding) Process
	Slide 23: The Denoising (Decoding) Process
	Slide 24: The Denoising (Decoding) Process
	Slide 25: The Denoising (Decoding) Process
	Slide 26: The Denoising (Decoding) Process
	Slide 27: The Denoising (Decoding) Process
	Slide 28: The Denoising (Decoding) Process
	Slide 29: The Denoising (Decoding) Process
	Slide 30: The Denoising (Decoding) Process
	Slide 31: The Denoising (Decoding) Process
	Slide 32: The Denoising (Decoding) Process
	Slide 33: The Denoising (Decoding) Process
	Slide 34: The Denoising Diffusion Algorithm
	Slide 35: The Denoising Diffusion Algorithm
	Slide 36: The Denoising Diffusion Algorithm
	Slide 37: Conditional Diffusion Models
	Slide 38: Conditional Diffusion Models
	Slide 39: Classifier-guided Diffusion
	Slide 40
	Slide 41
	Slide 42: Classifier-free Guided Diffusion
	Slide 43
	Slide 44: Classifier-free Guided Diffusion
	Slide 45: Latent-space Diffusion
	Slide 46: “StableDiffusion”
	Slide 47: “StableDiffusion”
	Slide 48: “StableDiffusion”
	Slide 49: “StableDiffusion”
	Slide 50
	Slide 51: Additional resources / tutorials
	Slide 52: Summary
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102: Learning the Denoising Process
	Slide 103: Learning the Denoising Process
	Slide 104: Learning the Denoising Process
	Slide 105: Learning the Denoising Process
	Slide 106: Learning the Denoising Process
	Slide 107: Learning the Denoising Process
	Slide 108: Learning the Denoising Process
	Slide 109: Learning the Denoising Process
	Slide 110: Math for Classifier Guidance
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

