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ML and Fairness
Al effects our lives in many ways
Widespread algorithms with many small interactions
— e.g. search, recommendations, social media

Specialized algorithms with fewer but higher-stakes
interactions

— e.g. medicine, criminal justice, finance

At this level of impact, algorithms can have unintended
consequences

Low classification error is not enough, need fairness

)
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BUSINESS NEWS OCTOBER 10, 2018 / 3:12 AM / 6 MONTHS AGO

Amazon scraps secret Al recruiting tool that
showed bias against women

Jeftrey Dastin 8 MIN READ

SAN FRANCISCO (Reuters) - Amazon.com Inc’s (AMZN.O) machine-learning

specialists uncovered a big problem: their new recruiting engine did not like women.

The team had been building computer programs since 2014 to review job applicants’
resumes with the aim of mechanizing the search for top talent, five people familiar with

the effort told Reuters.

Automation has been key to Amazon’s e-commerce dominance, be it inside warehouses
or driving pricing decisions. The company’s experimental hiring tool used artificial

intelligence to give job candidates scores ranging from one to five stars - much like
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INDEPENDENT
GOOGLE'S ALGORITHM SHOWS
REUTERS
PRESTIGIOUS IOB ADS TO MEN, .
Amazon scraps secret Al recruiting
tool that showed bias against women
es
By The New York Eimes
: o MIT
Facebook Engages in Housing Discrimination Technology
With Its Ad Practices, U.S. Says Review
By Katie Benner, Glenn Thrush and Mike Isaac |nte“|gent Mach.nes —1
How to Fix Silicon Valley’s Sexist |
Algorithms
ders
Computers are inheriting gender bias implanted in language

PRO JPUBLICA M a c h I n data sets—and not everyone thinks we should correct it.
e

- There’s software used across the country to predict future criminals. And it's biased Je
: against blacks.
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Fairness, Accountability,

Machine Learning and Social Norms and Transparency

in Machine Learning

Bringing together a growing community of researchers
and prac d with fairness,

Sample norms: privacy, fairness, transparency, accountability...

Possible approaches

— “traditional”: legal, regulatory, watchdog

— Embed social norms in data, algorithms, models

Case study: privacy-preserving machine learning
— “single”, strong, definition (differential privacy)

— almost every ML algorithm has a private version

Fair machine learning

— not so much...

— impossibility results

Slide By Aaron Foth
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(Un)Fairness Where?

« Data (input)
— e.g. more arrests where there are more police
— Label should be “"committed a crime”, but is “convicted of a crime
— try to “correct” bias

« Models (output)
— e.g. discriminatory treatment of subpopulations
— build or “post-process” models with subpopulation guarantees
— equality of false positive/negative rates; calibration

« Algorithms (process)
— learning algorithm generating data through its decisions
— e.g. don’t learn outcomes of denied mortgages
— lack of clear train/test division
— design (sequential) algorithms that are fair

144
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When the training data we collect does not contain representative
samples of the true distribution.

Examples:
If we use data gathered from smart phones, we
would likely be underestimating poorer and older
populations.

ImageNet (a very popular image dataset) with
1.2million images. About 45% of these images were
taken in the US and the majority of the rest in North
America and Western Europe. Only about 1% and
2.1% of the images come from China and India
respectely.

Data Bias

Slide By Hunter Schafer
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Often we are gathering data that contains (noisy) proxies of
characteristics of interest. Some examples:

Financial responsibility - Credit Score
Crime Rate - Arrest Rate

Intelligence - SAT Score

If these measurements are not measured equally across groups or places
(or aren’t relevant to the task at hand), this can be another source of
bias.

Slide By Hunter Schafer
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Examples:

If factory workers are monitored more often, more errors are spotted. This can result in a
feedback loop to encourage more monitoring in the future.
Same principles at play with predictive policing. Minoritized communities were more
heavily policed in the past, which causes more instances of documented crime, which
then leads to more policing in the future.

Women are more likely to be misdiagnosed (or not diagnosed) for conditions where self-
reported pain is a symptom. In this case aspect of our data “diagnosed with X” is a biased
proxy for “has condition X”.

The feature we measure is a poor representation of the quality of interest (e.g., SAT score
doesn’t actually measure intelligence)

Slide By Hunter Schafer
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What does it mean for a model to be fair or unfair? Can we come up with a numeric
way of measuring fairness?

Lots of work in the field of ML and fairness is looking into mathematical definitions of
fairness to help us spot when something might be unfair.

There is not going to be one central definition of fairness, as each definition is a
mathematical statement of which behaviors are/aren’t allowed.

Different definitions of fairness can be contradictory!




ML and Fairness

* Fairness is morally and legally motivated
e Takes many forms

e Criminal justice: recidivism algorithms (COMPAS)
— Predicting if a defendant should receive bail
— Unbalanced false positive rates: more likely to wrongly deny a black

person bail Table 1: ProPublica Analysis of COMPAS Algorithm

White Black
Wrongly Labeled High-Risk 23.5%  44.9%
Wrongly Labeled Low-Risk  47.7%  28.0%

https://www.propublica.org/article/
machine-bias-risk-assessments—-in-criminal-sentencing
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Why Fairness is Hard

Suppose we are a bank trying to fairly decide who should get a loan
— i.e. Who is most likely to pay us back?

Suppose we have two groups, A and B (the sensitive attribute)
— This is where discrimination could occur

The simplest approach is to remove the sensitive attribute from the data, so that our classier doesn't
know the sensitive attribute. Often called “Fairness through unawareness”

Table 2: To Loan or Not to Loan?

Age Gender Postal Code Req Amt A or B? Pay

46 F M5E $300 A 1
24 M M4C $1000 B 1
33 M M3H $250 A 1
34 F MoC $2000 A 0
71 F M3B $200 A 0
28 M M5W $1500 B 0




Why Fairness is Hard

Doesn’t work in practice. This

However, if the sensitive attribute is correlated with the other does not prevent historical or

attributes, this isn't good enough measurement bias. Protected

It is easy to predict race if you have lots of other information attributes can be

(e.g. home address, spending patterns) unintentionally inferred from

More advanced approaches are necessary other, related attributes (e.g., in
Table 3: To Loan or Not to Loan? (masked) some cities, zip code can be

Age Gender Postal Code Req Amt A or B? Pay deeply correlated with race).

46 F M5E $300 ? 1

24 M M4C $1000 ? 1

33 M M3H $250 ? 1

34 F M9C $2000 ? 0

71 F M3B $200 ? 0

28 M M5W $1500 ? 0




Definitions of Fairness — Group Fairness

So we've built our classier . . . how do we know if we're being fair?

One metric is demographic parity | requiring that the same percentage of A and B receive loans
— What if 80% of A is likely to repay, but only 60% of B is?
— Then demographic parity is too strong

Could require equal false positive/negative rates
— When we make an error, the direction of that error is equally likely for both groups

P(loan|no repay, A) = P(loan|no repay. B)

P(no loan|would repay, A) = P(no loan|would repay, B)

These are definitions of group fairness
Treat different groups equally"

Georgia ﬂ
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Definitions of Fairness — Individual Fairness

* Also can talk about individual fairness | “Treat similar examples similarly"

* Learn fair representations
— Useful for classification, not for (unfair) discrimination
— Related to domain adaptation
— Generative modelling/adversarial approaches

(a) Unfair representations (b) Fair(er) representations

Figure 1: “The Variational Fair Autoencoder” (Louizos et al., 2016)




Conclusion

This is an exciting field, quickly developing

Central definitions still up in the air

Al moves fast | lots of (currently unchecked) power
Law/policy will one day catch up with technology

Those who work with Al should be ready
— Think about implications of what you develop!
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Parting

Thoughts
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Deep Learning
Fundamentals
Linear classification
Loss functions
Optimization
Optimizers
Backpropagation
Computation Graph
Multi-layer
Perceptrons

Neural Network
Components and
Architectures
Hardware & software
Convolutions
Convolution Neural
Networks

Pooling

Activation functions
Batch normalization
Transfer learning
Data augmentation
Architecture design
RNN/LSTMs
Attention &
Transformers

We Learned a Lot!

Applications & Learning
Algorithms

Semantic & instance
Segmentation
Reinforcement Learning
Large-language Models
Variational Autoencoders
Diffusion Models
Generative Adversarial Nets
Self-supervised Learning
Vision-Language Models
VLM for Robotics




Some existing works not covered...
Current / Past

— Graph neural networks
— Meta-learning
— AutoML

— 3D perception & reconstruction / NeRFs
* Neural Radiance Fields

— Al for Tabular data, time-series, etc.

— Beyond supervised learning: Semi-supervised, domain adaptation, zero/one/few-shot learning
— Embodied Al & Embodied question answering

— Adversarial Learning

— Continual/lifelong learning without forgetting

— World modeling, learning intuitive/physics models
— Reasoning, Planning, Search

— Neural Theorem Proving, induction & synthesis

— Al for science

— MLSys and MLOps

— Evaluation...

— Alignment

— Security




When Comparing to Humans, What’s Missing?

* Reasoning

o H ”

— Chain-of-thought probably still off from how humans do it!
* Memory

Planning, Search
* Deep integration of concepts and modalities
* Cognitive Architecture?

Georgia |
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MA-LMM: Memory-Aui

SPATIALLY-AWARE TRANSFORMER
Model for Long-Ter

FOR EMBODIED AGENTS

Temporal: Go to the receptacle

Object Recall: Findiananple. you interacted with at 1:30 PM.

Room Visitation: Navigate to the room
where you picked the first object from.

Conditional Interaction: Navigate to
a chair you did not interact with.

8 Unordered Revisitation:
Revisit all the receptacles
you picked objects from.

Ordered Revisitation: Revisit all the
receptacles you picked objects from

: | yesterday in the order: second, first.

8:00 AM

| S — .

arg max (Ts 0’) —> TAMA
oed

Graves et. al, Neural Turing Machines

Time

Drop —
=1

M, M, arguax Qu(r', o) — wiiyyy

(a) FIFO Memory (b) Place Memory (¢) Adaptive Memory Allocator (AMA)
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Prompt Response

) : wall cell bos bos .
start 0 2 plan 0 2
: start cell goal 10 plan 0 1 Jia
0 : goal Ce]l wall 12 pla:) 11
) wall 20 plan 1 0
0 1 2 : plan step eos eos
(a) Maze navigation task (b) Tokenization of a planning task and its solution
A * planning algorithm Tokenization of algorithm execution
/Require: Start_node Tgrare and goal node nggar. ( bos ctures
é ‘%‘310“‘.1 - {} ) —» | create 0 2 o3 e | work.
¢t Strontier ¢ {Nstare} | | close 02 c3<h '
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& Sclosed — Sclosed ] {'ncurr} Trace { tieate é 2 Cg el “Ih]']'e
6: for nchig € children(ncurr) do | c-os= 1 ciel scoder
7 if pos(n) = pos(nchild) for any n € Sciosed U Strontier then create 1 1 cl c2 dvi
K- if cost(n) < cost(nenid) then close 1 1 cl 2 ed via
Q- continue create 1 0 c0 <3 1 ])lan.
10: end if \close 1 0 c0 c3 K
11: end if {plan 0 2 n tas
12: Set parent(nchild)  Meurr [ plan 01 tudies
13: Strontier +— Strontier U {'nchild} Plan < plan 11 t t}.
14: end for | plan 10 - -
15: end while |\ eos Te also
16: Compute and return plan by recursing on parents of nqy;r.
koban

(c) A*’s execution when solving a planning task is logged into an execution trace
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A Path Towards Autonomous Machine Intelligence
Version 0.9.2, 2022-06-27

Yann LeCun
Courant Institute of Mathematical Sciences, New York University yann@cs.nyu.edu
Meta - Fundamental Al Research yann@fb. com

June 27. 2022

Abstract

How could machines learn as efficiently as humans and animals? How could ma-
chines learn to reason and plan? How could machines learn representations of percepts
and action plans at multiple levels of abstraction, enabling them to reason, predict,
and plan at multiple time horizons? This position paper proposes an architecture and
training paradigms with which to construct autonomous intelligent agents. It combines
concepts such as configurable predictive world model, behavior driven through intrinsic
motivation, and hierarchieal joint embedding architectures trained with self-supervised
learning,.

Kevwords: Artificial Intelligence, Machine Common Sense, Cognitive Architecture, Deep
Learning, Self-Supervised Learning, Energy-Based Model, World Models, Joint Embedding
Architecture, Intrinsic Motivation.




Motivation

How is it possible for an adolescent to learn to drive a car in about 20 hours of practice
and for children to learn language with what amounts to a small exposure. How is it that
most humans will know how to act in many situation they have never encountered? By
contrast, to be reliable, current ML systems need to be trained with very large numbers of
trials so that even the rarest combination of situations will be encountered frequently during
training.




Challenges

There are three main challenges that Al research must address today:

1. How can machines learn to represent the world, learn to predict, and learn to act
largely by observation?
Interactions in the real world are expensive and dangerous, intelligent agents should
learn as much as they can about the world without interaction (by observation) so
as to minimize the number of expensive and dangerous trials necessary to learn a
particular task.

2. How can machine reason and plan in ways that are compatible with gradient-based
learning?
Our best approaches to learning rely on estimating and using the gradient of a loss,
which can only be performed with differentiable architectures and is difficult to rec-
oncile with logic-based symbolic reasoning.




3. How can machines learn to represent percepts and action plans in a hierarchical man-
ner, at multiple levels of abstraction, and multiple time scales?
Humans and many animals are able to conceive multilevel abstractions with which
long-term predictions and long-term planning can be performed by decomposing com-
plex actions into sequences of lower-level ones.

Are these the right challenges? Anything else?




Contributions

The present piece proposes an architecture for intelligent agents with possible solutions to
all three challenges.
The main contributions of this paper are the following:

1. an overall cognitive architecture in which all modules are differentiable and many of

them are trainable (Section , Figure .

2. JEPA and Hierarchical JEPA: a non-generative architecture for predictive world mod-

els that learn a hierarchy of representations (Sections and Figures and.

3. anon-contrastive self-supervised learning paradigm that produces representations that
are simultaneously informative and predictable (Section Figure .

4. A way to use H-JEPA as the basis of predictive world models for hierarchical planning

under uncertainty (section Figure |16/ and .




World Models

« Common sense can be seen as a collection of models of the
world that can tell an agent what is likely, what is plausible,
and what is impossible. Using such world models, animals can
learn new skills with very few trials. They can predict the
consequences of their actions, they can reason, plan, explore,
and imagine new solutions to problems. Importantly, they can
also avoid making dangerous mistakes when facing an
unknown situation.

Georgia |
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But can a human or animal brain contain all the world models that are necessary for
survival? One hypothesis in this paper is that animals and humans have only one world
model engine somewhere in their prefrontal cortex. That world model engine is dynamically

configurable for the task at hand.




Architecture?

* The congurator module takes input from all other £,
modules and congures them for the task at hand by /s
modulating their parameters and their attention
circuits.

* The perception module receives signals from
sensors and estimates the current state of the
world.

* The world model module constitutes the most o
complex piece of the architecture. Its role is  percept &
twofold: (1) estimate missing information about the
state of the world not provided by perception, (2)
predict plausible future states of the world.

)
Tech|)
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Architecture?

* The cost module measures the level of “discomfort"
of the agent, in the form of a scalar quantity called
the energy. The energy is the sum of two energy
terms computed by two sub-modules: the Intrinsic
Cost module and the Trainable Critic module. The
overall objective of the agent is to take actions so as
to remain in states that minimize the average
energy.

Georgia "
Tech ||



Architecture?

* The short-term memory module stores
relevant information about the past,
current, and future states of the world, as
well as the corresponding value of the
intrinsic cost.

* The actor module computes proposals for
sequences of actions and outputs actions
to the eectors.

Georgia "
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Mode 1

C(s[0]) C(s[1])

EIlC(.tB) S[O] Pred(s,a) S[l]

action A(S) —

a[0]

Actor

Figure 3: Mode-1 perception-action episode. The perception module estimales the state of the
world s[0] = Enc(z). The actor directly computes an action, or a short sequence of actions, through
a policy module a]0] = A(s[0]).

This reactive process does not make use of the world model nor of the cost. The cost module computes
the energy of the initial state f[0] = C(s[0]) and stores the pairs (s[0], f[0]) in the short-term memory.
Optionally, it may also predict the next state using the world model s[1] = Pred(s[0],a[0]), and the
associated energy f[0] = C(s[0]) so that the world model can be adjusted once the next observation
resulting from the action taken becomes available.




Mode 2

C(s[0]) C(s[t]) C(s[t+1]) C(s[T-1]) C(s[T])
Enc(z
( ) s[T-1]
action
a[0] a[T-1]

Actor

Figure 4: Mode-2 perception-action episode. The perception module estimates the state of the world
s[0]. The actor proposes a sequence of actions al0],a[l],...,a[t],a[t +1],...,a[T]. The world model
recursively predicts an estimate of the world state sequence using s[t + 1] = Pred(slt], a[t]). The cost
C(s[t]) computes an energy for each predicted state in the sequence, the total energy being the sum
of them. Through an optimization or search procedure, the actor infers a sequence of actions that
minimizes the total energy. It then sends the first action in the sequence (or the first few actions)
to the effectors. This is, in effect, an instance of classical model-predictive control with receding-
horizon planning. Since the cost and the model are differentiable, gradient-based methods can be
used to search for optimal action sequences as in classical optimal control. Since the total energy
is additive over time, dynamic programming can also be used, particularly when the action space is
small and discretized. Pairs of states (computed by the encoder or predicted by the predictor) and
corresponding energies from the intrinsic cost and the trainable critic are stored in the short-term
memory for subsequent training of the critic.




Energy-Based Models?

min
E,(z,y,2) €2 Fo(z,y)

Figure 9: Latent-Variable Energy-Based Model (LVEBM).

To evaluate the degree of compatibility between x and y, an EBM may need the help of a latent variable
z. The latent variable can be seen as parameterizing the set of possible relationships between an x
and a set of compatible y. Latent variables represent information about y that cannot be extracted
from z. For example, if x is a view of an object, and y another view of the same object, z may
parameterize the camera displacement between the two views. Inference consists in finding the latent
that minimizes the energy 2 = argmin, .z E, (z,y,2). The resulting energy Fy(x,y) = Ey(z,y,2)
only depends on x and y. In the dual view example, inference finds the camera motion that best
ezplains how x could be transformed into y.

F(x.y)

time or space -

—

=

Energy
Function




JEPA?

Pred(s., Z)

Figure 12: The Joint-Embedding Predictive Architecture (JEPA) consists of two encoding branches.
The first branch computes s.., o representation of x and the second branch s, a representation of y.
The encoders do not need to be identical. A predictor module predicts s, from s, with the possible
help of a latent variable 2. The energy is the prediction error. Simple variations of the JEPA may
use no predictor, forcing the two representations to be equal, or may use o fized predictor with no
latent, or may use simple latents such as discrete variables.

The main advantage of JEPA 1is that it performs predictions in representation space, eschewing the
need to predict every detail of y, and enabling the elimination of irrelevant details by the encoders.
More precisely, the main advantage of this architecture for representing multi-modal dependencies is
twofold: (1) the encoder function s, = Enc(y) may possess invariance properties that will make it
produce the same sy for a set of different y. This makes the energy constant over this set and allows
the model to eapture complex multi-modal dependencies; (2) The latent variable z, when varied over
a set Z, can produce a set of plausible predictions Pred(s,, Z) = {§, = Pred(s,,2) Vz € Z}

If x is a video clip of a car approaching a fork in the road, s, and s, may represent the position,
orientation, velocity and other characteristics of the car before and after the fork, respectively, ig-
noring vrrelevant details such as the trees bordering the road or the texture of the sidewalk. 2 may
represent whether the car takes the left branch or the right branch of the road.



Some Concepts

World models: Predict missing data/future
Configurability

Intrinsic reward

Prediction of reward (critic)

Memory (short and long-term

System 1 vs. System 2

Embodiment

Georgia “
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Discussions

Do we need world models? Should they be explicit or implicit?

— “Arguably, designing architectures and training paradigms for the world model constitute the main
obstacles towards real progress in Al over the next decades.”

Do world models cover everything?
— Math/reasoning, science/innovation, etc.

Is reasoning now solved with inference-time methods?
Do we need explicit symbols / symbolic reasoning?
Does this get you robustness?

Do we need embodiment to “solve” intelligence?

Georgia "
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Open Discussion
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Things to Watch out For

Research is cyclical

— SVMs, boosting, probabilistic graphical models & Bayes Nets, Structural Learning, Sparse Coding,
Deep Learning

— Deep learning is unique in its depth and breadth, but...
— Deep learning may be improved, reinvented, combined, overtaken

Learn fundamentals for techniques across the field:

— Know the span of ML technigues and choose the ones that fit your problem!
— Beresponsible in 1) how you use it, 2) promises you make and how you convey it

Try to understand landscape of the field
— Look out for what is coming up next, not where we are

Have fun!

Georgia "
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Thank you!
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