
Machine Learning Applications

CS 4644 / 7643-A
ZSOLT KIRA

Topics:

• Machine learning intro, applications (CV, NLP, etc.)

• Parametric models and their components

Administrivia

• PS0 due May 18th Sunday night, but do it TODAY!
• Please do it, and give others a chance at waitlist if your background is not sufficient

(beef it up and take it next time)

• Do it even if you’re on the waitlist!

• Piazza:
• https://piazza.com/gatech/summer2025/cs46447643a/

• Search for teammates: @5 (https://piazza.com/class/mafsg3dobtu42c/post/5)

• Note: Do NOT post anything containing solutions publicly!

• Make it active!

• Office hours start next week

https://piazza.com/gatech/summer2025/cs46447643a/
https://piazza.com/class/mafsg3dobtu42c/post/5

Collaboration Policy

• Collaboration

• Only on HWs and project (not allowed in HW0/PS0).

• You may discuss the questions

• Each student writes their own answers

• Write on your homework anyone with whom you collaborate

• Each student must write their own code for the programming part

• Do NOT search for code implementing what we ask; search for concepts

• Zero tolerance on plagiarism

• Neither ethical nor in your best interest

• Always credit your sources

• Don’t cheat. We will find out.

Grace Period

• Grace period
• 2 days grace period for each assignment (EXCEPT PS0)

• Intended for checking submission NOT to replace due date

• No need to ask for grace, no penalty for turning it in within grace period

• Can NOT use for PS0

• After grace period, you get a 0 (no excuses except medical)
• Send all medical requests to dean of students (https://studentlife.gatech.edu/)

• Form: https://gatech-advocate.symplicity.com/care_report/index.php/pid224342

• DO NOT SEND US ANY MEDICAL INFORMATION! We do not need any details,
just a confirmation from dean of students

https://gatech-advocate.symplicity.com/care_report/index.php/pid224342

Python + Numpy Tutorial

http://cs231n.github.io/python-numpy-tutorial/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://cs231n.github.io/python-numpy-tutorial/

Python + Numpy Tutorial

http://cs231n.github.io/python-numpy-tutorial/

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://cs231n.github.io/python-numpy-tutorial/

What is Machine Learning (ML)?

“A computer program is said to learn from

experience E with respect to some class of

tasks T and performance measure P, if its

performance at tasks in T, as measured by

P, improves with experience E.”

Tom Mitchell (Machine Learning, 1997)

Application: Computer Vision

Example: Image Classification

Model

Car

Class Scores

Coffee Cup Bird

Model

Normal

Class Scores

Benign Malignant

Reinforcement

Learning

⬣ Supervision in

form of reward

⬣ No supervision on

what action to take

Types of Machine Learning

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning

output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation,

etc.

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output: 𝑓
∶ 𝑋 → 𝑌,

e.g. 𝑃(𝑦|𝑥)

Very often combined, sometimes within the same model!

Parametric Model

Explicitly model the function 𝑓 ∶ 𝑋 → 𝑌 in

the form of a parametrized function

𝑓 𝑥, 𝑊 = 𝑦, examples:

⬣ Logistic regression/classification

⬣ Neural networks

Capacity (size of hypothesis class) does

not grow with size of training data!

Learning is search

Supervised Learning

Parametric – Linear Classifier

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

Procedural View of ML

Training Stage:
Training Data { (xi,yi) } → h (Learning)

Testing Stage
Test Data x → h(x) (Apply function, Evaluate error)

Statistical View of ML

Probabilities to rescue:
X and Y are random variables
D = (x1,y1), (x2,y2), …, (xN,yN) ~ P(X,Y)

IID: Independent Identically Distributed
Both training & testing data sampled IID from P(X,Y)
Learn on training set
Have some hope of generalizing to test set

Reality

Generalization

model class

3x3 conv, 384

Pool

5x5 conv, 256

11x11 conv, 96

Input

Pool

3x3 conv, 384

3x3 conv, 256

Pool

FC 4096

FC 4096

Softmax

FC 1000

AlexNet

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization

Reality

Input

Softmax

FC HxWx3

Multi-class Logistic

Regression

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generalization

model class

Pool

Input

Pool

Pool

Pool

Pool

Softmax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC 4096

FC 1000

FC 4096

VGG19

From: slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Reality

Guarantees

20 years of research in Learning Theory oversimplified:

If you have:
Enough training data D
and H is not too complex
then probably we can generalize to unseen test data

Caveats: A number of recent empirical results question our
intuitions built from this clean separation.

Zhang et al., Understanding deep learning requires rethinking generalization

Components

of a

Parametric

Learning

Algorithm

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Input {𝑿, 𝒀} where:

⬣ 𝑋 is an image

⬣ 𝑌 is a ground truth label annotated by an expert (human)

⬣ 𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏 is our model, chosen to be a linear function in this case

⬣ 𝑊 and 𝑏 are the parameters (weights) of our model that must be learned

Example: Image Classification

Model

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

Car

Class Scores

Coffee Cup Bird

Data: Image

Input image is high-dimensional

⬣ For example n=512 so 512x512

image = 262,144 pixels

⬣ Learning a classifier with high-

dimensional inputs is hard

Before deep learning, it was typical to

perform feature engineering

⬣ Hand-design algorithms for

converting raw input into a lower-

dimensional set of features

Input Representation: Feature Engineering

Input Image

𝑥 =

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑛

Example: Color histogram

⬣ Vector of numbers representing number of pixels fitting within

each bin

⬣ We will later see that learning the feature representation itself is

much more effective

Input Representation: Feature Engineering

Data: Image Features: Histogram

Input {𝑿, 𝒀} where:

⬣ 𝑋 is an image histogram

⬣ 𝑌 is a ground truth label represented a probability distribution

⬣ 𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏 is our model, chosen to be a linear function in this case

⬣ 𝑊 and 𝑏 are the weights of our model that must be learned

Example: Image Classification

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

Features: Histogram

Input {𝑿, 𝒀} where:

⬣ 𝑋 is a sentence

⬣ 𝑌 is a ground truth label annotated by an

expert (human)

⬣ 𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏 is our model, chosen to be a

linear function in this case

⬣ 𝑊 and 𝑏 are the weights of our model that must

be learned

Example: Image Classification

Data: Text

Negative

Class Scores

Neutral Positive

Model

𝑓 𝑥, 𝑊 = 𝑊𝑥 + 𝑏

Word Count

this 1

that 0

is 2

...

extremely 1

hello 0

onomatopoeia 0

…

Word Histogram

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Deep Learning as Legos

This image is CC0 1.0 public domain

Neural Network

Linear

classifiers

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

http://maxpixel.freegreatpicture.com/Play-Wooden-Blocks-Tower-Kindergarten-Child-Toys-1864718
https://creativecommons.org/publicdomain/zero/1.0/deed.en

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Loss FunctionInput

The Power of Deep Learning

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Simple Function

Classifier

Result
Input

Weights Bias

(scalar)

What is the simplest function

you can think of?

𝒇 𝒙, 𝒘 = 𝒘 ⋅ 𝒙 + 𝒃

Our model is:

(Note if 𝒘 and 𝐱 are column vectors we often show this as 𝒘𝑇𝒙)

Car

Bird

Simple linear classifier:

⬣ Calculate score:
𝒇 𝒙, 𝒘 = 𝒘 ⋅ 𝒙 + 𝒃

⬣ Binary classification rule

(𝒘 is a vector):

⬣ For multi-class classifier take

class with highest (max) score
𝒇(𝒙, 𝑾) = 𝑾𝒙 + 𝒃

Linear Classification and

Regression

𝐢𝐟 𝒇 𝒙, 𝒘 > = 𝟎
𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

𝒚 = ቊ
𝟏
𝟎

Input Dimensionality

To simplify notation we will refer to inputs as 𝑥1 ⋯ 𝑥𝑚 where 𝑚 = 𝑛 × 𝑛

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model

𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

𝑥 =

𝑥11 𝑥12 ⋯ 𝑥1𝑛

𝑥21 𝑥22 ⋯ 𝑥2𝑛

⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 ⋯ 𝑥𝑛𝑛

𝑥 =

𝑥11

𝑥12

⋮
𝑥21

𝑥22

⋮
𝑥𝑛1

⋮
𝑥𝑛𝑛

Flatten

Weights

𝑾

Model

𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

𝑤11 𝑤12 ⋯ 𝑤1𝑚

𝑤21 𝑤22 ⋯ 𝑤2𝑚

𝑤31 𝑤32 ⋯ 𝑤3𝑚

𝑥1

𝑥2

⋮
𝑥𝑚

 +

Classifier for class 1

Classifier for class 2

Classifier for class 3

𝒙 𝒃

𝑏1

𝑏2

𝑏3

(Note that in practice, implementations can use xW instead, assuming a different shape for W. That is just a different convention and is equivalent.)

Weights

𝑾

Model

𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

𝑤11 𝑤12 ⋯ 𝑤1𝑚 𝑏1

𝑤21 𝑤22 ⋯ 𝑤2𝑚 𝑏2
𝑤31 𝑤32 ⋯ 𝑤3𝑚 𝑏3

𝑥1

𝑥2

⋮
𝑥𝑚

1

𝒙

⬣ We can move

the bias term

into the weight

matrix, and a “1”

at the end of the

input

⬣ Results in one

matrix-vector

multiplication!

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃

Interpreting a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Visual Viewpoint

We can convert the

weight vector back into

the shape of the image

and visualize

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

plane car bird cat deer dog frog horse ship truck

Interpreting a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Geometric Viewpoint

Plot created using Wolfram Cloud

𝒇(𝒙, 𝑾) = 𝑾𝒙 + 𝒃

Array of 32x32x3 numbers

(3072 numbers total)

Linear Classifier: Three Viewpoints

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Algebraic

Viewpoint

𝒇(𝒙, 𝑾) = 𝑾𝒙

Visual

Viewpoint

One template

per class

Geometric

Viewpoint

Hyperplanes

cutting up space

Hard Cases for a Linear Classifier

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Class 1:

number of pixels > 0 odd

Class 2:

number of pixels > 0 even

Class 1:

1 < = L2 norm < = 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Summary

⬣ We will learn complex, parameterized functions

⬣ Start w/ simple building blocks such as linear classifiers

⬣ Key is to learn parameters, but learning is hard

⬣ Sources of generalization error

⬣ Add bias/assumptions via architecture, loss, optimizer

⬣ Components of parametric classifiers:

⬣ Input/Output, Model (function), Loss function, Optimizer

⬣ Example: Image/Label, Linear Classifier, Hinge Loss, ?

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Next Time:

Performance Measure

We need a performance measure to

optimize

⬣ Penalizes model for being wrong

⬣ Allows us to modify the model to

reduce this penalty

⬣ Known as an objective or loss

function

In machine learning we use empirical

risk minimization

⬣ Reduce the loss over the training

dataset

⬣ We average the loss over the training

data

Given a dataset of examples:

Where 𝒙𝒊 is image and

 𝒚𝒊 is (integer) label

Loss over the dataset is a sum

of loss over examples:

{ 𝒙𝒊, 𝒚𝒊 }𝒊=𝟏
𝑵

𝑳 =
𝟏

𝑵
 𝑳(𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Performance Measure for Scores

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =

𝒋≠𝒚𝒊

ቊ
𝟎
𝒔𝒋

=

𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

− 𝒔𝒚𝒊
+ 𝟏

𝐢𝐟 𝒔𝒚𝒊
≥ 𝒔𝒋 + 𝟏

𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

scores for other classes

delta

score
score for correct class

𝒔𝒚𝒊

𝒔𝒋 𝟏

Example: “Hinge Loss”

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 2.9

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 5.1 - 3.2 + 1)

 +max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:

Losses: 0.0

Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

= max(0, 1.3 - 4.9 + 1)

+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)

= 0 + 0

= 0

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

Given an example (𝒙𝒊,𝒚𝒊)

where 𝒙𝒊 is the image and

where 𝒚𝒊 is the (integer) label,

and using the shorthand for the

scores vector: 𝒔 = 𝒇(𝒙𝒊, 𝑾)

the SVM loss has the form:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Losses: 12.92.9 0L = (2.9 + 0 + 12.9)/3

 = 5.27

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What happens to loss if

car image scores change a

bit?

No change for small values

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What is min/max of loss

value?

[0,inf]

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: At initialization W is

small so all s ≈ 0.

What is the loss?

C-1

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if the sum was

over all classes?

(including j = y_i)

No difference

(add constant 1)

SVM Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

cat

frog

car

3.2

5.1

-1.7

4.9

1.3

2.0 -3.1

2.5

2.2

Suppose: 3 training examples, 3 classes.

With some 𝑾 the scores 𝒇(𝒙,𝑾)=𝑾𝒙 are:
Multiclass SVM loss:

𝑳𝒊 =
𝒋≠𝒚𝒊

𝒎𝒂𝒙(𝟎, 𝒔𝒋 − 𝒔𝒚𝒊
+ 𝟏)

Q: What if we used mean

instead of sum?

No difference

Scaling by constant

Summary

⬣ We will learn complex, parameterized functions

⬣ Start w/ simple building blocks such as linear classifiers

⬣ Key is to learn parameters, but learning is hard

⬣ Sources of generalization error

⬣ Add bias/assumptions via architecture, loss, optimizer

⬣ Components of parametric classifiers:

⬣ Input/Output, Model (function), Loss function, Optimizer

⬣ Example: Image/Label, Linear Classifier, Hinge Loss, ?

Converting Scores to Probabilities

Several issues with scores:

⬣ Not very interpretable (no

bounded value)

We often want probabilities

⬣ More interpretable

⬣ Can relate to probabilistic

view of machine learning

We use the softmax function to

convert scores to probabilities

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Performance Measure for Probabilities

⬣ If we use the softmax function to

convert scores to probabilities,

the right loss function to use is

cross-entropy

⬣ Can be derived by looking at the

distance between two probability

distributions (output of model and

ground truth)

⬣ Can also be derived from a

maximum likelihood estimation

perspective

Maximize log-prob of correct class =

 Maximize the log likelihood

= Minimize the negative log likelihood

𝑳𝒊 = −𝐥𝐨𝐠 𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

Scores𝒔 = 𝒇(𝒙, 𝑾)

Softmax

Function
𝑷 𝒀 = 𝒌 𝑿 = 𝒙 =

𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

Performance Measure for Probabilities

⬣ If we use the softmax function to convert scores to probabilities, the right

loss function to use is cross-entropy

⬣ Goal: Minimize KL-divergence (distance measure b/w probability

distributions)
min

𝑤
𝐾𝐿(𝑝∗|| Ƹ𝑝) =

𝑦

𝑝∗ 𝑦 𝑙𝑜𝑔
𝑝∗(𝑦)

Ƹ𝑝(𝑦)

𝑝∗ =

0
0
0
1
0
0
0
0

Ƹ𝑝 =

𝑃(𝑌 = 1|𝑥, 𝑤)
𝑃(𝑌 = 2|𝑥, 𝑤)
𝑃(𝑌 = 3|𝑥, 𝑤)
𝑃(𝑌 = 4|𝑥, 𝑤)
𝑃(𝑌 = 5|𝑥, 𝑤)
𝑃(𝑌 = 6|𝑥, 𝑤)
𝑃(𝑌 = 7|𝑥, 𝑤)
𝑃(𝑌 = 8|𝑥, 𝑤)

=

0.5
0.01
0.01
0.01
0.01
0.01
0.15
0.3

Ground Truth Prediction

=

𝑦

𝑝∗ 𝑦 log(𝑝∗ 𝑦) −

𝑦

𝑝∗ 𝑦 log(Ƹ𝑝(𝑦))

−𝐻(𝑝∗)
(negative entropy, term goes away

because not a function of model, W,

parameters we are minimizing over)

𝐻(𝑝∗, ො𝑝)
(Cross-Entropy)

Since 𝑝∗ is one-hot (0 for non-ground truth classes), all we need to

minimize is (where 𝑖 is ground truth class): min
𝑤

 (−𝑙𝑜𝑔 ො𝑝(𝑦𝑖))

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

3.2 24.5 0.13cat

frog

car 5.1

-1.7

164.0

0.18

0.87

0.00

exp normalize

Unnormalized

probabilities
ProbabilitiesUnnormalized log-

probabilities / logits

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: How is it

possible that non-

GT probabilities

aren’t in loss?

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: What is the min/max of

possible loss L_i?

Infimum is 0, max is unbounded (inf)

Cross-Entropy Loss Example

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

Softmax Classifier (Multinomial Logistic Regression)
Want to interpret raw classifier scores as probabilities

Softmax

Function

Probabilities

must be >= 0
Probabilities

must sum to 1

𝒔 = 𝒇(𝒙𝒊; 𝑾) 𝑷 𝒀 = 𝒌 𝑿 = 𝒙𝒊 =
𝒆𝒔𝒌

σ𝒋 𝒆𝒔𝒋

𝑳𝒊 = −𝐥𝐨𝐠𝑷(𝒀 = 𝒚𝒊|𝑿 = 𝒙𝒊)

𝑳𝒊 = −𝐥𝐨𝐠(𝟎. 𝟏𝟑)

Q: At initialization all s will be

approximately equal; what is

the loss?

Log(C),

-log(1/C) = -log(1) + log(C)

e.g. log(10) ≈ 2

Regularization

Often, we add a regularization term to the loss function

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

L1 Regularization

𝑳𝒊 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + |𝑾|

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Car

Class Scores

Coffee

Cup

Bird

Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Gradient

Descent

⬣ Input (and representation)

⬣ Functional form of the model

⬣ Including parameters

⬣ Performance measure to improve

⬣ Loss or objective function

⬣ Algorithm for finding best parameters

⬣ Optimization algorithm

Components of a Parametric Model

Data: Image

Car

Class Scores

Coffee

Cup

Bird

Model
𝒇 𝒙, 𝑾 = 𝑾𝒙 + 𝒃

Features: Histogram
Car

Class Scores

Coffee

Cup

Bird

Loss Function

Optimizer

Optimization

Given a model and loss function, finding the

best set of weights is a search problem

⬣ Find the best combination of weights

that minimizes our loss function

Several classes of methods:

⬣ Random search

⬣ Genetic algorithms (population-based

search)

⬣ Gradient-based optimization

In deep learning, gradient-based methods

are dominant although not the only

approach possible

Loss

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

Loss Surfaces

As weights change, the loss

changes as well

⬣ This is often somewhat-

smooth locally, so small

changes in weights produce

small changes in the loss

We can therefore think about

iterative algorithms that take

current values of weights and

modify them a bit

Strategy: Follow the Slope!

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function

changes as the argument a changes by a small

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Derivatives in d-dimensions

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Gradient Descent

This idea can be turned into an algorithm (gradient descent)

1. Choose a model: 𝒇 𝒙, 𝑾 = Wx

2. Choose loss function: 𝑳𝒊 = (𝒚 − 𝑾𝒙𝒊)𝟐

3. Calculate partial derivative for each parameter:
𝝏𝑳

𝝏𝒘𝒊

4. Update the parameters: 𝒘𝒊 = 𝒘𝒊 −
𝝏𝑳

𝝏𝒘𝒊

Instead: Add learning rate to prevent too big of a step: 𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

5. Repeat (from Step 3)

Gradient Descent

original W

negative gradient direction
w1

w2

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

http://demonstrations.wolfram.com/VisualizingTheGradientVector/

Gradient Descent
w1

Mini-Batch Gradient Descent

Often, we only compute the gradients across a small subset of

data

⬣ Full Batch Gradient Descent

⬣ Mini-Batch Gradient Descent

⬣ Where M is a subset of data

⬣ We iterate over mini-batches:

⬣ Get mini-batch, compute loss, compute derivatives, and

take a set

𝑳 =
𝟏

𝑵
 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

𝑳 =
𝟏

𝑴
 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Gradient Descent Properties

Gradient descent is guaranteed to converge under some

conditions

⬣ For example, learning rate has to be appropriately reduced

throughout training

⬣ It will converge to a local minima

⬣ Small changes in weights would not decrease the loss

⬣ It turns out that some of the local minima that it finds in

practice (if trained well) are still pretty good!

Computing Gradients

We know how to compute the

model output and loss

function

Several ways to compute
𝝏𝑳

𝝏𝒘𝒊

⬣ Manual differentiation

⬣ Symbolic differentiation

⬣ Numerical differentiation

⬣ Automatic differentiation

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

gradient dW:

[?,

?,

?,

?,

?,

?,

?,

?,

?,…]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

(1.25322 - 1.25347)/0.0001

= -2.5

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

W + h (first dim):

[0.34 + 0.0001,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25322

gradient dW:

[-2.5,

?,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (second dim):

[0.34,

-1.11 + 0.0001,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25353

(1.25353 - 1.25347)/0.0001

= 0.6

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

?,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

gradient dW:

[-2.5,

0.6,

0,

?,

?,

?,

?,

?,

?,…]

current W:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,…]

loss 1.25347

(1.25347 - 1.25347)/0.0001

= 0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical gradient: slow :(, approximate :(, easy to write :)

Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.

This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

Summary

⬣ Components of parametric classifiers:

⬣ Input/Output: Image/Label

⬣ Model (function): Linear Classifier + Softmax

⬣ Loss function: Cross-Entropy

⬣ Optimizer: Gradient Descent

⬣ Ways to compute gradients

⬣ Numerical

⬣ Next: Analytical, automatic differentiation

Manual Differentiation

For some functions, we can analytically derive the partial derivative

Example:

Function Loss

Update Rule

𝒇 𝒘, 𝒙𝒊 = 𝒘𝑻𝒙𝒊

𝒊=𝟏

𝑵

(𝒚𝒊 − 𝒘𝑻𝒙𝒊)
𝟐

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

Derivation of Update Rule

Gradient descent tells us

we should update 𝒘 as

follows to minimize 𝐿:

So what’s
𝝏𝑳

𝝏𝒘𝒋
?

…where…

L= σ𝒊=𝟏
𝑵 (𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

𝒘𝒋 ← 𝒘𝒋 − 𝜶
𝝏𝑳

𝝏𝒘𝒋

𝝏𝑳

𝝏𝒘𝒋
=

𝒊=𝟏

𝑵
𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

𝟐

=

𝒊=𝟏

𝑵

𝟐 𝒚𝒊 − 𝒘𝑻𝒙𝒊

𝝏

𝝏𝒘𝒋
(𝒚𝒊 − 𝒘𝑻𝒙𝒊)

= −𝟐

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋
𝒘𝑻𝒙𝒊

= −𝟐

𝒊=𝟏

𝑵

𝜹𝒊

𝝏

𝝏𝒘𝒋

𝒌=𝟏

𝒘𝒌𝒙𝒊𝒌

= −𝟐

𝒊=𝟏

𝑵

𝜹𝒊𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝒘𝑻𝒙𝒊

(Assume 𝒘 and 𝐱𝐢 are column vectors, so same as 𝒘 ⋅ 𝒙𝒊)

Dataset: N examples (indexed by 𝑖)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙

𝝈′ 𝒙 = 𝝈(𝒙)(𝟏 − 𝝈 𝒙)First, one can derive that:

Adding a Non-Linear Function

If we add a non-linearity (sigmoid), derivation is more complex

𝐟 𝐱 = 𝝈

𝒌

𝒘𝒌𝒙𝒌

L =

𝒊

𝒚𝒊 − 𝝈

𝒌

𝒘𝒌𝒙𝒊𝒌

𝟐

𝝏𝑳

𝝏𝒘𝒋
=

𝒊

𝟐 𝒚𝒊 − 𝝈

𝒌

𝒘𝒌𝒙𝒊𝒌 −
𝝏

𝝏𝒘𝒋
𝝈

𝒌

𝒘𝒌𝒙𝒊𝒌

=

𝒊

−𝟐 𝒚𝒊 − 𝝈

𝒌

𝒘𝒌𝒙𝒊𝒌 𝝈′

𝒌

𝒘𝒌𝒙𝒊𝒌

𝝏

𝝏𝒘𝒋

𝒌

𝒘𝒌𝒙𝒊𝒌

=

𝒊

−𝟐𝜹𝒊𝝈(𝐝𝒊)(𝟏 − 𝝈 𝐝𝒊)𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝐟(𝒙𝒊) 𝒅𝒊 = 𝒘𝒌𝒙𝒊𝒌where

The sigmoid perception update rule:

𝒘𝒋 ← 𝒘𝒋 + 𝟐𝜶

𝒌=𝟏

𝑵

𝜹𝒊𝝈𝒊(𝟏 − 𝝈𝒊)𝒙𝒊𝒋

𝝈𝒊 = 𝝈

𝒋=𝟏

𝒅

𝒘𝒋𝒙𝒊𝒋

𝜹𝒊 = 𝒚𝒊 − 𝝈𝒊

where

Summary

⬣ We will learn complex, parameterized functions

⬣ Start w/ simple building blocks such as linear classifiers

⬣ Optimize parameters via simple gradient descent (!)

⬣ But calculating the gradients is cumbersome for more

complex functions

⬣ …. Let’s develop a generic representation of these

functions and an algorithm that can do this easily!

	Slide 1: CS 4644 / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Numerical vs Analytic Gradients
	Slide 80
	Slide 81
	Slide 82
	Slide 83

