Topics:

- Gradient Descent
- Neural Networks

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 1 out!

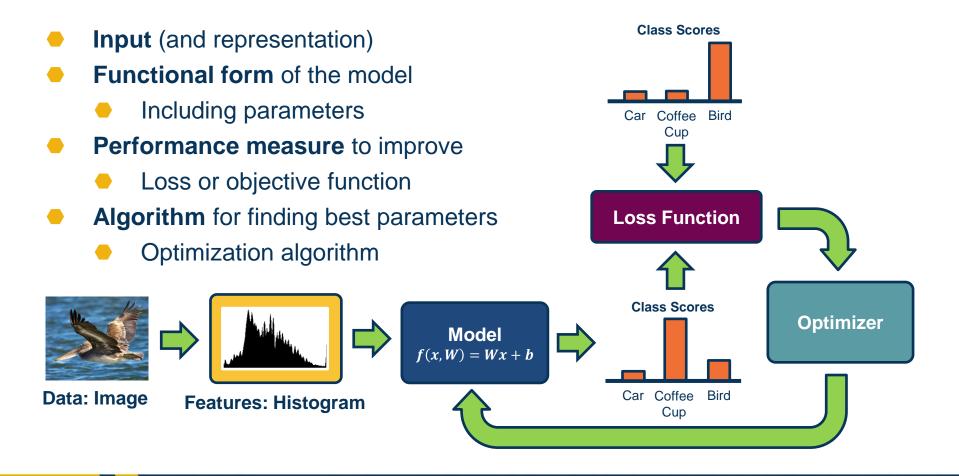
- Due Jun 5th (with grace period June 7th)
- Start now, start now, start now!
- Start now, start now, start now!
- Start now, start now, start now!

• Piazza

• Be active!!!

Office hours

- Schedules coming out today
- Note: Course will start to get math heavy!
- Matrix calculus for deep learning



Components of a Parametric Model

Georgia Tech Several issues with scores:

- Not very interpretable (no bounded value)
- We often want probabilities
- More interpretable
- Can relate to probabilistic view of machine learning

We use the **softmax** function to convert scores to probabilities

$$s = f(x, W)$$
 Scores
= Wx
 $P(Y = k | X = x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax
Function

- If we use the softmax function to convert scores to probabilities, the right loss function to use is cross-entropy
- Can be derived by looking at the distance between two probability distributions (output of model and ground truth)
- Can also be derived from a maximum likelihood estimation perspective

$$s = f(x, W)$$
 Scores

$$P(Y = k | X = x) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax
Function

$$L_i = -\log P(Y = y_i | X = x_i)$$

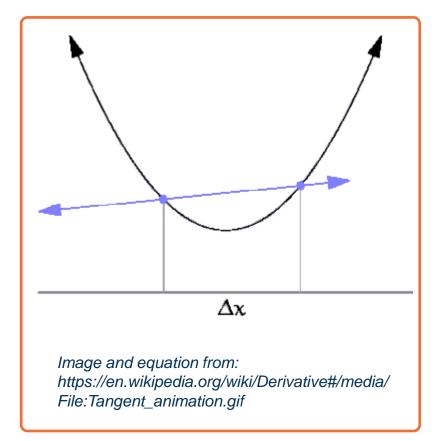
Maximize log-prob of correct class = Maximize the log likelihood = Minimize the negative log likelihood

Performance Measure: Cross-Entropy

We can find the steepest descent direction by computing the derivative (gradient):

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Steepest descent direction is the negative gradient
- Intuitively: Measures how the function changes as the argument a changes by a small step size
 - As step size goes to zero
- In Machine Learning: Want to know how the loss function changes as weights are varied
 - Can consider each parameter separately by taking partial derivative of loss function with respect to that parameter



Optimization: Gradient Descent

Input: Vector

- Functional form of the model: Softmax(Wx)
- Performance measure to improve: Cross-Entropy
- Algorithm for finding best parameters: **Gradient Descent**

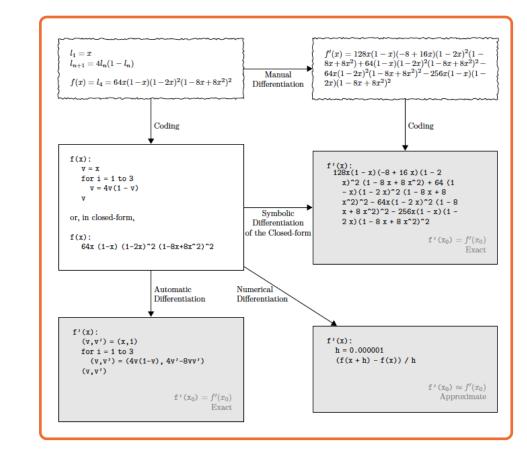
Compute
$$\frac{\partial L}{\partial w_i}$$

• Update Weights
$$w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$$

We know how to compute the **model output and loss** function

Several ways to compute $\frac{\partial L}{\partial w_i}$

- Manual differentiation
- Symbolic differentiation
- Numerical differentiation
- Automatic differentiation



Computing Gradients

current W:	gradient dW
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,]	[?, ?, ?, ?, ?, ?, ?, ?, ?,]
1033 1.20047	

V:

current W:	W + h (first dim):
[0.34,	[0.34 + 0.0001 ,
-1.11,	-1.11,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25322

gradient dW:

[?,

?,

?,

?,

?,

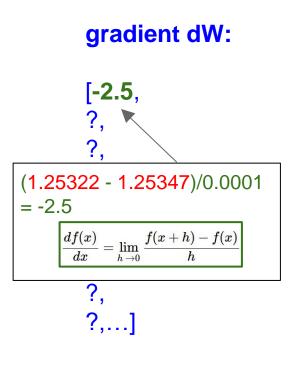
?,

?,

?,

?,...]

current W:	W + h (first dim):
[0.34,	[0.34 + 0.0001 ,
-1.11,	-1.11,
0.78,	0.78,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25322



current W:	W + h (second dim):	gradi
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11 + 0.0001 ,	?,
0.78,	0.78,	?,
0.12,	0.12,	?,
0.55,	0.55,	?,
2.81,	2.81,	?,
-3.1,	-3.1,	?,
-1.5,	-1.5,	?,
0.33,]	0.33,]	?,
Ioss 1.25347	Ioss 1.25353]

gradient dW:

current W:	W + h (second dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] Ioss 1.25347	[0.34, -1.11 + 0.0001 , 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,] loss 1.25353	[-2.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6

current W:	W + h (third dim):
[0.34,	[0.34,
-1.11,	-1.11,
0.78,	0.78 + 0.0001 ,
0.12,	0.12,
0.55,	0.55,
2.81,	2.81,
-3.1,	-3.1,
-1.5,	-1.5,
0.33,]	0.33,]
loss 1.25347	loss 1.25347

gradient dW:

[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?,...]

current W:	W + h (third dim):	gradient dW:
[0.34, -1.11, 0.78, 0.12,	[0.34, -1.11, 0.78 + 0.0001 , 0.12,	[-2.5, 0.6, 0 , ?,
0.55, 2.81, -3.1, -1.5, 0.33,]	0.55, 2.81, -3.1, -1.5, 0.33,]	(1.25347 - 1.25347)/0.0001 = 0 $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
loss 1.25347	loss 1.25347	f,]

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Numerical vs Analytic Gradients

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

Numerical gradient: slow :(, approximate :(, easy to write :) **Analytic gradient**: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient. This is called a **gradient check.**

For some functions, we can analytically derive the partial derivative

Example:

FunctionLoss $f(w, x_i) = w^T x_i$ $\sum_{i=1}^{N} (y_i - w^T x_i)^2$

(Assume w and \mathbf{x}_i are column vectors, so same as $w \cdot x_i$)

Dataset: N examples (indexed by *i*)

Update Rule

 $w_j \leftarrow w_j + 2\alpha \sum_{i=1}^{n} \delta_i x_{ij}$

$$\mathbf{L} = \sum_{i=1}^{N} (\mathbf{y}_i - \mathbf{w}^T \mathbf{x}_i)^2$$

Gradient descent tells us we should update w as follows to minimize *L*:

$$w_j \leftarrow w_j - \alpha \frac{\partial L}{\partial w_j}$$

So what's
$$\frac{\partial L}{\partial w_j}$$
?

Derivation of Update Rule

 $\frac{\partial L}{\partial w_j} = \sum_{i=1}^{N} \frac{\partial}{\partial w_j} (y_i - w^T x_i)^2$ $=\sum_{i=1}^{N}2(y_{i}-w^{T}x_{i})\frac{\partial}{\partial w_{i}}(y_{i}-w^{T}x_{i})$ $= -2\sum_{i=1}^{N} \delta_{i} \frac{\partial}{\partial w_{j}} w^{T} x_{i}$...where... $\delta_{i} = y_{i} - w^{T} x_{i}$ $= -2\sum_{i=1}^{n} \delta_i \frac{\partial}{\partial w_j} \sum_{k=1}^{n} w_k x_{ik}$ $=-2\sum_{i=1}^{N}\delta_{i}x_{ij}$

Manual Differentiation

If we add a **non-linearity (sigmoid)**, derivation is more complex

$$\sigma(x)=\frac{1}{1+e^{-x}}$$

First, one can derive that: $\sigma'(x) = \sigma(x)(1 - \sigma(x))$

$$f(\mathbf{x}) = \sigma\left(\sum_{k} w_{k} x_{k}\right)$$

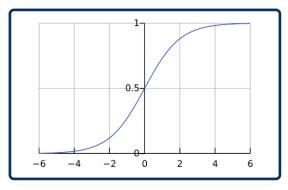
$$L = \sum_{i} \left(y_{i} - \sigma\left(\sum_{k} w_{k} x_{ik}\right)\right)^{2}$$

$$\frac{\partial L}{\partial w_{j}} = \sum_{i} 2\left(y_{i} - \sigma\left(\sum_{k} w_{k} x_{ik}\right)\right) \left(-\frac{\partial}{\partial w_{j}} \sigma\left(\sum_{k} w_{k} x_{ik}\right)\right)$$

$$= \sum_{i} -2\left(y_{i} - \sigma\left(\sum_{k} w_{k} x_{ik}\right)\right) \sigma'\left(\sum_{k} w_{k} x_{ik}\right) \frac{\partial}{\partial w_{j}} \sum_{k} w_{k} x_{ik}$$

$$= \sum_{i} -2\delta_{i}\sigma(\mathbf{d}_{i})(1 - \sigma(\mathbf{d}_{i}))x_{ij}$$
where $\delta_{i} = y_{i} - \mathbf{f}(x_{i})$

$$d_{i} = \sum_{i} w_{k} x_{ik}$$



The sigmoid perception update rule:

$$w_{j} \leftarrow w_{j} + 2\alpha \sum_{k=1}^{N} \delta_{i} \sigma_{i} (1 - \sigma_{i}) x_{ij}$$

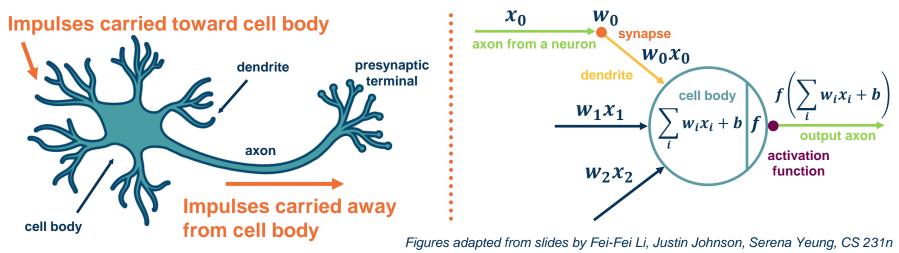
where $\sigma_{i} = \sigma \left(\sum_{j=1}^{d} w_{j} x_{ij} \right)$
 $\delta_{i} = y_{i} - \sigma_{i}$

Adding a Non-Linear Function

Neural Network View of a Linear **Classifier**

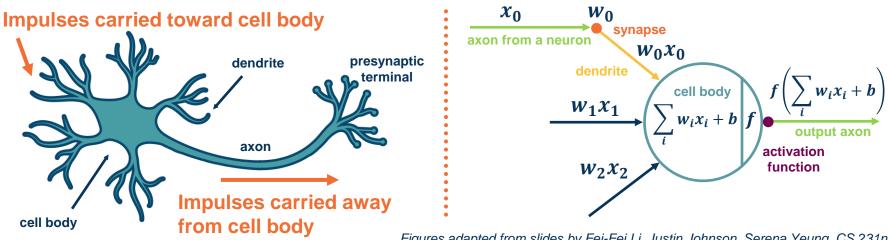
A simple **neural network** has similar structure as our linear classifier:

- A neuron takes input (firings) from other neurons (-> input to linear classifier)
- The inputs are summed in a weighted manner (-> weighted sum)
 - Learning is through a modification of the weights
- If it receives enough input, it "fires" (threshold or if weighted sum plus bias is high enough)



Origins of the Term Neural Network

As we did before, the output of a neuron can be modulated by a non-linear function (e.g. sigmoid)



Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

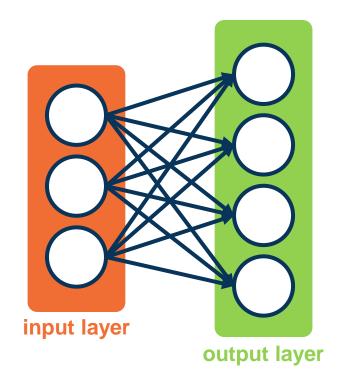
Adding Non-Linearities

We can have **multiple** neurons connected to the same input

Corresponds to a multi-class classifier

 Each output node outputs the score for a class

$$f(x,W) = \sigma(Wx + b) \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{21} & w_{22} & \cdots & w_{3m} & b3 \end{bmatrix}$$



- Often called fully connected layers
 - Also called a linear projection layer
 Figure adapt

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Connecting Many Neurons

- Each input/output is a neuron (node)
- A linear classifier (+ optional nonlinearity) is called a fully connected layer
- Connections are represented as edges
- Output of a particular neuron is referred to as activation
- This will be expanded as we view computation in a neural network as a graph

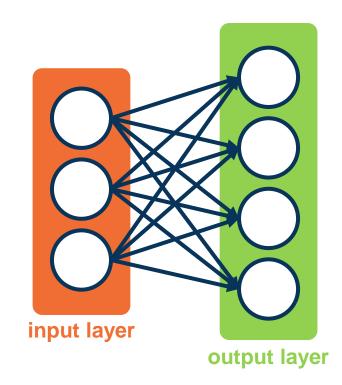


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Neural Network Terminology

We can stack multiple layers together

- Input to second layer is output of first layer
- Called a **2-layered neural network** (input is not counted)

Because the middle layer is neither input or output, and we don't know what their values represent, we call them **hidden** layers

- We will see that they end up learning effective features
- This **increases** the representational power of the function!
- Two layered networks can represent any continuous function

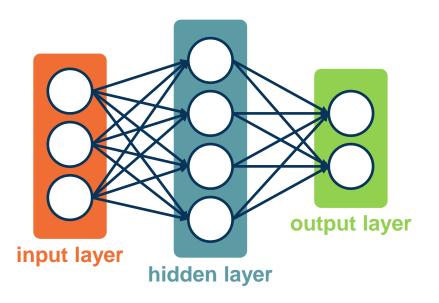


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Connecting Many Layers

The same two-layered neural network corresponds to adding another weight matrix

 We will prefer the linear algebra view, but use some terminology from neural networks (& biology)

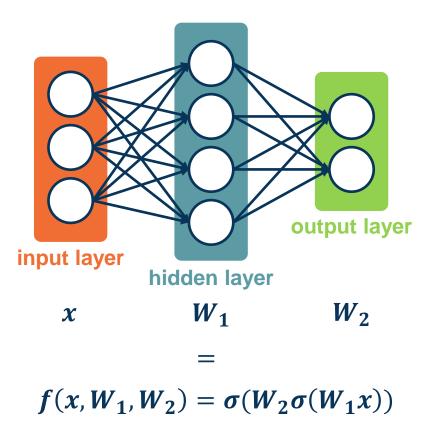
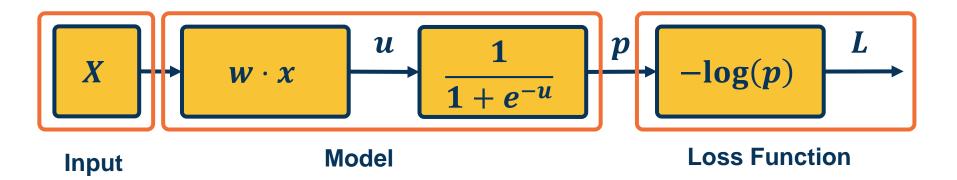


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

A classifier can be broken down into:

- lnput
- A function of the input
- A loss function

It's all just one function that can be **decomposed** into building blocks

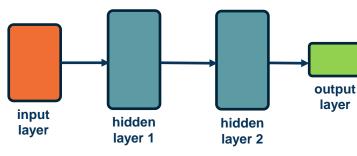


Large (deep) networks can be built by adding more and more layers

Three-layered neural networks can represent **any function**

 The number of nodes could grow unreasonably (exponential or worse) with respect to the complexity of the function

We will show them without edges:



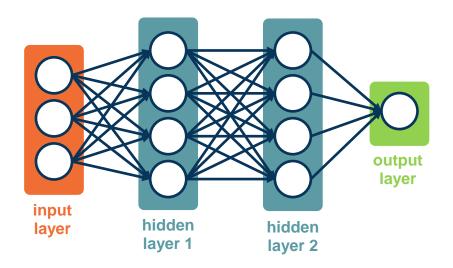


Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Computation Graphs

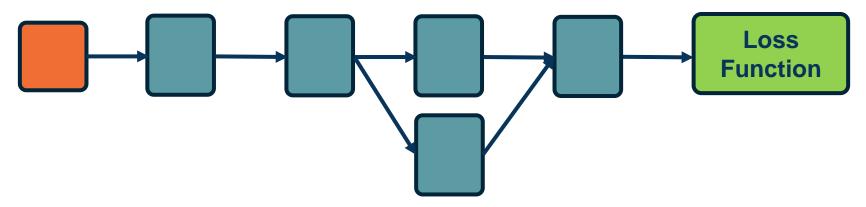
Functions can be made **arbitrarily complex** (subject to memory and computational limits), e.g.:

 $f(x, W) = \sigma(W_5 \sigma(W_4 \sigma(W_3 \sigma(W_2 \sigma(W_1 x)))$

We can use **any type of differentiable function (layer)** we want!

At the end, add the loss function

Composition can have some structure

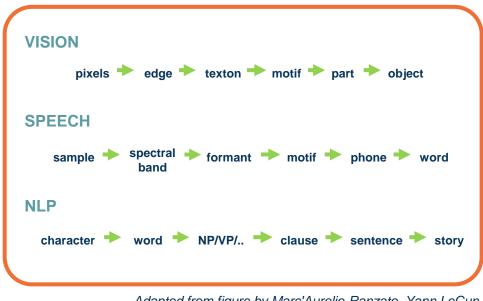


The world is **compositional**!

We want our model to reflect this

Empirical and theoretical evidence that it makes **learning** complex functions easier

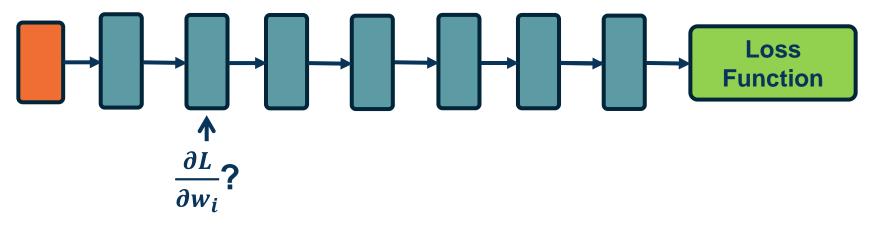
Note that **prior state of art engineered features** often had this compositionality as well



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Pixels -> edges -> object parts -> objects

- We are learning complex models with significant amount of parameters (millions or billions)
- How do we compute the gradients of the loss (at the end) with respect to internal parameters?
- Intuitively, want to understand how small changes in weight deep inside are propagated to affect the loss function at the end

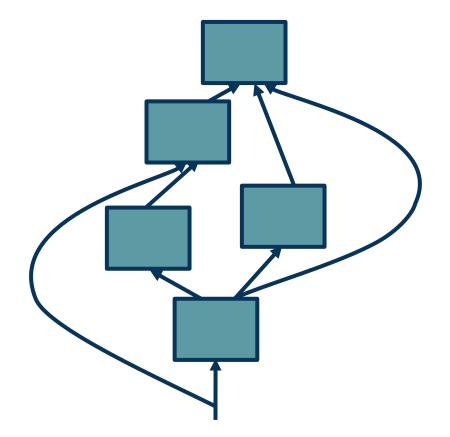


To develop a general algorithm for this, we will view the function as a **computation graph**

Graph can be any **directed acyclic** graph (DAG)

 Modules must be differentiable to support gradient computations for gradient descent

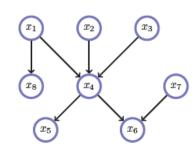
A **training algorithm** will then process this graph, **one module at a time**

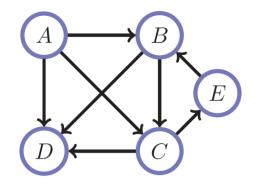


Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Directed Acyclic Graphs (DAGs)

- Exactly what the name suggests
 - Directed edges
 - No (directed) cycles
 - Underlying undirected cycles okay

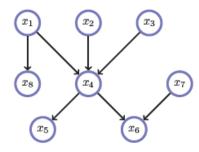


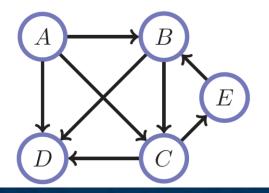


(C) Dhruv Batra

Directed Acyclic Graphs (DAGs)

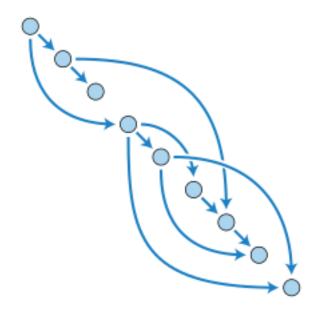
- Concept
 - Topological Ordering





(C) Dhruv Batra

Directed Acyclic Graphs (DAGs)



(C) Dhruv Batra

Backpropagation

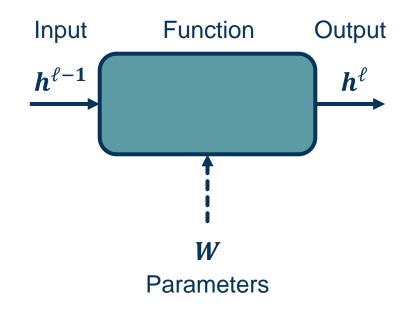
Given this computation graph, the training algorithm will:

- Calculate the current model's outputs (called the **forward pass**)
- Calculate the gradients for each module (called the backward pass)

Backward pass is a recursive algorithm that:

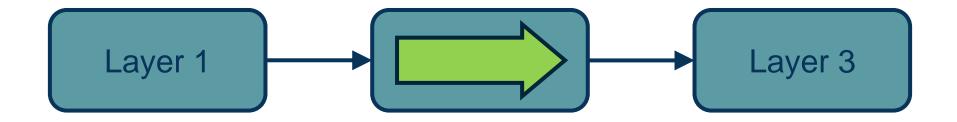
- Starts at loss function where we know how to calculate the gradients
- Progresses back through the modules
- Ends in the input layer where we do not need gradients (no parameters)

This algorithm is called **backpropagation**



Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Overview of Training

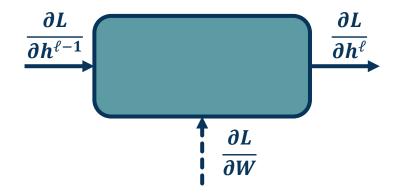


Note that we must store the **intermediate outputs of all layers**!

This is because we will need them to compute the gradients (the gradient equations will have terms with the output values in them)

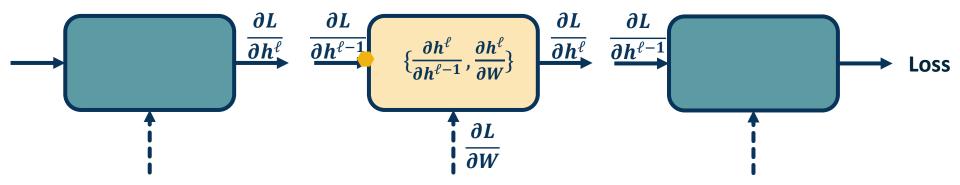
In the **backward pass**, we seek to calculate the gradients of the loss with respect to the module's parameters

- Assume that we have the gradient of the loss with respect to the module's outputs (given to us by upstream module)
- We will also pass the gradient of the loss with respect to the module's inputs
 - This is not required for update the module's weights, but passes the gradients back to the previous module



Problem:

- We are given: $\frac{\partial L}{\partial h^{\ell}}$
- We can compute local gradients: $\{\frac{\partial h^{\ell}}{\partial h^{\ell-1}}, \frac{\partial h^{\ell}}{\partial W}\}$
- Compute: $\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\}$



We will use the chain rule to do this:

Chain Rule:
$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial x}$$

Computing the Gradients of Loss

• We can compute **local gradients**: $\{\frac{\partial h^{\ell}}{\partial h^{\ell-1}}, \frac{\partial h^{\ell}}{\partial W}\}$

1

This is just the derivative of our function with respect to its parameters and inputs!

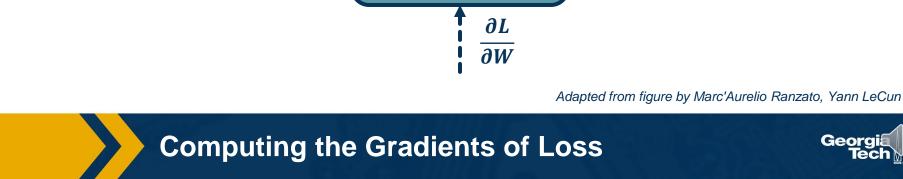
Example:

If
$$h^\ell = Wh^{\ell-1}$$

then
$$\frac{\partial h^{\ell}}{\partial h^{\ell-1}} = W$$

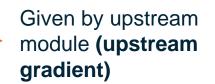
and $\frac{\partial h_i^{\ell}}{\partial w_i} = h^{\ell-1,T}$

Computing the Local Gradients: Example



- We will use the **chain rule** to compute: $\{\frac{\partial L}{\partial h^{\ell-1}}, \frac{\partial L}{\partial W}\}$
- Gradient of loss w.r.t. inputs: $\frac{\partial L}{\partial h^{\ell-1}} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial h^{\ell-1}}$
- Gradient of loss w.r.t. weights: $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial h^{\ell}} \frac{\partial h^{\ell}}{\partial W}$

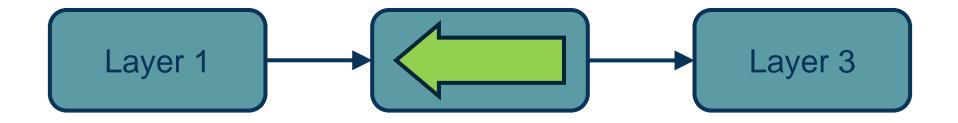
 $\overline{\partial h^{\ell-1}}$



 $\overline{\partial h^{\ell}}$

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass



Step 2: Compute Gradients wrt parameters: Backward Pass

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

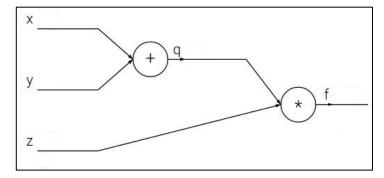
$$w_i = w_i - \alpha \frac{\partial L}{\partial w_i}$$

Backpropagation is the application of gradient descent to a computation graph via the chain rule!

$$f(x,y,z) = (x+y)z$$

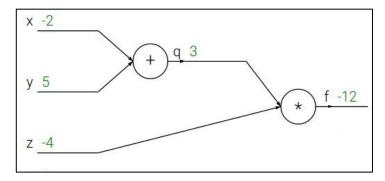
Georgia Tech

$$f(x,y,z) = (x+y)z$$



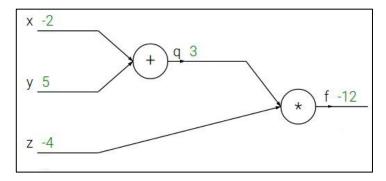
$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

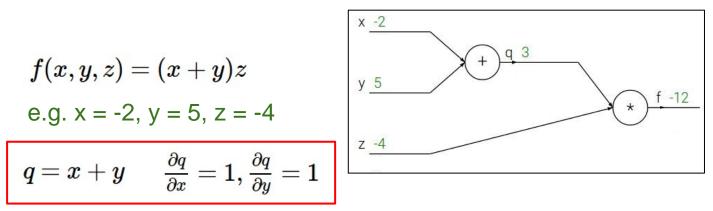


$$f(x, y, z) = (x + y)z$$

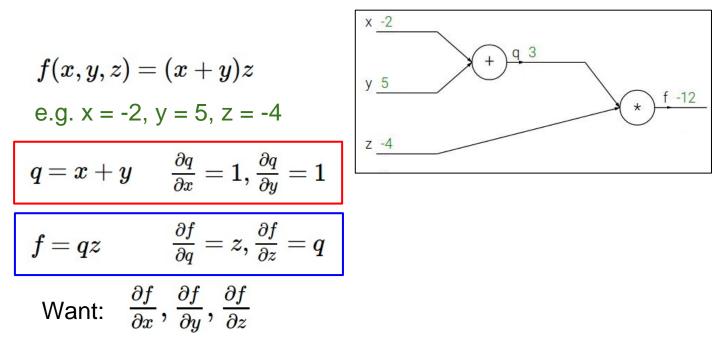
e.g. x = -2, y = 5, z = -4

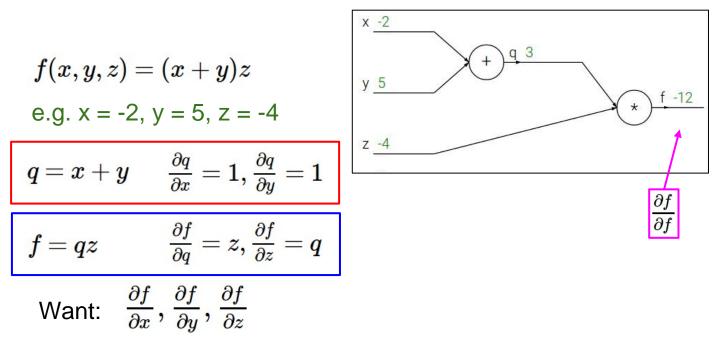


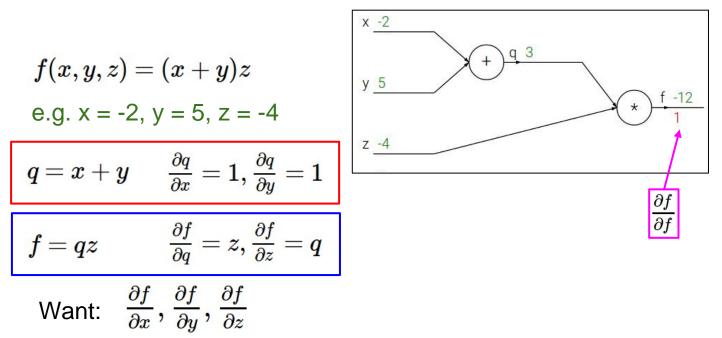
Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

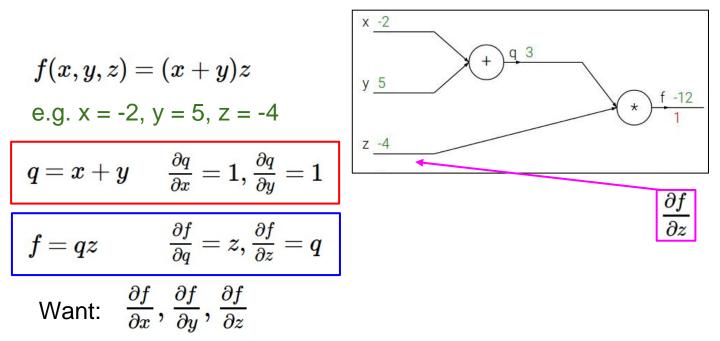


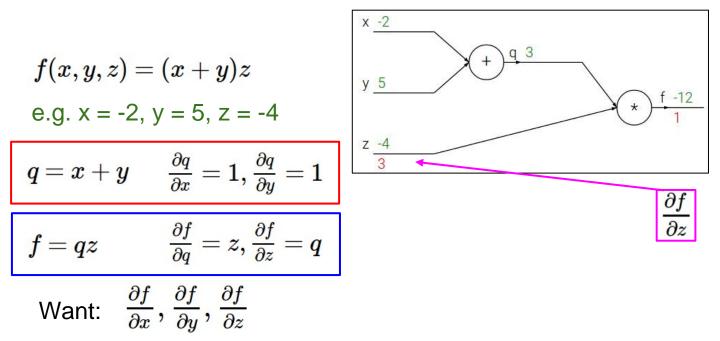
Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

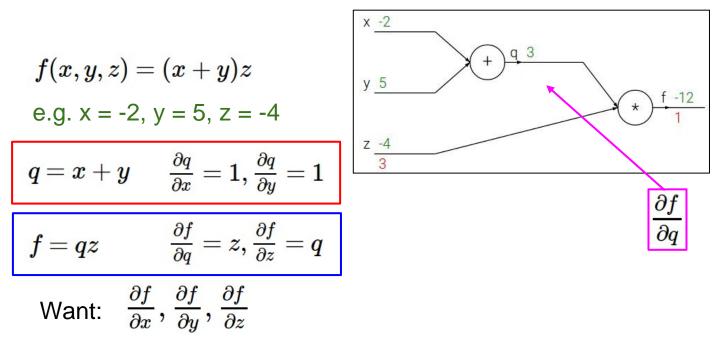


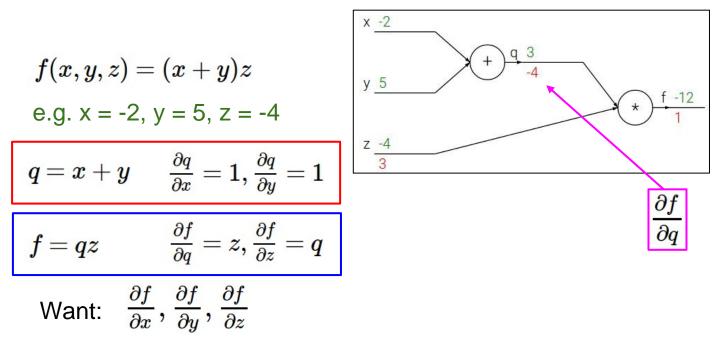


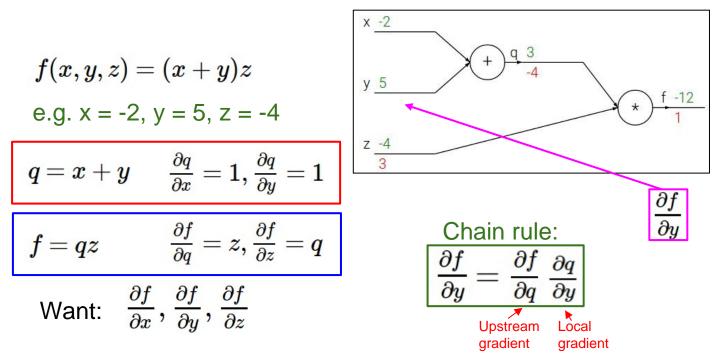


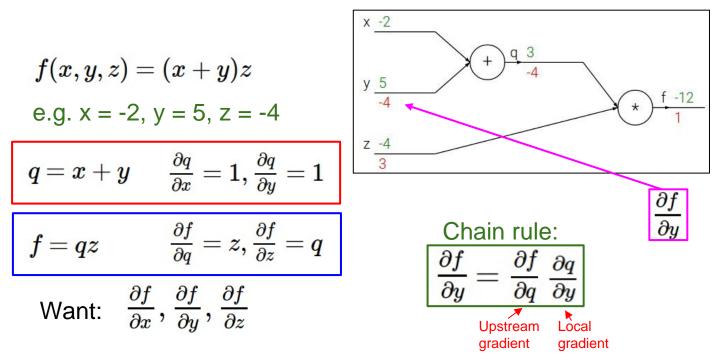


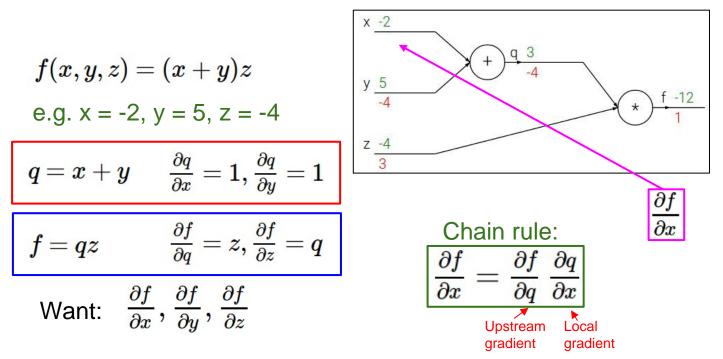




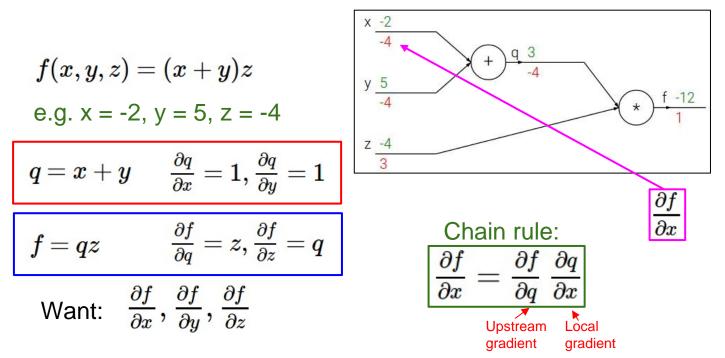




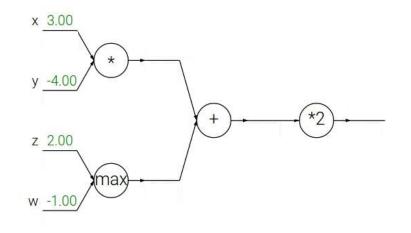


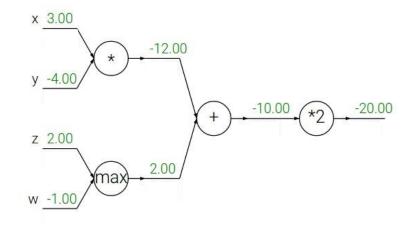


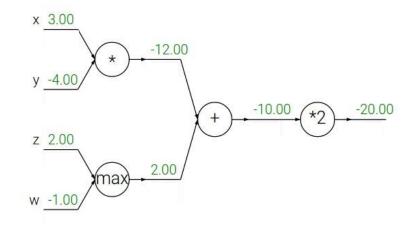
Georgia Tech



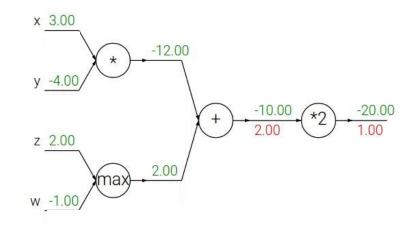
Georgia Tech



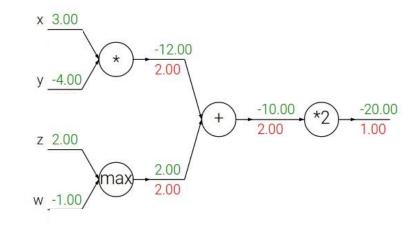




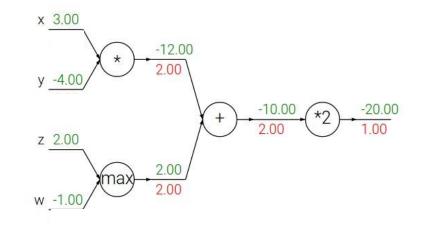
Q: What is an **add** gate?



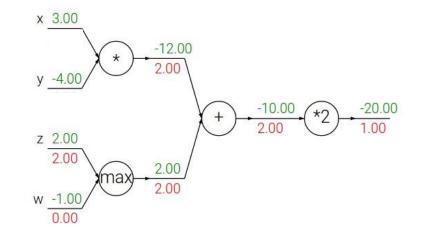
add gate: gradient distributor



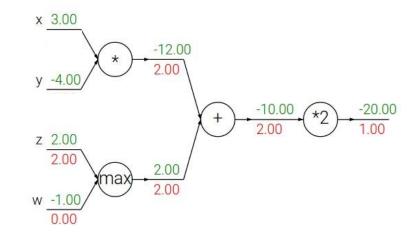
add gate: gradient distributor Q: What is a max gate?



add gate: gradient distributormax gate: gradient router

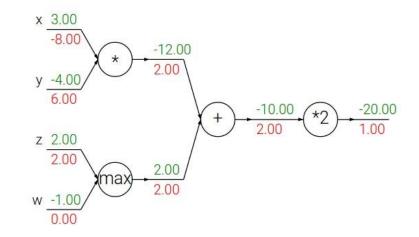


add gate: gradient distributormax gate: gradient routerQ: What is a mul gate?

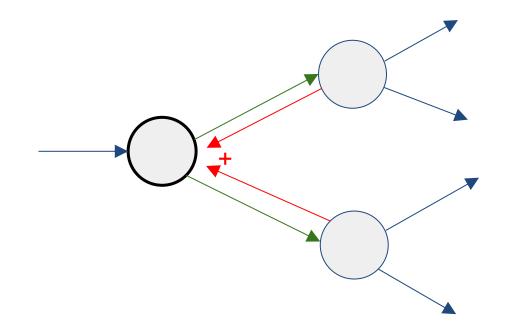


Patterns in backward flow

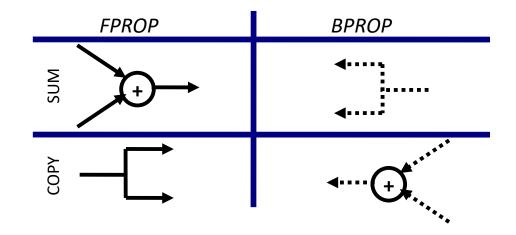
add gate: gradient distributormax gate: gradient routermul gate: gradient switcher



Gradients add at branches



Duality in Fprop and Bprop



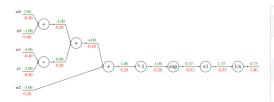
(C) Dhruv Batra

Deep Learning = Differentiable Programming

- Computation = Graph
 - Input = Data + Parameters
 - Output = Loss
 - Scheduling = Topological ordering
- What do we need to do?
 - Generic code for representing the graph of modules
 - Specify modules (both forward and backward function)
 - Backpropagation implementation on the graph

Modularized implementation: forward / backward API

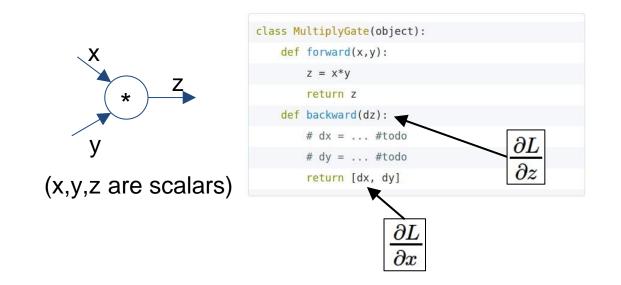
cl



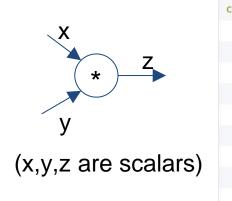
Graph (or Net) object (rough psuedo code)

lass	<pre>ComputationalGraph(object):</pre>
#	
d	f forward(inputs):
	<pre># 1. [pass inputs to input gates]</pre>
	# 2. forward the computational graph:
	<pre>for gate in self.graph.nodes_topologically_sorted():</pre>
	gate.forward()
	<pre>return loss # the final gate in the graph outputs the loss</pre>
d	f backward():
	<pre>for gate in reversed(self.graph.nodes_topologically_sorted()):</pre>
	<pre>gate.backward() # little piece of backprop (chain rule applied)</pre>
	<pre>return inputs_gradients</pre>

Modularized implementation: forward / backward API



Modularized implementation: forward / backward API



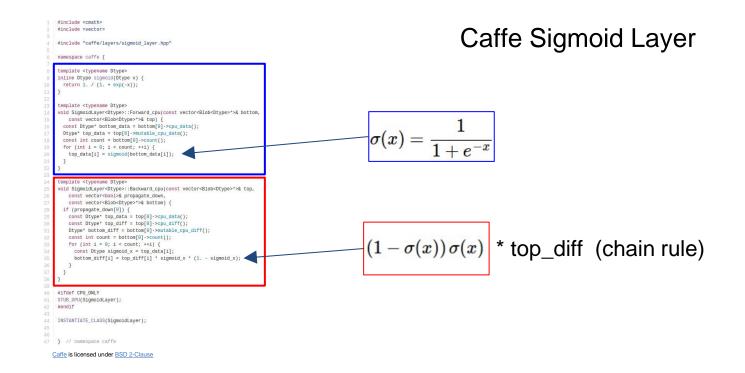
lass M	<pre>ultiplyGate(object):</pre>					
def	forward(x,y):					
	$z = x^*y$					
	<pre>self.x = x # must keep these around!</pre>					
	self.y = y					
	return z					
def	<pre>backward(dz):</pre>					
	dx = self.y * dz # [dz/dx * dL/dz]					
	dy = self.x * dz # [dz/dy * dL/dz]					
	return [dx, dy]					

Example: Caffe layers

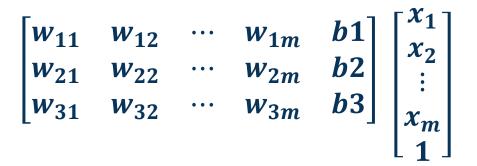
Branch: master - caffe / src / caffe / layers / Create new file			Upload files	Find file	History
shelhamer committed on GitHul	Merge pull request #4630 from BiGene/load_hdf5_fix 😑		Latest commit	e687a71 21	days ago
1.10					
absval_layer.cpp	dismantie layer headers				year ago
ii) absval_layer.cu	dismantie layer headers			а	year ago
accuracy_layer.cpp	dismantie layer headers				year ago
argmax_layer.cpp	dismantle layer headers			8	year ago
base_conv_layer.cpp	enable dilated deconvolution			8	year ago
base_data_layer.cpp	Using default from proto for prefetch			3 mor	ths ago
base_data_layer.cu	Switched multi-GPU to NCCL			3 mor	nths ago
batch_norm_layer.cpp	Add missing spaces besides equal signs in batch_norm_layer	.cpp		4 moi	ths ago
batch_norm_layer.cu	dismantle layer headers			a	year ago
batch_reindex_layer.cpp	dismantle layer headers			a	year ago
batch_reindex_layer.cu	dismantle layer headers			a	year ago
blas_layer.cpp	Remove incorrect cast of gemm int arg to Dtype in BiasLayer				year ago
🗄 bias_layer.cu	Separation and generalization of ChannelwiseAffineLayer into	o BiasLayer		a	year ago
bnll_layer.cpp	dismantle layer headers			81	/ear ago
bnll_layer.cu	dismantle layer headers			a	year ago
concat_layer.cpp	dismantle layer headers				year ago
Concat_layer.cu	dismantie layer headers			8	year ago
contrastive_loss_layer.cpp	dismantle layer headers			8	year ago
contrastive_loss_layer.cu	dismantie layer headers			в	year ago
conv_layer.cpp	add support for 2D dilated convolution			8	year ago
Conv_layer.cu	dismantle layer headers				year ago
crop_layer.cpp	remove redundant operations in Crop layer (#5138)			2 mor	ths ago
Crop_layer.cu	remove redundant operations in Crop layer (#5138)			2 mor	ths ago
cudnn_conv_layer.cpp	dismantle layer headers			a	year ago
cudnn_conv_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support			11 mor	ths ago

E cudnn_lcn_layer.cpp	dismantle layer headers	a year ag
Cudnn_lcn_layer.cu	dismantle layer headers	a year ago
Cudnn_Irn_layer.cpp	dismantle layer headers	a year ag
Cudnn_Irn_layer.cu	dismantle layer headers	a year ag
E cudnn_pooling_layer.cpp	dismantle layer headers	a year ag
Cudnn_pooling_layer.cu	dismantle layer headers	a year ag
Cudnn_relu_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months age
Cudnn_relu_layer.cu	Add cuDNN v5 support, drop cuDNN v3 support	11 months age
Cudnn_sigmoid_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months age
Cudnn_sigmoid_layer.cu	Add cuDNN v6 support, drop cuDNN v3 support	11 months age
Cudnn_softmax_layer.cpp	dismantle layer headers	a year ag
Cudnn_softmax_layer.cu	dismantle layer headers	a year ag
Cudnn_tanh_layer.cpp	Add cuDNN v5 support, drop cuDNN v3 support	11 months ag
Cudnn_tanh_layer.cu	Add cuDNN v6 support, drop cuDNN v3 support	11 months ag
data_layer.cpp	Switched multi-GPU to NCCL	3 months ag
deconv_layer.cpp	enable dilated deconvolution	a year ag
deconv_layer.cu	dismantle layer headers	a year ag
dropout_layer.cpp	supporting N-D Blobs in Dropout layer Reshape	a year ag
E dropout_layer.cu	dismantle layer headers	a year ag
dummy_data_layer.cpp	dismantle layer headers	a year ag
eltwise_layer.cpp	dismantle layer headers	a year ag
eltwise_layer.cu	dismantle layer headers	a year ag
elu_layer.cpp	ELU layer with basic tests	a year ag
elu_layer.cu	ELU layer with basic tests	a year ag
embed_layer.cpp	dismantle layer headers	a year ag
embed_layer.cu	dismantle layer headers	a year ag
euclidean_loss_layer.cpp	dismantle layer headers	a year ag
euclidean_loss_layer.cu	dismantle layer headers	a year ag
exp_layer.cpp	Solving issue with exp layer with base e	a year ag
exp_layer.cu	dismantle layer headers	a year ag

Caffe is licensed under BSD 2-Clause



Linear **Algebra** View: **Vector and Matrix Sizes**



Sizes: $[c \times (d + 1)] [(d + 1) \times 1]$

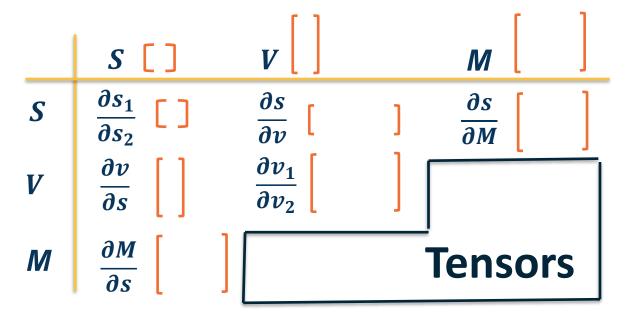
Where *c* is number of classes

d is dimensionality of input

Closer Look at a Linear Classifier

Conventions:

Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$



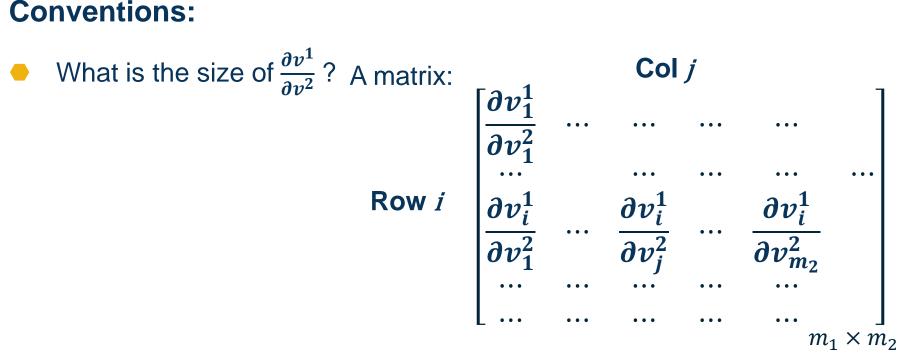
Dimensionality of Derivatives

Conventions:

- Size of derivatives for scalars, vectors, and matrices: Assume we have scalar $s \in \mathbb{R}^1$, vector $v \in \mathbb{R}^m$, i.e. $v = [v_1, v_2, ..., v_m]^T$ and matrix $M \in \mathbb{R}^{k \times \ell}$
- What is the size of $\frac{\partial v}{\partial s}$? $\mathbb{R}^{m \times 1}$ (column vector of size m)
- What is the size of $\frac{\partial s}{\partial v}$? $\mathbb{R}^{1 \times m}$ (row vector of size m)

$$\left[\frac{\partial s}{\partial v_1} \frac{\partial s}{\partial v_1} \cdots \frac{\partial s}{\partial v_m}\right]$$

$$\begin{bmatrix} \frac{\partial v_1}{\partial s} \\ \frac{\partial v_2}{\partial s} \\ \vdots \\ \frac{\partial v_m}{\partial s} \end{bmatrix}$$



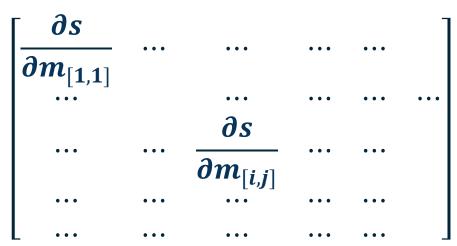
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

Dimensionality of Derivatives

Conventions:

• What is the size of $\frac{\partial s}{\partial M}$? A matrix:



(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

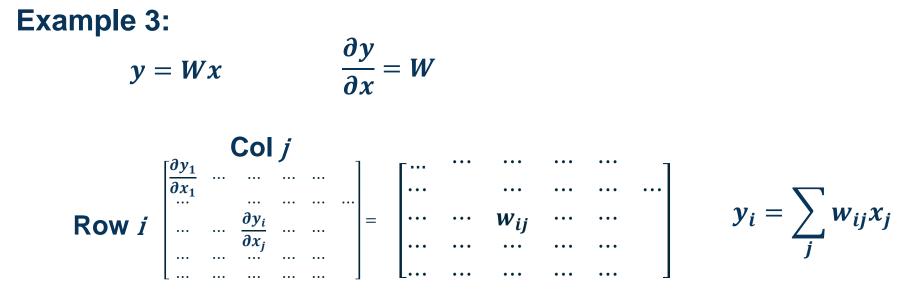
Example 1: $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x \\ x^2 \end{bmatrix} \qquad \frac{\partial}{\partial}$

$$\frac{\partial y}{\partial x} = \begin{bmatrix} 1\\2x \end{bmatrix}$$

Example 2:

$$y = w^{T}x = \sum_{k} w_{k}x_{k}$$
$$\frac{\partial y}{\partial x} = \left[\frac{\partial y}{\partial x_{1}}, \dots, \frac{\partial y}{\partial x_{m}}\right]$$
$$= [w_{1}, \dots, w_{m}] \quad \text{because}$$
$$= w^{T}$$

 $\frac{\partial(\sum_k w_k x_k)}{\partial x_i} = w_i$



Example 4:

$$\frac{\partial (wAw)}{\partial w} = 2w^T A \text{ (assuming A is symmetric)}$$

- What is the size of $\frac{\partial L}{\partial W}$?
 - Remember that loss is a scalar and W is a matrix:

 $\begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1m} & b1 \\ w_{21} & w_{22} & \cdots & w_{2m} & b2 \\ w_{31} & w_{32} & \cdots & w_{3m} & b3 \end{bmatrix}$ Jacobian is also a matrix: W $\begin{bmatrix} \frac{\partial L}{\partial w_{11}} & \frac{\partial L}{\partial w_{12}} & \cdots & \frac{\partial L}{\partial w_{1m}} & \frac{\partial L}{\partial b_1} \\ \frac{\partial L}{\partial w_{21}} & \cdots & \cdots & \frac{\partial L}{\partial w_{2m}} & \frac{\partial L}{\partial b_2} \\ \cdots & \cdots & \cdots & \frac{\partial L}{\partial w_{3m}} & \frac{\partial L}{\partial b_3} \end{bmatrix}$

Dimensionality of Derivatives in ML

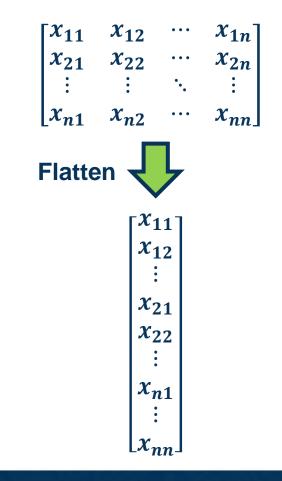
Batches of data are **matrices** or **tensors** (multidimensional matrices)

Examples:

- Each instance is a vector of size m, our batch is of size $[B \times m]$
- Each instance is a matrix (e.g. grayscale image) of size $W \times H$, our batch is $[B \times W \times H]$
- Each instance is a multi-channel matrix (e.g. color image with R,B,G channels) of size $C \times W \times H$, our batch is $[B \times C \times W \times H]$

Jacobians become tensors which is complicated

- Instead, flatten input to a vector and get a vector of derivatives!
- This can also be done for partial derivatives between two vectors, two matrices, or two tensors



Jacobians of Batches

- Neural networks involves composing simple functions into a computation graph
- Optimization (updating weights) of this graph is through backpropagation
 - Recursive algorithm: Gradient descent (partial derivatives) plus chain rule
- Remaining questions:
 - How does this work with vectors, matrices, tensors?
 - Across a composed function? Next!
 - How can we implement this algorithmically to make these calculations automatic? **Automatic Differentiation**

