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e Gradient Descent
e Neural Networks
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Assignment 1 out!

* Due Jun 5" (with grace period June 7t")
« Start now, start now, start now!
« Start now, start now, start now!

* Start now, start now, start now!

Piazza

e Be activelll

Office hours

* Schedules coming out today

Note: Course will start to get math heavy!

Matrix calculus for deep learning



https://explained.ai/matrix-calculus/index.html

Class Scores

Input (and representation)

Functional form of the model I
Including parameters Car Coffee Bird

Performance measure to improve =

Loss or objective function @
=

Algorithm for finding best parameters
Class Scores

Optimization algorithm
|$ Model Optimizer
fx,W)=Wx+b E::

Data: Image  Features: Histogram < 3 Car. Coftee Bid I ‘

) Components of a Parametric Model Gogrola |

=



Several issues with scores:

Not very interpretable (no B
bounded value) s = f(x,W) Scores
= Wx

We often want probabilities Sk
P(YY=k|X=x) =

Softmax

More interpretable

Z]. e’ Function

Can relate to probabilistic
view of machine learning

We use the softmax function to
convert scores to probabilities

) Model: Linear + Softmax Gegroia |

=



. s = f(x,W) Scores
If we use the softmax function to

convert scores to probabilities,
the right loss function to use is
cross-entropy

Sk
Softmax

P(Y =k|X = =
( X =x) 2;e’’ Function

Can be derived by looking at the

distance between two probability
distributions (output of model and
ground truth)

L; = —-log P(Y = y;|X = x;)

Maximize log-prob of correct class =
Maximize the log likelihood
= Minimize the negative log likelihood

Can also be derived from a
maximum likelihood estimation
perspective

) Performance Measure: Cross-Entropy Georgla |

=



We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

In Machine Learning: Want to know how the Ax

loss function changes as weights are varied

Can consider each parameter separatel Image and equation from:
P Sep y https://en.wikipedia.org/wiki/Derivative#/media/

by taking partial derivative of loss File:Tangent_animation.gif
function with respect to that parameter ¢

) Optimization: Gradient Descent Gogrola |
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Input: Vector

Functional form of the model: Softmax(Wx)
Performance measure to improve: Cross-Entropy
Algorithm for finding best parameters: Gradient Descent

L
Compute aw,

: oL
Update Weights w; = w; — a_—

) So far Ge‘%&%ﬂ&



We know how to compute the
model output and loss 4 o R e

fix) = lg = 64x(1 — 1){1 - 22)*(1 — Bz + Br?)? Differentiation 2r)(1 — 8r + 8r7)?

function

dL

I (x):
128x(1 -x)(-B+16x) (1 -2

Several ways to compute foris1 03 PR Yo
a » -x)(1-2x)"2(1-8x+8

l N N 22 -6ix{1-2x)"2(1-8

Symbaolic x+81x"2)"2 - 256x(1 - x)(1 -

or, in closed-form, Differentiation 2x)(1-8x+8x"2)"2

£l of the Closed-form e

Manual differentiation iz (10 (1-200°2 (19018722

Automatic Numerical

Symbolic differentiation
Numerical differentiation R Cooo
Automatic differentiation

Computing Gradients Gegrata |
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current W: gradient dW:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,..]

loss 1.25347

)

NN ) N N N ) )

-
.
.
[

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (first dim): gradient dW:
[0.34, [0.34 + 0.0001, [?,
-1.11, -1.11, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25322

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W.:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,..]

loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25322

gradient dW:

[-2.5,

BN

(1.25322 - 1.25347)/0.0001
=25

WD _
dz h—0

flz+h) — f(=)
h

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




current W: W + h (second dim): gradient dw:
[0.34, [0.34, [-2.5,
-1.11, -1.11 + 0.0001, ?,
0.78, 0.78, ?,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,..] 0.33,...] ?,...]
loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (second dim): gradient dW:
[0.34, [0.34, [-2.5,

-1.11, -1.11 + 0.0001, 0.6,

0.78, 0.78, ?, \

0.12, 0.12, 2.

0.55, 0.55, (1.25353 - 1.25347)/0.0001
2.81, 2.81, =0.6

-3.1, -3.1, df(z) _ . f@+h) - f(z)
-1.5, -1.5, —
0.33,...] 0.33,...] ?,...]

loss 1.25347 | loss 1.25353

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W: W + h (third dim): gradient dW:
[0.34, [0.34, [-2.5,
-1.11, -1.11, 0.6,
0.78, 0.78 + 0.0001, 2,
0.12, 0.12, ?,
0.55, 0.55, ?,
2.81, 2.81, ?,
-3.1, -3.1, ?,
-1.5, -1.5, ?,
0.33,...] 0.33,...] ?,...]
loss 1.25347 | loss 1.25347

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



current W.:

[0.34,

-1.11,

0.78,

0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,..]

loss 1.25347

W + h (third dim):

[0.34,

-1.11,

0.78 + 0.0001,
0.12,

0.55,

2.81,

-3.1,

-1.5,

0.33,...]

loss 1.25347

gradient dW:

[-2.5,
0.6,

=0

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n




Numerical vs Analytic Gradients

af(z) _ . flz+h) - f(@)

dx h —0 h

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your

implementation with numerical gradient.
This is called a gradient check.

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For some functions, we can analytically derive the partial derivative

Example:

Function Loss

N
T 2
fw,x) =wlx; D 0i-wx)
i=1
(Assume w and x; are column vectors, so same as w - x;)

Dataset: N examples (indexed by i)

Update Rule

N
w; < w;+ Zaz 0ixjj
i=1

) Manual Differentiation

Derivation of Update Rule

.

N oL d T <2
L= Y1 (yi — wlx)? a_w] = Z a_w] >i—wxy)
i=

1
N
Gradient descent tells us = 2(}’: — wai) FI (yi —wlx))
we should update w as = J
follows to minimize L: N
= —ZZ i wlx;
oL i=1 J h
Wi — Wi — 0 — ...where...
J J ow; S;i=yi—wix
N
aL =-2)6 —a
So what’s —? - Z P, £, Vi ik
ow;j i=1 J =1

Georgia

Tech




If we add a non-linearity (sigmoid), derivation is more complex

— 1 1
o(x) = 1+e>
First, one can derive that; o' (x) = a(x)(1 — a(x))
f(X) = 0'( kak) l
2. | J

L= Z yi — 0 (Z kaik> -6 —4 -2 UO 2 4 6
i k

oL The sigmoid perception update rule:
aw; = Z 2(yi—o (Z kaik> —a—w]ff (Z kalk> N
i k W] <—W]+2az 6iai(1_ai)xij

]
= Z —2 <)’i -0 (Z kaik>> o' (Z kaik> WZ WiXik k=1 d
- j
‘ ‘ ‘ where o0;=0 Z W;Xij
=) —280(d) (1 - o(d)xy =

where &; = y; — f(x;) d; = Zwkx"‘ 6i=yi—0

) Adding a Non-Linear Function Geg;sggﬁ



Neural
Network

View of a
Linear
Classifier

4
Georgi <
oroiad| &



A simple neural network has similar structure as our linear classifier:
A neuron takes input (firings) from other neurons (-> input to linear classifier)
The inputs are summed in a weighted manner (-> weighted sum)
Learning is through a modification of the weights

If it receives enough input, it “fires” (threshold or if weighted sum plus bias is high
enough)

Impulses carried toward cell body : *o v."osynapse
WoXo

dendrite presynaptic

/ terminal

cell body
> Z W;X; +b
i
activation

Wo Xy function

W1X1

>

/ Impulses carried away

cell body from cell bod
y Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Origins of the Term Neural Network Ge°’e%'mh



1.0 . .
: Sigmoid
As we did before, the output of a e Activation
neuron can be modulated by a 04 Function
non-linear function (e.g. sigmoid) 02 1
00 1+e™
-10 -5 0 5 10

Impulses carried toward cell body *o "."0
synapse
WoX
\ dendrite presynaptic 040
terminal
/ cell body f z w;x; +b

wiX -
11 > Zwixi +b !

i

activation
WX function

>
Impulses carried away
from cell body

7

cell body
Figures adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding Non-Linearities Gograta |



We can have multiple neurons
connected to the same input

Corresponds to a multi-class classifier
Each output node outputs the score

for a class
f(x, W) = 0'( Wx + b) W11 W12 - Wim b1
W1 Wiz -+ Wy b2
W21 Wz -+ W3y b3
input layer
Often called fully connected layers
Also called a linear projection
Iayer Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Connecting Many Neurons



Each input/output is a neuron
(node)

A linear classifier (+ optional non-
linearity) is called a fully
connected layer

Connections are represented as
edges

Output of a particular neuron is
referred to as activation

input layer
This will be expanded as we view
computation in a neural network as
a g I’aph Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Neural Network Terminology



We can stack multiple layers together

Input to second layer is output of first
layer

Called a 2-layered neural network (input is
not counted)

Because the middle layer is neither input or
output, and we don’t know what their values
represent, we call them hidden layers

We will see that they end up learning

effective features input layer

This increases the representational power hidden layer
of the function!

Two layered networks can represent
any continuous function

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Connecting Many Layers



The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W,W3) = oc(W0(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Linear Algebra View



A classifier can be broken down into:
Input
A function of the input
A loss function

It's all just one function that can be decomposed into building blocks

u 1 p L
X el wx — Tl —log® —
1+e™
Input Model Loss Function

) What Does a Linear Classifier

Consist of?




Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow

\

. N XSA
unreasonably (exponential or worse) h‘eﬂ N &7
with respect to the complexity of the RS RS

4
\
0
Ao

)

function
We will show them without edges:

output
layer

input
layer

hidden hidden
layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

)  Adding More Layers!




Computation

Graphs

(eT=Ye]
S



Functions can be made arbitrarily complex (subject to memory and

computational limits), e.g.:
fx, W) =o(Wsa(W4o(W30(W,0(WqX))

We can use any type of differentiable function (layer) we want!
At the end, add the loss function

Composition can have some structure

Loss
Function

» Adding Even More Layers



The world is compositional!
We want our model to reflect this

Empirical and theoretical
evidence that it makes learning
complex functions easier

Note that prior state of art
engineered features often had
this compositionality as well

VISION
pixels edge texton motif part object
SPEECH
sample spectral formant motif phone word
band
NLP
character word NP/VP/.. clause sentence story

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Pixels -> edges -> object parts -> objects

) Compositionality



We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
Inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function Gegrgia,

Tech Iy




To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework




Directed Acyclic Graphs (DAGS)

* Exactly what the name suggests
— Directed edges
— No (directed) cycles
— Underlying undirected cycles okay




Directed Acyclic Graphs (DAGS)

* Concept

— Topological Ordering




Directed Acyclic Graphs (DAGS)

o
o)
)
G‘&
@)

O




Backpropagation

(eT=Ye]
S



Given this computation graph, the training

algorithm will:
Calculate the current model’s outputs Input Function Output
(called the forward pass) 't
Calculate the gradients for each h

module (called the backward pass)
Backward pass is a recursive algorithm that:

Starts at loss function where we know
how to calculate the gradients

Progresses back through the modules w

Ends in the input layer where we do Parameters

not need gradients (no parameters)
This algorithm is called backpropagation

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Overview of Training



Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training



Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training



Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training



In the backward pass, we seek to
calculate the gradients of the loss with
respect to the module’s parameters

Assume that we have the
gradient of the loss with respect
to the module’s outputs (given
to us by upstream module)

We will also pass the gradient of
the loss with respect to the
module’s inputs

This is not required for
update the module’s weights,
but passes the gradients
back to the previous module

JL
ah{’—l

Problem:

We are given:

PY

We can compute local gradients:
(ot ont
ant-1’ aw

LaL

Compute: {5 W

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Backward Pass Computations




JdL JoL

We want to compute:
P {ahf’—l ’ aw}

aL aL
dh? ah{’ ll ah{) ahf’
hf-l aw

A

. 1 0L
' 1%

We will use the chain rule to do this:

0z dz 0y
Chain Rule: — .

dx dy O0x

)‘ Computing the Gradients of Loss

Loss



ah! on?
aht-1’ aw}

We can compute local gradients: {

This is just the derivative of our function with respect to its
parameters and inputs!

Example: If h* = Wh'™1

dh?
then o =W
oh} 2-1T
and —+=h*""
awi

Computing the Local Gradients: Example



oL
hf 1’ aw}

We will use the chain rule to compute: {

|

- : aL oL odhn’ -
Gradient of loss w.r.t. inputs: = L Given by upstream
P oht=1  9h’ 9n‘-1 module (upstream

gradient)

9L _ dL oht

Gradient of loss w.r.t. weights: —— = —= —

JdL
ah{’—l

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) Computing the Gradients of Loss



Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training




Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training




Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training




Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

alL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

W; =W; —Q
l l awl

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech



Backpropagation: a simple example

f(z,y,2) = (z +y)z




Backpropagation: a simple example

X

q

f(z,y,2) = (z +y)z ,

z




Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z ,s
e.g.x=-2,y=5,z=+4

z 4




Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z ,s
e.g.x=-2,y=5,z=+4

z 4

af of of

Want: ). O Dz




Backpropagation: a simple example

X -2

q 3

f(z,y,2) = (z +y)z ,s
=12
eg.x=-2,y=5,z=-4 :
Z 4
_ 9 _ . Og __
g=z+y 5_1’5_1

af of of

Want: ). O Dz




Backpropagation: a simple example

X -2
q 3
f(z,y,2) = (z +y)z ,s
f 12
e.g.x=-2,y=5,z=+4 :
Z 4
of of
f:qz ﬁ_q:z’a:q
~ Oof of of
Want: ). O Dz

)




Backpropagation: a simple example

X -2
q 3
f(z,y,2) = (z +y)z ,s
f-12
e.g.x=-2,y=5,z=+4 :
Z 4
. dq dq f
g=z+y —=1,==1 ]
o Ny 5
of of of
f:qz ﬁ_q:z’a:q
~ Oof of of
Want: ). O Dz

)




Backpropagation: a simple example

fl,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ Oq dq _ f
g=z+Yy —=1,==1 7
oz oy 5
af af of
f:qz ﬁ_q:z’a:q
~of of of
Want: ). O Dz

)




Backpropagation: a simple example

X -2
q 3
f(z,y,2) = (z +y)z ,s
f 12
eg.x=-2,y=5,z=-4 1
Z 4
of
of of Oz
f:qz ﬁ_q:z’a:q
~ Oof of of
Want: ). O Dz

)




Backpropagation: a simple example

X =2
q 3
f(z,y,2) = (z +y)z ,s
f-12
eg.x=-2,y=5,z=-4 1
z 4
of
of of 0z
f:qz ﬁ_q:z’a:q
~of of of
Want: -, B Bz

)




Backpropagation: a simple example

fl,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 0g . 9q
qg=+Yy 5—1,5—1
of of
f:qz ﬁ_q:z’a:q
~of of of
Want: ). O Dz

)




Backpropagation: a simple example

fl,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

_ 0g . 9q
qg=+Yy 5—1,5—1
of of
f:qz ﬁ_q:z’a:q
~of of of
Want: ). O Dz

)




Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

o d
=z+y %q:l’%:l —
91
_ o B Chain rule: Ay
f=qz aq_z’az_q ﬂ_ﬁaq
of of 8 Oy~ Oq &y
Want: .

Oz’ Oy? 02

~ %
Upstream  Local
gradient gradient

)




Backpropagation: a simple example

f(z,y,2) = (z +y)z
eg.x=-2,y=5,z=-4

o d
=z+y %q:l’%:l —
91
_ o B Chain rule: Ay
f=qz aq_z’az_q ﬂ_ﬁaq
of of 8 Oy~ Oq &y
Want: .

Oz’ Oy? 02

~ %
Upstream  Local
gradient gradient

)




Backpropagation: a simple example

f(:t:,y,z) = (:L‘er)z
eg.x=-2,y=5,z=-4

- o _ , of _ Chain rule: oz
M™n amis o _ o &

of of 9 d9r ~ 9q Oz
Want: i B5 e

Oz’ Oy’ Oz

el X
Upstream  Local
gradient gradient

)




Backpropagation: a simple example

f(:t:,y,z) = (:L‘er)z
eg.x=-2,y=5,z=-4

_ 0qg dq

g=z+y E—l,%—l

- L/ . Chain rule: oz
of of of 52— b5 Be

Want: oz’ By Bz

el X
Upstream  Local
gradient gradient

)




Backpropagation: a simple example




Backpropagation: a simple example

10.00 55\ _ -20.00
N




Patterns in backward flow

10.00 55\ _ -20.00
N




Patterns in backward flow

Q: What is an add gate? x 3.00

10.00 /55 _-20.00
200 \__/ 1.00




Patterns in backward flow

add gate: gradient distributor x 3.00

-10.00@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor x 3.00
Q: What is a max gate?

-m.oo@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

-m.oo@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor x 3.00
max gate: gradient router

Q: What is a mul gate?

-m.oo@ -20.00
200 \_/ 1.00




Patterns in backward flow

add gate: gradient distributor
max gate: gradient router

mul gate: gradient switcher

-m.oo@ -20.00
200 \_/ 1.00




Gradients add at branches

7
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Duality in Fprop and Bprop

FPROP BPROP
- : > LERT
o ) @  rFEmmEEs
(%]
S LERT

COPY
A

.Q
.
‘e
L 4




Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)
— Backpropagation implementation on the graph

)




Modularized implementation: forward / backward API

~ o3 TN 1
xp ) {41 =
CFENG

W 0T
- m) -
TR 0

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):
#...
def forward(inputs):
# 1. [pass inputs to input gates...]
# 2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs _gradients




Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL

oz




Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
Z = x*y
self.x = x # must keep these around!
self.y = y
return z

)/ def backward(dz):

(x,y,z are scalars)

dx = self.y * dz # [dz/dx * dL/dz]
dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]




Example: Caffe layers

master~ | caffe | s

atfe | layers | Creata rew e Upload fies  Findfile  History

5 shelhamer commited on GitHub ber e atest commit 687571 21 days ap o tayor hea

pacing laer

accuracy_layer.cop o er b a
udn_re, layer.cop o o

ateh ayer.cpp missing e e an
batch - dismantle layer headen ar 3 id CUDNN P o o
atch_reindex_layer.cu ader ’ o
aitwise. oy
lbexd_layer.cop year
ayer a ' S — dismantin tayer headrs ayoar ago
p_layer.cpp "

Caffe is licensed under BSD 2-Clause



https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

#include <cmath>
#include <vector>

.
Caffe Sigmoid Layer

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
return 1. / (1. + exp(-x));

}

template <typename Dtype>
void Sigmoidlayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data(); 1
Dtype* top_data = top[0]->mutable_cpu_data();
const int count = bottom[0]-

for (int 1 = 0; 1 < count; ++i / ( ) 1 —_r
top_data[1] = signoid(bottom_data[i]); €
}
H
—_— 1
—
Template <typename Dtypes

void SigmoidLayer<Dtype>: :Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_data = top[0]->cpu_data();
const Dtype* top_diff = top[6]->cpu_diff();
Dtype* bottom diff = bottom[6]->mutable_cpu_diff();
const int count = bottom[0]->count();
for (int i =0; i < count; ++i) {
const Dtype sigmoid x = top_data[i];

S eb——— (1 —a(z))e(z) | * top_diff (chain rule

fdef CPU_ONLY
STUB_GPU(SigmoidLayer);
#endif

INSTANTIATE_CLAS

SigmoidLayer);

}

Caffe is licensed under BSD 2-Clause



https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

Linear
Algebra

View:
Vector and
Matrix Sizes

Georgia
graia |



Wi Wiz - Wy, b1 X
Wa1 Wz - Wz b2| | .
W31 Waz - Wi B3] |,
N
w X

Sizes: [cx(d+1)] [(d+1)x1]
Where ¢ is number of classes

d Is dimensionality of input

) Closer Look at a Linear Classifier Ge‘%&%ﬂ{&
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Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., V)T
and matrix M € Rkx?

s L] V“ M
s %107 9 1 9
ds, ov oM
v | dv4
V' % ] v, ‘
M| Ml Tensors

Georgia @

Tech

Dimensionality of Derivatives I




Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., U]

and matrix M € Rkx¢ L
61}1

s
What is the size of % ? R™*1 (column vector of size m) | v,

o
What is the size of % ? R™*™ (row vector of size m) v,
L Js -

[65 ds as]

dv, 0vq v,

) Dimensionality of Derivatives Gograta)

=



Conventions:

: . vl : Col 7
What is the size of — ? A matrix: olJ
v - 1 .
0vq
_2 LN LN o0 0 o0 0
ov7
' 1 1 1
ROW l avi o 00 avi o0 0 avi
Vs v} 0vs,,

my X m,
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ecC

=

) Dimensionality of Derivatives Gograta)



https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Conventions:

What is the size of :—:4 ? A matrix:

P _
ds

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

) Dimensionality of Derivatives Gograta)

=


https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Example 1:

_[Ya_g*x ady 11
Y= J’z] - [x2] a_ Zx]
Example 2:
y=wlx= ) wgx,
2.
ay lay dy
ax |dx; "' dx
. O(Th WiXi) _

= [Wq, e, Wiy because i

Oxi

) Examples Gograta)

=




Example 3:
y=Wx —=W

T
0xq
Row /7 |.. .. 2% . . |= [~ = wyg = = J’i=ZWiixi
axj ces ces cos cos cos ]

Example 4:

Jd(wAw)
ow

) Examples Gograta)

=

= 2w’ A (assuming A is symmetric)




What is the size of oL ?
oW

Remember that loss Is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |
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Batches of data are matrices or tensors (multi- X11 X12  X1n]
dimensional matrices) Xp1 Xz * Xon
Examples: : : " :
Each instance is a vector of size m, our batch is of | Xn1 Xn2 " Xnn]
size [B X m]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size W X H, our batch is [B X W X H] X
: : : : 11
Each instance is a multi-channel matrix (e.g. color X1o
image with R,B,G channels) of size € x W x H, our .
batch is [B x C x W X H] x.
21
Jacobians become tensors which is complicated X292
Instead, flatten input to a vector and get a vector of :
NS
derivatives! X1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | X

) Jacobians of Batches Gegrala |

=



Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? Next!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&
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