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Topics:

• Backpropagation

• Matrix/Linear Algebra view



Administrivia

• Assignment 1 out!
• Due June 5th (with grace period June 7th)

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Resources: 

• These lectures

• Matrix calculus for deep learning

• Gradients notes and MLP/ReLU Jacobian notes.

• Topic OH: Assignment 1 and matrix calculus (TBA)

• Piazza: Project teaming thread

• Project Proposal: June 15th, Project Check-in: July 1st . 

• Project proposal overview during my OH (Thursday 12:30pm ET, recorded)

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
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Derivatives

⬣ We can find the steepest descent direction by 

computing the derivative (gradient):

⬣ Steepest descent direction is the negative 

gradient

⬣ Intuitively: Measures how the function 

changes as the argument a changes by a small 

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 

loss function changes as weights are varied

⬣ Can consider each parameter separately 

by taking partial derivative of loss 

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from: 

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙



The same two-layered neural network 

corresponds to adding another 

weight matrix

⬣ We will prefer the linear algebra 

view, but use some terminology 

from neural networks (& biology)

The Linear Algebra View

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input layer
hidden layer

output layer

𝒙 𝑾𝟏 𝑾𝟐

=

𝒇 𝒙, 𝑾𝟏, 𝑾𝟐 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )



Large (deep) networks can be built by 

adding more and more layers

Three-layered neural networks can 

represent any function

⬣ The number of nodes could grow 

unreasonably (exponential or worse) 

with respect to the complexity of the 

function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

input 

layer
hidden 

layer 1
hidden 

layer 2

output 

layer 𝒇 𝒙, 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )



⬣ We are learning complex models with significant amount of 

parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 

respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep 

inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 

Function

𝝏𝑳

𝝏𝒘𝒊
?



To develop a general algorithm for 

this, we will view the function as a 

computation graph

Graph can be any directed acyclic 

graph (DAG)

⬣ Modules must be differentiable to 

support gradient computations 

for gradient descent

A training algorithm will then 

process this graph, one module at a 

time

A General Framework

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Note that we must store the intermediate outputs of all layers!

⬣ This is because we will need them to compute the gradients (the gradient 

equations will have terms with the output values in them)

Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



Neural Network Training

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Layer 1 Layer 2 Layer 3



⬣ We want to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

      Chain Rule: 
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝑾

Layer ℓ



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Backpropagation is the application of 

gradient descent to a computation 

graph via the chain rule!



21

e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:

Upstream 

gradient

Local

gradient

Backpropagation: a simple example

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Deep Learning = Differentiable Programming

• Computation = Graph
– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?
– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

– Backpropagation implementation on the graph

(C) Dhruv Batra 22
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Graph (or Net) object  (rough psuedo code)

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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Example: Caffe layers

Caffe is licensed under BSD 2-Clause

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE
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* top_diff  (chain rule)

Caffe is licensed under BSD 2-Clause

Caffe Sigmoid Layer

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE


Summary

• Neural networks involves composing simple functions into a 

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 

rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? 

• How can we implement this algorithmically to make these 

calculations automatic? Automatic Differentiation



Linear 

Algebra 

View: 

Vector and 

Matrix Sizes



Closer Look at a Linear Classifier

Sizes: 𝒄 × 𝒎 + 𝟏  𝒎 + 𝟏 × 𝟏

Where c  is number of classes

           m  is dimensionality of input

𝑾

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝒙𝟏

𝒙𝟐

⋮
𝒙𝒎

𝟏

 

𝒙



Dimensionality of Derivatives

Conventions:
⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎
𝑻        

and matrix 𝑴 ∈ ℝ𝒎𝟏×𝒎𝟐

𝑺

𝑽

M

𝑺 𝑽 M

𝝏𝒔𝟏

𝝏𝒔𝟐

𝝏𝒗

𝝏𝒔

𝝏𝑴

𝝏𝒔

𝝏𝒔

𝝏𝒗

𝝏𝒔

𝝏𝑴
𝝏𝒗𝟏

𝝏𝒗𝟐

Tensors



Dimensionality of Derivatives

Conventions:

⬣ Size of derivatives for scalars, vectors, and matrices: 

Assume we have scalar 𝒔 ∈ ℝ𝟏, vector 𝒗 ∈ ℝ𝒎, i.e. 𝒗 = 𝒗𝟏, 𝒗𝟐, … , 𝒗𝒎
𝑻        

and matrix 𝑴 ∈ ℝ𝒎𝟏×𝒎𝟐

⬣ What is the size of 
𝝏𝒗

𝝏𝒔
 ? ℝ𝒎×𝟏 (column vector of size m )

⬣ What is the size of 
𝝏𝒔

𝝏𝒗
 ? ℝ𝟏×𝒎 (row vector of size m )

𝝏𝒗𝟏

𝝏𝒔
𝝏𝒗𝟐

𝝏𝒔
⋮

𝝏𝒗𝒎

𝝏𝒔
𝝏𝒔

𝝏𝒗𝟏

𝝏𝒔

𝝏𝒗𝟏
 ⋯

𝝏𝒔

𝝏𝒗𝒎



Conventions:

⬣ What is the size of 
𝝏𝒗𝟏

𝝏𝒗𝟐 ? 

⬣ This matrix of partial derivatives is called a Jacobian

Dimensionality of Derivatives

Row i

Col j
𝝏𝒗𝟏

𝟏

𝝏𝒗𝟏
𝟐

⋯ ⋯ ⋯ ⋯  

⋯  ⋯ ⋯ ⋯ ⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝟏
𝟐

⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝒋
𝟐

⋯
𝝏𝒗𝒊

𝟏

𝝏𝒗𝒎𝟐
𝟐

 

⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used. 

𝑚1 × 𝑚2 

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices


Dimensionality of Derivatives

Conventions:

⬣ What is the size of 
𝝏𝒔

𝝏𝑴
 ? 

𝝏𝒔

𝝏𝒎[𝟏,𝟏]
⋯ ⋯ ⋯ ⋯  

⋯  ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒔

𝝏𝒎[𝒊,𝒋]
⋯ ⋯  

⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

A matrix:

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used. 

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices


Examples

𝒚 =
𝒚𝟏

𝒚𝟐
=

𝒙
𝒙𝟐

𝒚 = 𝒘𝑻𝒙 = 

𝒌

𝒘𝒌𝒙𝒌

𝝏𝒚

𝝏𝒙
=

𝟏
𝟐𝒙

Example 1:

Example 2:

𝝏𝒚

𝝏𝒙
=

𝝏𝒚

𝝏𝒙𝟏
, … ,

𝝏𝒚

𝝏𝒙𝒎

= 𝒘𝟏, … , 𝒘𝒎 because 
𝝏(σ𝒌 𝒘𝒌𝒙𝒌)

𝝏𝒙𝒊
= 𝒘𝒊

= 𝒘𝑻



Examples

𝒚 = 𝑾𝒙

𝝏(𝒘𝑨𝒘)

𝝏𝒘
= 𝟐𝒘𝑻𝑨 (assuming A is symmetric) 

Example 3:

Example 4:

𝝏𝒚

𝝏𝒙
= 𝑾

Row i

Col j
𝝏𝒚𝟏

𝝏𝒙𝟏
⋯ ⋯ ⋯ ⋯  

⋯  ⋯ ⋯ ⋯ ⋯

⋯ ⋯
𝝏𝒚𝒊

𝝏𝒙𝒋
⋯ ⋯  

⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

=

… ⋯ ⋯ ⋯ ⋯  
⋯  ⋯ ⋯ ⋯ ⋯
⋯ ⋯ 𝒘𝒊𝒋 ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  
⋯ ⋯ ⋯ ⋯ ⋯  

𝒚𝒊 = 

𝒋

𝒘𝒊𝒋𝒙𝒋



Dimensionality of Derivatives in ML

⬣ What is the size of 
𝝏𝑳

𝝏𝑾
 ?

⬣ Remember that loss is a scalar and W  is a matrix:

𝒘𝟏𝟏 𝒘𝟏𝟐 ⋯ 𝒘𝟏𝒎 𝒃𝟏
𝒘𝟐𝟏 𝒘𝟐𝟐 ⋯ 𝒘𝟐𝒎 𝒃𝟐
𝒘𝟑𝟏 𝒘𝟑𝟐 ⋯ 𝒘𝟑𝒎 𝒃𝟑

𝝏𝑳

𝝏𝒘𝟏𝟏

𝝏𝑳

𝝏𝒘𝟏𝟐
⋯

𝝏𝑳

𝝏𝒘𝟏𝒎

𝝏𝑳

𝝏𝒃𝟏

𝝏𝑳

𝝏𝒘𝟐𝟏
⋯ ⋯

𝝏𝑳

𝝏𝒘𝟐𝒎

𝝏𝑳

𝝏𝒃𝟐

⋯ ⋯ ⋯
𝝏𝑳

𝝏𝒘𝟑𝒎

𝝏𝑳

𝝏𝒃𝟑

WJacobian is also a matrix:



Jacobians of Batches

Batches of data are matrices or tensors (multi-

dimensional matrices)

Examples:

⬣ Each instance is a vector of size m, our batch is of 

size [𝑩 × 𝒎]

⬣ Each instance is a matrix (e.g. grayscale image) of 

size 𝑾 × 𝑯, our batch is [𝑩 × 𝑾 × 𝑯]

⬣ Each instance is a multi-channel matrix (e.g. color 

image with R,B,G channels) of size 𝑪 × 𝑾 × 𝑯, our 

batch is [𝑩 × 𝑪 × 𝑾 × 𝑯]

Jacobians become tensors which is complicated

⬣ Instead, flatten input to a vector and get a vector of 

derivatives!

⬣ This can also be done for partial derivatives 

between two vectors, two matrices, or two tensors

Flatten

𝒙𝟏𝟏

𝒙𝟏𝟐

⋮
𝒙𝟐𝟏

𝒙𝟐𝟐

⋮
𝒙𝒏𝟏

⋮
𝒙𝒏𝒏

𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯ 𝒙𝟏𝒏

𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯ 𝒙𝟐𝒏

⋮ ⋮ ⋱ ⋮
𝒙𝒏𝟏 𝒙𝒏𝟐 ⋯ 𝒙𝒏𝒏



Fully Connected (FC) Layer: Forward Function 

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝒘𝒊
𝑻

|𝒉ℓ| × 𝟏 |𝒉ℓ−𝟏| × 𝟏|𝒉ℓ| × |𝒉ℓ−𝟏 |

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏



Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾    

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏



Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W 
matrix would result in 

Jacobian tensor!

But it is sparse – each 

output only affected by 

corresponding weight row
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾    

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝑾

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏



Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W 
matrix would result in 

Jacobian tensor!

But it is sparse – each 

output only affected by 

corresponding weight row𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾    

𝝏𝑳

𝝏𝒘𝒊
𝑻 =

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

𝟎

𝟎

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝝏𝒉𝒊
ℓ 

𝝏𝒘𝒊
𝑻 = 𝒉 ℓ−𝟏 ,𝑻

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾

Iterate and populate

Note can simplify/vectorize!



We can employ any differentiable 

(or piecewise differentiable) 

function

A common choice is the Rectified 

Linear Unit 

⬣ Provides non-linearity but better 

gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti

c

2

1.

8
1.

6
1.

4
1.

2
1

0.

8
0.

6
0.

4
0.

2
0

-2 -

1.

5

-1 -

0.

5

0 0.

5

1 1.

5

2

𝒉ℓ = 𝐦𝐚𝐱 𝟎, 𝒉ℓ−𝟏

max(0,_)



Full Jacobian of ReLU layer is large 

(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 

because it is element-wise

⬣ An output value affected only by 

corresponding input value

Max function funnels gradients 

through selected max

⬣ Gradient will be zero if input 

<= 0

Jacobian of ReLU

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Forward: 𝒉ℓ = 𝐦𝐚𝐱(𝟎, 𝒉ℓ−𝟏) 

Backward: 
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

|𝒉ℓ × 𝒉ℓ−𝟏|

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏
= ቊ

𝟏
𝟎

𝒊𝒇 𝒉ℓ−𝟏 > 𝟎
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For diagonal



Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



For element-wise ops, jacobian is sparse: off-diagonal entries always zero!

Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary

• Neural networks involves composing simple functions into a 

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 

rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? Next!

• How can we implement this algorithmically to make these 

calculations automatic? Automatic Differentiation



Composition of Functions & Chain Rule

𝒇 𝒙 = 𝒈ℓ (𝒈ℓ−𝟏 … 𝒈𝟏 𝒙 ) 

Composition of Functions:

A complex function (e.g. defined by a neural network):

𝒇 𝒈 𝒙 = (𝒇 ∘  𝒈)(𝒙)

(Note you might find the opposite notation as well!)

(Many of these will be parameterized)

𝒇 𝒙 = 𝒈ℓ ∘ 𝒈ℓ−𝟏 … ∘ 𝒈𝟏(𝒙)



Scalar Case

𝐱 ∈ ℝ𝟏 z ∈ ℝ𝟏 y ∈ ℝ𝟏

𝒈𝟏

𝒚 = 𝒈𝟐 𝒈𝟏 𝒙

𝒈𝟐

𝜕𝑦

𝜕𝑥
=

𝜕𝑦

𝜕𝑧
∗

𝜕𝑧

𝜕𝑥

Scalar Multiplication



Vector Case

𝒙{∈ ℝ𝒅 𝒛{∈ ℝ𝒎 𝒚{∈ ℝ𝒄

𝒈𝟏

ℝ𝒅 → ℝ𝒎

𝒈𝟐

ℝ𝒎 → ℝ𝒄

𝜕 Ԧ𝑦

𝜕 Ԧ𝑥

= 𝜕 Ԧ𝑦

𝜕 Ԧ𝑧

𝜕 Ԧ𝑧

𝜕 Ԧ𝑥

Matrix Multiplication

𝐽𝒈𝟏∘𝒈𝟐 𝐽𝒈𝟏 𝐽𝒈𝟐 



Jacobian View of Chain Rule

𝜕𝑦𝑖

𝜕𝑥𝑗

= 𝜕𝑦𝑖

𝜕𝑧𝑘

𝜕𝑧𝑘

𝜕𝑥𝑗

𝜕𝑦𝑖

𝜕𝑥𝑗
= 

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗



Graphical View of Chain Rule

𝑥1

𝑥𝑑

𝑥𝑗

𝑧1

𝑧𝑚

𝑦1

𝑦𝑖

𝑦𝑐

𝜕𝑦𝑖

𝜕𝑥𝑗
= 

𝑘

𝜕𝑦𝑖

𝜕𝑧𝑘
∗

𝜕𝑧𝑘

𝜕𝑥𝑗

𝑘 paths



Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝜕ℎ𝑙

𝜕ℎ1  =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=



Chain Rule: Cascaded

ℎ0 ∈ ℝ𝑑 h1 ∈ ℝ𝒅 h𝑙 ∈ ℝ𝒅…

𝝏𝑳

𝝏𝒉𝟏 =
𝜕ℎ𝑙

𝜕ℎ𝑙−1

𝜕ℎ𝑙−1

𝜕ℎ𝑙−2
…

𝜕ℎ2

𝜕ℎ1

=

Which directions is more efficient to multiply?

𝑳 ∈ ℝ𝟏

𝝏𝑳

𝝏𝒉𝒍



Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙  and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms 

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 

L to w



The chain rule can be 

computed as a series of 

scalar, vector, and matrix 

linear algebra operations

Extremely efficient in 

graphics processing units 

(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

ഥ𝒘 = −
𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

1xd1x11x11x1



Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or 

matrix-matrix multiplication)

• Automatic differentiation: 

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass



Automatic 

Differentiation



Deep Learning = Differentiable Programming

• Computation = Graph

– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?

– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

(C) Dhruv Batra 60



61

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Backpropagation does not really spell out how to efficiently 

carry out the necessary computations

But the idea can be applied to any directed acyclic graph 

(DAG)

⬣ Graph represents an ordering constraining which paths 

must be calculated first

Given an ordering, we can then iterate from the last module 

backwards, applying the chain rule

⬣ We will store, for each node, its local gradient 

function/computation for efficiency

⬣ We will do this automatically by computing backwards 

function for primitives and as you write code, express the 

function with them

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



Automatic differentiation:

⬣ Carries out this procedure for us 

on arbitrary graphs

⬣ Knows derivatives of primitive 

functions

⬣ As a result, we just define these 

(forward) functions and don’t 

even need to specify the 

gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙  and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms 

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 

L to w



⬣ Key idea is to explicitly store 

computation graph in 

memory and corresponding 

gradient functions

⬣ Nodes broken down to basic  

primitive computations 

(addition, multiplication, log, 

etc.) for which 

corresponding derivative is 

known

Computational Implementation

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟏
 

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬(𝒙𝟐)

+

sin( )

x1

*

𝒂𝟑

𝒂𝟐𝒂𝟏

cos( )

x2



+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐 We want to find the partial 

derivative of output f (output) 

with respect to all intermediate 

variables

⬣ Assign intermediate variables

  Simplify notation: 

  Denote bar as: 𝑎3 =
𝜕𝑓

𝜕𝑎3

⬣ Start at end and move 

backward

Example

𝒂𝟑

𝒂𝟐𝒂𝟏



Example

+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏
 

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐
 

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients 

from multiple 

paths 

summed

Path 1
(P1)

Path 2
(P2)



Patterns of Gradient Flow: Addition

+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients 

along all paths!



Patterns of Gradient Flow: Multiplication

+

sin( )

x1 x2

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐
 

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Multiplication operation is a gradient 

switcher (multiplies it by the values of 

the other term)



Several other patterns as well, e.g.:

Max operation selects which path to 

push the gradients through

⬣ Gradient flows along the path 

that was “selected” to be max 

⬣ This information must be 

recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep 

neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

Max

5 1

5

Max

gradient

gradient



Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20)) 

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the fly
Back-propagation uses the 

dynamically built graph

From pytorch.org



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


⬣ Computation graphs are not 

limited to mathematical 

functions!

⬣ Can have control flows (if 

statements, loops) and 

backpropagate through 

algorithms!

⬣ Can be done dynamically so 

that gradients are computed, 

then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0



Backpropagation, and automatic differentiation, allows us to optimize any 

function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

−𝐥𝐨𝐠 𝒑
𝒑 𝑳

𝑿

Input

Model

Loss Function



A network with two or more hidden 

layers is often considered a deep 

model

Depth is important:

⬣ Structure the model to represent 

an inherently compositional world 

⬣ Theoretical evidence that it leads 

to parameter efficiency

⬣ Gentle dimensionality reduction 

(if done right)

Importance of Depth

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Designing Deep Neural Networks

There are still many design 

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 

Optimization

⬣ Machine Learning 

Considerations

?

Local

Minima
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