Topics:
e Backpropagation
e Matrix/Linear Algebra view

CS 4644-DL / 7643-A
ZSOLT KIRA

* Assignment 1 out!
* Due June 5% (with grace period June 7t)
» Start now, start now, start now!
» Start now, start now, start now!
e Start now, start now, start now!

* Resources:
* These lectures

e Matrix calculus for deep learning

 Gradients notes and MLP/RelLU Jacobian notes.

e Topic OH: Assignment 1 and matrix calculus (TBA)

* Piazza: Project teaming thread
* Project Proposal: June 15, Project Check-in: July 1st.
* Project proposal overview during my OH (Thursday 12:30pm ET, recorded)

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

The main goal of the project proposal is to:

Clearly state the problem you aim to investigate.

Explain why it is interesting or important (the motivation).

Describe how you plan to address it (methods, experiments, datasets).
Provide a short overview of related work and background reading.

bl

Your propesal is a chance for us to give you feedback on your project direction, so don't worry if
all your ideas are not fully concrete yet. Think of it as a condensed version of the “Introduction”
and “Related Work” sections of a typical Computer Vision, NLP, or Robotics conference paper.

Some important dates: the project proposal is due on Feb 14th (11:59pm EST)

Your proposal should address the following questions and points:

What: What problem are you investigating?

So What: Why is it interesting or significant?

Mow What: What course of action or methodology do you propose?

Related Work & Background: Summarize the readings or papers you have examined
that provide context.

bl

Additionally, please include initial thoughts on the following, even if they are not fully concrete:

Unigueness: How does your approach differ from (or build upon) prior works?
Benchmark/Dataset/Setup: What benchmark, dataset, or experimental setup will you
usa?
Algorithms: What class of algorithm(s) will you propose or implement?
Evaluation: How will you measure performance (quantitative) and analyze results
(qualitativelvisualization)? What kinds of analysis do you expect to run?

+ Risks/Roadblocks: What potential challenges do you foresee, and how might you
address them?

You are free to choose any topic you would like. Below are some suggestions if you are having
trouble:

FAQs:

| don't have a group. Can | do my project solo?
No, you will be penalized for not gaining approval for a solo group.

It's the week/day/hour before the proposal deadline, and | couldn’t find a group. Can | do my
project solo?
This is insufficient justification. You will be penalized for not gaining approval for a solo group.

| don’t have a group. When should | start panicking?

We are releasing this info now, but note the proposal is not due until Feb 14. Expect chumn in
groups until early Feb (students will drop, find other topics of interest, etc.). Ideally, you want to
start locking down groups after assignment 2 is due and begin experimenting with ideas before
finalizing a project topic.

Can we use existing implementations?

Yes, you can use existing implementations (do not forget to cite). However, remember that your
project must be comprehensive per the project guidelines; don't provide just the results and
shallow analysis. If you use existing models/code, this is even more important, as we can't judge
how much you have learned from that. The key is to iterate between running, making
hypotheses/claims about what's happening (with evidence, which you should show), and
documenting the decisions you made in response to improving things. Also, be cautious about
unofficial implementations. Often, they have bugs; we typically try to avoid using
implementations that don't reproduce the resuits from the paper. You can often tell as the good
ones have tables comparing their performance to the paper in the README.

Changing topic after the proposal deadline?

It depends. It is a higher risk further in the term. Feel free to attend office hours to ask or make a
private post if you encounter this. Ultimately, it's up to you and your group. The proposal doesn't
lock you into anything; however, the expectations for the final report do not change, even if you
changed topics the week befare.

Can we use pre-trained models?

You are allowed to use pre-trained models. However, just running open-source code is not
sufficient. What we're looking for in the project is making novel contributions in the field (can be
novel in both algorithms and applications). In that case, using a pre-trained model and
fine-tuning on a dataset is insufficient by itself. However, using a pre-trained model and doing
some non-trivial DL as part of the pipeline is acceptable. Do not forget to cite.

Can we use libraries other than Pytorch?
Yes.

What makes a good project?
Usually, projects where the dataset is readily available and existing benchmarks are solid
options. However, you are free to expenment.

Projects where you collect your own data take longer, require more infrastructure, and generally
are not good candidates. We don't discourage passion projects, so if you have something in
mind, go for it! Just be forewamed that you should likely start looking into the infrastructure now
to ensure you have both the right data and enough data amenable to DL. An additional
challenge here is that you will have to create baseline models (naive or otherwise) to show DL
shows improvement over something.

Deep reinforcement leaming (RL) projects are tough for the same reason. In deep EL, you'd be
using a simulator that generates the data you train on. Often, these simulators require
significant debugging to work, so be forewarned. Again, if you're passionate, don't let this stop
you from pursuing projects in this space.

What type of resources are required to train deep neural networks (DMNNs) for the project?
Depending on the dataset, it can take hours or days for models to train on non-frivial datasets. If
you haven't used GPUs or cloud computing before and plan to use them (often necessary for
the Facebook projects or non-trivial datasets), plan on accounting for time to learn how to use
these technologies.

An Example Project Proposal:

A sample will be posted on Canvas. We will make a post with a sample final project report after
the proposal deadline.

GS7643 - Deep Leaming

Learning from Demonstrations using Parameter-efficient
Finetuning of Language Models

Team Name: Precision Pilots
Team Members: Meelabh Sinha, Snigdha Verma, Ananya Sharma
January 26, 2025

1 Project Summary

The knowlsdgs of Languape Madsis (Ls) as next-word prdictors have bean proven to be very poweriul recently.
However, thera is stil a chaleng in sligning their msponsas to user objecves. The ideal way is 1o finetuns them
tmsk, but that ing du to the scale of thess modls. Recantly, in-
context learming, which is prompiing LMs with in-context exampies to get results for a task under zero-shot settings,
has also produced great results. It stands out for its efiiciency; howsver, for long sequence tasks, it encountsrs
limitations due Io msirictive conlext siza of LMs, ie., a maximum cap of saquence kngth under which they produce
good results. When peoviding many in-context examples, it is natural that the prompt size for long-sequence tasks
can exosed this fmit. Wa aim to bridge this gap batween finatuning and in-confext aarming by buikling a techriqua
Sient and improves outpu thasa large LMs on large datasats.

2 Approach

o address the above problem, we proposs g (PEFT) of LMs on these
tasks with prompts containing in-conlext examples. This involves exploring mm mslhudulugas to enhance their
performance in downsiream tasks. These adapters are
that can i or
direction is promising, primariy bacause of two reasons:

1.1t fine-tunes @ much smaller number of parsmeters, sohing the limitation of inefficiency of end-io-end super-
vised finetuning.

ber of parameters. This

2. It can compansate for context siza limitation with in-context lsaming as the finetuning will be done using the
spaciiic downstream tasks.

As in the paper [16], we will focus on two tasks to start: Natural Language Inference and Paraphrase Idenifica-

The hypothesis s that the finetuning with prompts containing in-context exampias will improve the conextsize
imitation of thess modls and the exampies provid the LM with the i needs to pariorm
& new task.

‘W will start from pra-trained OFT [24] models from smallest to largest scale and expariment with difiarent kinds
of PEFT techniques. We have categorized thoss ichniques into multiple typas as listed in Table 1 and will iy to
implement at least ana from each category to do & comparative study of how they paneralize. Some of them are
slso illustrated in Figure 1.

The pre-trained madels are availabis on HuggingFace’

Tipe Techniques
Fromptbased Techmques Prompttuing [12], vaﬁHulmg 73], 5POT [20], T [17]
Representation-based Techniques oRA [11], KronA [4]
Series-based Tachniques Saries Adaplers [0], na.m 21, s'mmmapn.am 8], LeTS [5]
Parallel Tachniques Paralle] A
Hybeid Techniques MAM Adaplers [7), Unipelt [15], Cunpadnr“‘l 84[1]

Table 1: Existing Techniques for PEFT

T ——r——=ST

CS 7643 - Deep Leaming Project Proposal

(b LoRA) Series Adapter) Pasallel Adapter

Figure 1: Some fypes of PEFT iachniques

We will also study how these adapiers behave with increasing scale of LMs. Since OPT provide range of scaled
LMs from 125 million to 30 bilion, we can do this easily. At last, we will - alyze the in-domain and out-of-domain

accuracy along with memory nmsmun the. he range of

‘We will mothods inst and-tt ann in-t as basalines.
Tentative steps are described as follows -
1. Devise methods to ntext Wewil explore using ar SBEAT similarity, as well

to get
510k Into mors sophisticated metods.

2 Pick a Language Modsl and Adapter: We will Use one of the OPT variants with an adapta from Table 1. The
choice will be based on types, usabiliy, olc.

3. Finetune: We can efther do vanilla finetuning [10] of pattern-based finefuning [16] based on

CS 7643 - Deep Leaming Project Propasal

dataset. NLIV2 [22] is also a great dataset which contains many of such tasks with given in-context examples. So,
this will remove our need for and finding and prompts.

Wa can aiso look at some genaration tasks: for our proposed methodology later on, based on timeline. Text
summarizalion is one good example. We can use the NLIV2 [22] for that alsa, as it contains summarization examples
from multiple other datasets.

Allthese datasets are publicly avaliable through the website of the authors of the paper, or HuggingFace®.

5 Group Members

Neglabh Sinha, Snigdha Verma, Ananya Sharma

6 Ethical Implications

Ethical considerations accompany the initiative to fine-tune language madels through parameter-efficient fine-tuning
(PEFT). Eificient fina-tuning could lessan obstacles to unathical use, such as customizing language modsls o pro-
duce misleading, harmiul, or biased conient. Additionally, biases inherent in pre-trained language models could
be exacerbated by fine-tuning, potentially resulling in discriminatory or unfair results in later applications. Privacy
issues might emerge if sensitve data uninientionally becomes part of the fine-tuning datasels, risking exposure
through model outputs. Although PEFT seeks fo reduce resource consumplion compared to traditional methods,
‘even fraining smaler adaplers demands considerable computational power, posing environmental and economic
challenges. Furthermore, tasks like Natural Language Inference and Paraphrase Identification could spread mis-
information if outputs aren't carefully scrutinized or if biases in datasets are perpetuated. Advances in PEFT may
disproportionately benefit organizations with robust computational access, potentially widening gaps between well-
resourced and less-resourced communilies. To counteract these prablems, we commit to conducting comprehensive
aucits of training datasets, INcorporating faimess and robUStNess into our evaluations, documenting our Models’ im-
itations and in2nded purposes, and achering to ethical standards to promote responsibie dovelopment and use of
e

results that we get
4. Evaluate: We will be svaluating our mods!s through the following matrics:
« InDistribution and Out.of-Distribution Accuracios
« Execution Time
* Memory
5. Expariment and Ablation Study: Observe the change in performancs with:
- Scale of LM
» across differant adapters and thair variants
« Baseline comparisons with SFT and IGL

3 Related Work

Supervised finetuning of LMs fine-une a prefrained language model on a specilic fask using a randomized classi-
fication head on top. A variation of it s pattsrn-based finatuning [16] where thers is a verbalizer [18] that maps LM
output logits to desired answer, and rest of ha finetuning is similar. In-context learning [], on the other hand, is a
method that doesn't update model's weights but provides examples similar to the desired task to instruct LMs how
10 respond 1o a given task.

Wa ars exploring PEFT, which s a tschniqua to improve: LM performance by nat moditying s original weights
but adding additional elements and finetune those to allow the LM fo adapt to these new tasks. There are multiple
such methods that are presented and cited in Table 1

4 Datasets

As defined before, we will focus on Wwo iasks: Natural Language Inference (NLI) and Paraphrase Identification. For
NLI, we can use the MNLI [23] and RTE [3] dataset. And for paraphrase idenification, we can use the GOP [19]

our

References

[1] Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li, Alex Smola, and Diyi Yang. Parameter-efficient fine-tuning
design spaces. In The Eleventh Laaming

2] Ido Dagan, Cren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge. In
Joaquin Quiionero-Candsla, Ido Dagan, Bernardo Magnini, and Florence 'Alché Buc, editors, Machine Learn-
ing Challenges. Evaluating Predctive Uncertainy, Visual Object Classificaion, and Racognising Tectual Entail
ment, pages 177180, Berlin, Heidelberg, 2006. Springer Berin Heidelberg.

3] Ido Dagan, Oren Glickman, and Barnardo Magnini. The pascal racognising textual entailment challenge. In
Joaquin Quiionero-Candsla, Ido Dagan, Bernardo Magnini, and Florence 'Alché Buc, editors, Machine Learn-
ing Challenges. Evaluating Predctive Uncertainty, Visual Object Classification, and Recognising Tectual Entail
ment, pagas 177180, Beriin, Heidelbarg, 2006. Springer Bariin Heidalberg.

[4] Ali Edalati, Marzieh Tahaei, lvan Kobyzev, Vahid Partovi Nia, James J. Clark, and Mehdi Rezagholizadeh.
Krona: Parameter efficient tuning with kronecker adapter, 2022.

[5] Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong Tian, and Jishen Zhao. Learn-to-share: A harcware-
friendly transfer learning framewark exploiting computation and parameter sharing. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th Internafional Conierence on Machine Learning, volume 138 of Pro-
ceedings of Maching Learning Research, pages 3469-3479. PMLR, 18-24 Jul 2021.

[6] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Gmham Ngumg Towards a umrnd view
of parameter-efficient ransfer leamning. In 202:

[7] Junxian He, Ghunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a unified view
of parameter-efiicient ransfer learing, 2022.

Zhitpa Thupgigace. oo docaidatase enndex

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

v

56
02 |-05] 01] 20 1.1 -96.8 | Cat score
231
15| 13| 21 1] 0.0 +| 32 | = | 437.9 | Dog score
24
Input image 0 025 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Georgia @1

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

Ax

In Machine Learning: Want to know how the

loss function changes as weights are varied

Can consider each parameter separatel Image and equation from:
P Sep y https://en.wikipedia.org/wiki/Derivative#/media/

by taking partial derivative of loss File:Tangent_animation.gif
function with respect to that parameter ¢

) Derivatives Gegrgia |

=

The same two-layered neural network
corresponds to adding another
weight matrix

We will prefer the linear algebra
view, but use some terminology
from neural networks (& biology)

input layer

hidden layer
X Wl Wz

fx, W,W3) = oc(W0(Wqx))

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

The Linear Algebra View

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow

\

. N7 XSZE
unreasonably (exponential or worse) h‘eﬂ N &7
with respect to the complexity of the ;"“ﬁ ?,1“1‘%
function ‘\‘ M

We will show them without edges:

input :
layer hidden hidden
layer 1 layer 2
output
input —— = layer f(x, er Wz, Wg) = O'(WZ O'(Wlx))
layer layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding More Layers!

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
Inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function

To develop a general algorithm for
this, we will view the function as a
computation graph

Graph can be any directed acyclic
graph (DAG)

Modules must be differentiable to
support gradient computations
for gradient descent

A training algorithm will then
process this graph, one module at a
time

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

) » A General Framework

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass

Note that we must store the intermediate outputs of all layers!

This is because we will need them to compute the gradients (the gradient
equations will have terms with the output values in them)

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

‘9 Neural Network Training

JdL JoL

We want to compute:
Pute: {551)
Layer ¢
aL oL [dL aL
? 7—11 ah! ont ? 7—1
dh dh iL {_ah{’—l'a_w Ji ('L- Loss
: Lo :
i 1 0]
JdL L Oh'
We will use the chain rule to do this: Oht-1~ 9n’ 9n‘-1
0z dz 0y
Chain Rule: — = : oL _ oL dh?
dx 0y O0x ow — ont aw

)‘ Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

alL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

W; =W; —Q
l l awl

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech

Backpropagation: a simple example

f(z,y,2) = (z +y)z
e.g.x=-2,y=5,z=+4

d
g=z+y o = 1, ay =1 —
of
f=qz of _ oFf - Chain rule: dy
0q % Bz ﬂ B Qf 8q
_ Of oF of Oy~ Oq By
Want. Oz ’ By’ 0z Upstr/(;am Lgcal

gradient gradient

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— Output = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)
— Backpropagation implementation on the graph

)

Modularized implementation: forward / backward API

~ o3 TN 1
xp) {41 =
CFENG

W 0T
- m) -
TR 0

Graph (or Net) object (rough psuedo code)

class ComputationalGraph(object):
#...
def forward(inputs):
1. [pass inputs to input gates...]
2. forward the computational graph:
for gate in self.graph.nodes topologically sorted():
gate.forward()
return loss # the final gate in the graph outputs the loss
def backward():
for gate in reversed(self.graph.nodes topologically sorted()):

gate.backward() # little piece of backprop (chain rule applied)

return inputs _gradients

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
#AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL
Ox

)

Modularized implementation: forward / backward API

class MultiplyGate(object):
X def forward(x,y):
Z = x*y

self.x = x # must keep these around!

self.y = y
return z
)/ def backward(dz):
dx = self.y * dz # [dz/dx * dL/dz]
(x,y,z are scalars)

dy = self.x * dz # [dz/dy * dL/dz]

return [dx, dy]

Example:; Caffe layers

Branch: master~ caffe [src | caffe / layers / Create new file

E shelhamer committed on GitHub Merge pull request #4630 from BlGene/load_hdf5_fix

[£] absval_layer.cpp

[£] absval_layer.cu

[accuracy_layer.cpp

) argmax_layer.cpp

E) base_conv_layer.cpp

[E) base_data_layer.cpp

[E) base_data_layer.cu

[l batch_norm_layer.cpp
[E) bateh_norm_layer.cu

[E) batch_reindex_layer.cpp
[E batch_reindex_layer.cu
[Z] bias_layer.cpp

[£] bias_layer.cu

[E] bnll_layer.cpp

[bnll_layer.cu

[£] concat_layer.cpp

[£] concat_layer.cu

[Z] contrastive_loss_layer.cpp
[£] contrastive_loss_layer.cu
[] conv_layer.cpp

E) conv_layer.cu

[E crop_layer.cpp

[E) crop_layer.cu

[l cudnn_conv_layer.cpp

[l cudnn_conv_layer.cu

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

enable dilated deconvolution

Using default from proto for prefetch

Switched multi-GPU to NCCL

Add missing spaces besides equal signs in batch_norm_layer.cop
dismantle layer headers

dismantle layer headers

dismantle layer headers

Remove incorrect cast of gemm int arg to Dtype in BiasLayer
Separation and generalization of ChannelwiseAffineLayer into BiasLayer
dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

add support for 2D dilated convelution
dismam‘%[i#‘ee[s%@ﬂ?éa under BSD 2-Clause

remove redundant operations in Crop layer (#5138)

remove redundant operations in Crop layer (#5138)
dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support

Find file = History

Latest commit e687a71 21 days ago

ayear ago
ayear ago
ayear ago
ayear ago
a year ago
3 months ago
3 months ago
4 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
ayear ago
ayear ago
ayear ago
ayear ago
ayear ago
ayear ago
a year ago
2 months ago
2 months ago

a year ago

11 months ago

[E) cudnn_len_layer.cpp

E) cudnn_len_layer.cu

E) cudnn_Irn_layer.copp

E) cudnn_irn_layer.cu

[E) cudnn_pooling_layer.cop
B cudnn_poocling_layer.cu
El cudnn_relu_layer.cpp

El cudnn_relu_layer.cu

E) cudnn_sigmoid_layer.cpp
E) cudnn_sigmoid_layer.cu
[E) cudnn_softmax_layer.cpp
[E) cudnn_softmax_layer.cu
[E) cudnn_tanh_layer.cpp

[E) cudnn_tanh_layer.cu

[E) data_layer.cpp

[E] deconv_layer.cpp

[E) deconv_layer.cu

[E) dropout_layer.cpp

[E) dropout_layer.cu

[E) dummy_data_layer.cpp
[E) eltwise_layer.cpp

[E) eltwise_layer.cu

[E) elu_layer.cpp

[E) elu_layer.cu

[E] embed_layer.cpp

[E)] embed_layer.cu

[E) euclidean_loss_layer.cpp
[E] euclidean_loss_layer.cu
[E) exp_layer.cpp

[E] exp_layer.cu

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
dismantle layer headers

dismantle layer headers

Add cuDNN v5 support, drop cuDNN v3 support
Add cuDNN v5 support, drop cuDNN v3 support
Switched multi-GPU to NCCL

enable dilated deconvolution

dismantle layer headers

supporting N-D Blobs in Dropout layer Reshape
dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

ELU layer with basic tests

ELU layer with basic tests

dismantle layer headers

dismantle layer headers

dismantle layer headers

dismantle layer headers

Solving issue with exp layer with base e

dismantle layer headers

a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
11 months ago
11 months ago
11 months ago
11 months ago
a year ago
a year ago
11 months ago
11 months ago
3 months ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago
a year ago

a year ago

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

#include <cmath>
#include <vector>

.
Caffe Sigmoid Layer

template <typename Dtype>
inline Dtype sigmoid(Dtype x) {
return 1. / (1. + exp(-x));

}

template <typename Dtype>
void Sigmoidlayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->cpu_data(); 1
Dtype* top_data = top[0]->mutable_cpu_data();
const int count = bottom[0]-

for (int 1 = 0; 1 < count; ++i / () 1 —_r
top_data[1] = signoid(bottom_data[i]); €
}
H
—_— 1
—
Template <typename Dtypes

void SigmoidLayer<Dtype>: :Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (propagate_down[0]) {
const Dtype* top_data = top[0]->cpu_data();
const Dtype* top_diff = top[6]->cpu_diff();
Dtype* bottom diff = bottom[6]->mutable_cpu_diff();
const int count = bottom[0]->count();
for (int i =0; i < count; ++i) {
const Dtype sigmoid x = top_data[i];

S eb——— (1 —a(z))e(z) | * top_diff (chain rule

fdef CPU_ONLY
STUB_GPU(SigmoidLayer);
#endif

INSTANTIATE_CLAS

SigmoidLayer);

}

Caffe is licensed under BSD 2-Clause

https://github.com/BVLC/caffe
https://github.com/BVLC/caffe/blob/master/LICENSE

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function?

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

Linear
Algebra

View:
Vector and
Matrix Sizes

Georgia
graia |

_ 1 X1
Wi Wiz - Wy, b1 X
Wa1 Wz - Wz b2| | .
W31 Waz - Wi B3] |,
N
w X

Sizes: [cx(m+1)] [(m+1)x1]
Where ¢ is number of classes

m is dimensionality of input

) Closer Look at a Linear Classifier Ge‘%&%ﬂ{&

=

Conventions:
Size of derivatives for scalars, vectors, and matrices:

Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., V)T
and matrix M € R™M1xmz

s [] V“ M
s %107 9 1 9
ds- ov oM
v | v,
V' %] v, ‘
M| Ml Tensors

Georgia @

Tech

Dimensionality of Derivatives I

Conventions:

Size of derivatives for scalars, vectors, and matrices:
Assume we have scalar s € R, vector v € R™, i.e. v = [v, V3, ..., U]

and matrix M € R™M1xmMz] _
61}1

ds
What is the size of % ? R™*1 (column vector of size m) | av,

o
What is the size of % ? R™ (row vector of size m) a;,m

L Js -

[65 ds as]

dv, 0vq v,

) Dimensionality of Derivatives Gograta)

=

Conventions:

: . vl : Col 7
What is the size of — ? A matrix: olJ
v - 1 .
0vq
_2 LN LN o0 0 o0 0
ov7
' 1 1 1
ROW l avi o 00 avi o0 0 avi
Vs v} 0vs,,

my X m,
This matrix of partial derivatives is called a Jacobian

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

ecC

=

) Dimensionality of Derivatives Gograta)

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Conventions:

What is the size of :—:4 ? A matrix:

P _
ds

(Note this is slightly different convention than on Wikipedia). Also, computationally other conventions are used.

) Dimensionality of Derivatives Gograta)

=

https://en.wikipedia.org/wiki/Matrix_calculus#Derivatives_with_matrices

Example 1:

_[Ya_g*x ady 11
Y= J’z] - [x2] a_ Zx]
Example 2:
y=wlx=) wgx,
2.
ay lay dy
ax |dx; "' dx
. O(Th WiXi) _

= [Wq, e, Wiy because i

Oxi

) Examples Gograta)

=

Example 3:
y=Wx —=W

T
0xq
Row /7 |.. .. 2% . . |= [~ = wyg = = J’i=ZWiixi
axj ces ces cos cos cos]

Example 4:

Jd(wAw)
ow

) Examples Gograta)

=

= 2w’ A (assuming A is symmetric)

What is the size of oL ?
oW

Remember that loss Is a scalar and W is a matrix:

Wi1 Wiz 0 Wy b1
Wz1 Wiz * Wy b2
W31 W3z - Wgy, b3
Jacobian is also a matrix: W
- JdL oL oL OL
dwy, 0wy, 0wy, 0by
oL oL oL
w7 Fwe 3b)
oL oL
aW3m abg_

Dimensionality of Derivatives in ML Gegrata |

=

Batches of data are matrices or tensors (multi- X11 X12 X1n]
dimensional matrices) Xp1 Xz * Xon
Examples: : : " :
Each instance is a vector of size m, our batch is of | Xn1 Xn2 " Xnn]
size [B X m]
Each instance is a matrix (e.g. grayscale image) of Flatten @
size W X H, our batch is [B X W X H] X
: : : : 11
Each instance is a multi-channel matrix (e.g. color X1o
image with R,B,G channels) of size € x W x H, our .
batch is [B x C x W X H] x.
21
Jacobians become tensors which is complicated X292
Instead, flatten input to a vector and get a vector of :
NS
derivatives! X1
This can also be done for partial derivatives :
between two vectors, two matrices, or two tensors | X

) Jacobians of Batches Gegrala |

=

Input Function Output

|14
Parameters
Define:
f __ £—1
0 _ o Typ—1 h* = Wh
hi i Wi h == ;_ T_; -
Wi

IR x1 |k x |hf~1| |Rf1|x 1

) Fully Connected (FC) Layer: Forward Function

h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

hi = wik™ [JC]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in

ht = Wht 1 Jacobian tensor!
But it is sparse — each
dht . output only affected by
ant-1 w corresponding weight row
Define:

¢ _ W Tht-1
h; =w;h

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse — each

h* = Wh1
an? : AW output only_affecte_d by
- W corresponding weight row
-1
oh l)
Define: aLT L oL ahT aL
h{ _ Wz‘h{)_l ow: oh’ ?Wi)] ow i
L I R
? oh! R
Ohi _ iy -2 ,
ow; o lterate and populate
/-1 ’ P ¢—1, |lterate and populate
1 XA 1 |h7| |R7| X |h"~7 Note can simplify/vectorjze!

) Fully Connected (FC) Layer

We can employ any differentiable 2

function i

A common choice is the Rectified o |

Linear Unit o]
Provides non-linearity but better A | —
gradient flow than sigmoid EEEE O.. o o 1 1 e
Performed element-wise Rt — maX(O R 1)

. 0,
How many parameters for this layer? E — a

) Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

Backward:

AN

|h¢ x h?~1|

Input Function Output

w

|14
Parameters

Forward: h* = max(0, h‘™1)

aL dhn?

For diagonal

dht
ahf—l =

|

ont-1 ~— 9nt o9nt-1

1 ifh""1>0
0 otherwise

) Jacobian of ReLU

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
R — [1
21 f(x)=max(0,x) | L U
- 31-_ — | (elementwise) | T | g :
. 4D dL/dz:
What doesalooklike? [4] +——
[-1]+—— Upstream
[5]+ gradient
[9]+

Georgia ﬂ
Tech|)

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
1] — — 1
2 1 f(x) =max(0,x) | L V|
; 31: | (elementwise) Tl 8 :
4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:
4] [4] ~—[4]—
[0] (00][-1] <+ [-1]*+—— Upstream
(5] < 10][5] < (5]+ gradient
0] < [0000][9] <+~ [9]-

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ﬂ
Tech ||

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? Next!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

Composition of Functions: f(g(x)) = (fe g)(x)

A complex function (e.g. defined by a neural network):

f) =9, (gr-1(..91(x)))
f(x)=9,°9p-1..°91(x)

(Many of these will be parameterized)

(Note you might find the opposite notation as well!)

) Composition of Functions & Chain Rule Gogrola |

=

z € R1
g1 g2

x € R1 y € R1

y=92(91(x))

oy 0z
_ o9y 0z

B aax‘ dx

Scalar Multiplication

) Scalar Case Gegrgia |

=

%€ RY — Z{€ R™ — J{€ RE

g1 g2
R » R™ R™ — RC
0y — 0y 0z
0x 0z 0x
]g1°gz 191 ‘]gz

Matrix Multiplication

=

) Vector Case Gegrgia |

ax] aZk 6x]

% _ dy; . 0z,
0x; ~ 0z 0x;

Jacobian View of Chain Rule Gegroia |

=

=
[N

N
[EnY

V1

=

/

\
o000 00O®O
o0 O

=

i
-

Graphical View of Chain Rule Gogrola |

=

ho € R hfe RE{— .. —— hle R4
ont oh! ghl-1 dh?
ont ~— 9nl-1 ohi-2 " 9ht

) Chain Rule: Cascaded Gegrala |

=

ho € R4 heRl—— .. —— hleR4——[cRl
oL 0L 9rt gnl Oh?
dhl~ 9h! gpi-t ont-2 " ant

B R O O B

Which directions is more efficient to multiply?

) Chain Rule: Cascaded Gegrala |

=

w

1+e™

—log(p)

t~I
I

a~1|
Il
QJ|Q.>P-‘
=~
[y

1

where p = o(w'x) and o(x) =

1+e™*
— _ 0L oL ap
= 1-
u u ap du O'(O')
_ OL 0L du _ _ T
w = =ux

o Bw 6u 6w

We can do this in a combined way to see all terms
together:

__ 0L ap au_

s

ap ou ow a(wa) o(w'x)(1—a (whx))x"

= —(1 — O'(W x))

This effectively shows gradient flow along path from
Ltow

Example Gradient Computations

The chain rule can be u X p L
computed as a series of wix [=—> T | —log(p) —
scalar, vector, and matrix
linear algebra operations [] | L] L]
1x1 1x1
1xd
“dx1
Extremely efficient in B ’ . . .
graphics processing units W=— a(wix)(1—a (w'x))x
(GPUS) (1 [(] []
1x1 1x1 1x1 1xd

) Vectorized Computations

1 1
Ty = — }—]-1 L wlx o : » —lo —
whx og() — £®)
CII § 3

L=1

_ a1 1xd 1x1 1x1
P*a— _1_7

“dx1

where p = o(w'x) and o(x) = Hl?

_ L _aL ap

u=g= a—pa(l) w=— a(wa) o(wl x)(l a(w x))a”
oo oy (3 c1 01 C 3
B 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms :
together:
Wt o(wx)(1 - a (W) Computational / Tensor View Graph View
=- (1 —o(w' x))
This effectively shows gradient flow along path from aL aL
Ltow We want to to compute: { aht-1’ OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule i IO ‘—»3"" ah—-— Loss

: | o :
1 | OW 1

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:
Composition of functions (scalar)
Composition of functions (vectors/matrices)
Jacobian view of chain rule

Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

) Summary Gegrgia |

=

Automatic

Differentiation

4
Georgi <
oroiad| &

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— QOutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
#AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL
Ox

)

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its local gradient
function/computation for efficiency

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Ge‘%&%ﬂ?

L=1

u p L oL 1

1 p = — =
1+e™ 1

where p = g(w'x) and o(x) = —

o W= 5= m=Po-0)

Automatic differentiation:
. . _ 6L aL 6u _
Carries out this procedure for us W= = aw = WX

on arbitrary graphs We can do this in a combined way to see all terms

Knows derivatives of primitive together:
functions u
w=2®n___1_G(wx)(1-0 (w'x))aT

. . dp ou ow a(w x)
As a result, we just define these (1 ())

. = - — 0 W X
(forward) functions and don’t
even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

. . - . —_— af 6a1 =
Key idea is to explicitly store 2 = 307 ax, — 31 C€OS(x2)

computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

f(x1,%2) = x1%2 + sin(xz) We want to find the partial

derivative of output f (output)
with respect to all intermediate

o variables

a, a, Assign intermediate variables

Simplify notation:
Gn(D O PITy y

Denote bar as: a; = F
3

Start at end and move

C x,) C x, D backward

2
Georgi S
Teclﬂg \y

f(xq,x2) = x1x, + sin(x,)

aGi=—=1
3 6a3
g O _Of a3 _ Of daray) _ f 4 _ -
1 6a1 6a3 6a1 6a3 aal aag 3
__ 9 Of daz __
2 = = = a3
aaz aag aaz
—p1 _ Of day _ __
Xo" =— —=4aq Cos\x
2 6a1 axz 1 (2)
Gradients
£P2 =9 9a; _ 9f d(x1x2) -, from multiple
2 da,; 0dx; da, 0xy 2 1pathS
summed
. of day
X1 =7 7—— =4aXx
1 aaz 6x1 272

2
Georgi S
Teclﬂ S

f(xq,x2) = x1x, + sin(x,)

____df _ Oof daz _ Of d(aytay) _ Of L
a; = = = =21 1=a3
6a1 6a3 aal 6a3 6a1 6a3
G = _9f day_
2 aaz 6a3 6a2 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

f(xq,x2) = x1x, + sin(x,)

Multiplication operation is a gradient
switcher (multiplies it by the values of
the other term)

__ df day _ of 0(x1x2) _

= = =a,X
2 aaz axz aaz 6.762 271

Patterns of Gradient Flow: Multiplication

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 3 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

) Patterns of Gradient Flow: Other

A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

) Computation Graphs in PyTorch

Convolutional network (AlexNet)

Neural Turing Machine

iInput image/

loss \

https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\‘!
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 20~

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X l g = '| —log(p) lL*
Model
Input ﬂ Loss Function

» The Power of Deep Learning

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent

an inherently compositional world output

layer

Theoretical evidence that it leads

. . input
to parameter eff|C|ency layer hidden hidden

layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth

There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization

_ _ Local
Machine Learning

Considerations

) Designing Deep Neural Networks

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Deep Learning = Differentiable Programming
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Deep Learning = Differentiable Programming
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Convolutional network (AlexNet)
	Slide 74: Neural Turing Machine
	Slide 75
	Slide 76
	Slide 77
	Slide 78

