
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Autodiff

• Optimization

Administrivia

• Assignment 1 out!
• Due June 5th (with grace period June 7th)

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Resources:

• These lectures

• Matrix calculus for deep learning

• Gradients notes and MLP/ReLU Jacobian notes.

• Topic OH: Assignment 1 and matrix calculus (linked today)

• Piazza: Project teaming thread

• Project Proposal: June 15th, Project Check-in: July 1st .

• Project proposal reviewed last time

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

56 231

24 2

Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0 0.25 0.2 -0.3
Input image

56

231

24

2

Stretch pixels into column

1.1

3.2

-1.2

+

-96.8

437.9

61.95

=

Cat score

Dog score

Ship score

𝑾 𝒃

Derivatives

⬣ We can find the steepest descent direction by

computing the derivative (gradient):

⬣ Steepest descent direction is the negative

gradient

⬣ Intuitively: Measures how the function

changes as the argument a changes by a small

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the

loss function changes as weights are varied

⬣ Can consider each parameter separately

by taking partial derivative of loss

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from:

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙

Large (deep) networks can be built by

adding more and more layers

Three-layered neural networks can

represent any function

⬣ The number of nodes could grow

unreasonably (exponential or worse)

with respect to the complexity of the

function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

input
layer hidden

layer 1
hidden
layer 2

output
layer

input

layer
hidden

layer 1
hidden

layer 2

output

layer 𝒇 𝒙, 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙)

⬣ We are learning complex models with significant amount of

parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with

respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep

inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss

Function

𝝏𝑳

𝝏𝒘𝒊
?

⬣ We want to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

 Chain Rule:
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝑾

Layer ℓ

Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Backpropagation is the application of

gradient descent to a computation

graph via the chain rule!

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W
matrix would result in

Jacobian tensor!

But it is sparse – each

output only affected by

corresponding weight row𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾

𝝏𝑳

𝝏𝒘𝒊
𝑻 =

𝝏𝑳

𝝏𝒉ℓ

𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

𝟎

𝟎

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻 = 𝒉 ℓ−𝟏 ,𝑻

Define:

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾

Iterate and populate

Note can simplify/vectorize!

We can employ any differentiable

(or piecewise differentiable)

function

A common choice is the Rectified

Linear Unit

⬣ Provides non-linearity but better

gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti

c

2

1.

8
1.

6
1.

4
1.

2
1

0.

8
0.

6
0.

4
0.

2
0

-2 -

1.

5

-1 -

0.

5

0 0.

5

1 1.

5

2

𝒉ℓ = 𝐦𝐚𝐱 𝟎, 𝒉ℓ−𝟏

max(0,_)

Full Jacobian of ReLU layer is large

(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero

because it is element-wise

⬣ An output value affected only by

corresponding input value

Max function funnels gradients

through selected max

⬣ Gradient will be zero if input

<= 0

Jacobian of ReLU

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Forward: 𝒉ℓ = 𝐦𝐚𝐱(𝟎, 𝒉ℓ−𝟏)

Backward:
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

|𝒉ℓ × 𝒉ℓ−𝟏|

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏
= ቊ

𝟏
𝟎

𝒊𝒇 𝒉ℓ−𝟏 > 𝟎
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For diagonal

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!

Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Summary

• Neural networks involves composing simple functions into a

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain

rule

• Remaining questions:

• How does this work with vectors, matrices, tensors?

• Across a composed function? Next!

• How can we implement this algorithmically to make these

calculations automatic? Automatic Differentiation

The chain rule can be

computed as a series of

scalar, vector, and matrix

linear algebra operations

Extremely efficient in

graphics processing units

(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

ഥ𝒘 = −
𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

1xd1x11x11x1

Computation Graph /
Global View of Chain Rule

Computational / Tensor View

Backpropagation View
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas

Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or

matrix-matrix multiplication)

• Automatic differentiation:

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass

Automatic

Differentiation

Deep Learning = Differentiable Programming

• Computation = Graph

– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?

– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

(C) Dhruv Batra 19

20

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Backpropagation does not really spell out how to efficiently

carry out the necessary computations

But the idea can be applied to any directed acyclic graph

(DAG)

⬣ Graph represents an ordering constraining which paths

must be calculated first

Given an ordering, we can then iterate from the last module

backwards, applying the chain rule

⬣ We will store, for each node, its local gradient

function/computation for efficiency

⬣ We will do this automatically by computing backwards

function for primitives and as you write code, express the

function with them

This is called reverse-mode automatic differentiation

A General Framework

Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming

Automatic differentiation:

⬣ Carries out this procedure for us

on arbitrary graphs

⬣ Knows derivatives of primitive

functions

⬣ As a result, we just define these

(forward) functions and don’t

even need to specify the

gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙 and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑

𝝏𝒑

𝝏𝒖

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙)𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from

L to w

⬣ Key idea is to explicitly store

computation graph in

memory and corresponding

gradient functions

⬣ Nodes broken down to basic

primitive computations

(addition, multiplication, log,

etc.) for which

corresponding derivative is

known

Computational Implementation

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬(𝒙𝟐)

+

sin()

x1

*

𝒂𝟑

𝒂𝟐𝒂𝟏

cos()

x2

Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)

Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the fly
Back-propagation uses the

dynamically built graph

From pytorch.org

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐 We want to find the partial

derivative of output f (output)

with respect to all intermediate

variables

⬣ Assign intermediate variables

 Simplify notation:

 Denote bar as: 𝑎3 =
𝜕𝑓

𝜕𝑎3

⬣ Start at end and move

backward

Example

𝒂𝟑

𝒂𝟐𝒂𝟏

Example

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients

from multiple

paths

summed

Path 1
(P1)

Path 2
(P2)

Patterns of Gradient Flow: Addition

+

sin()

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients

along all paths!

Several other patterns as well, e.g.:

Max operation selects which path to

push the gradients through

⬣ Gradient flows along the path

that was “selected” to be max

⬣ This information must be

recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep

neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

Max

5 1

5

Max

gradient

gradient

input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and

Geoffrey Hinton, 2012. Reproduced with permission.

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en

⬣ Computation graphs are not

limited to mathematical

functions!

⬣ Can have control flows (if

statements, loops) and

backpropagate through

algorithms!

⬣ Can be done dynamically so

that gradients are computed,

then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0

Backpropagation, and automatic differentiation, allows us to optimize any

function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

−𝐥𝐨𝐠 𝒑
𝒑 𝑳

𝑿

Input

Model

Loss Function

A network with two or more hidden

layers is often considered a deep

model

Depth is important:

⬣ Structure the model to represent

an inherently compositional world

⬣ Theoretical evidence that it leads

to parameter efficiency

⬣ Gentle dimensionality reduction

(if done right)

Importance of Depth

input
layer hidden

layer 1
hidden
layer 2

output
layer

Designing Deep Neural Networks

There are still many design

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and

Optimization

⬣ Machine Learning

Considerations

?

Local

Minima

Architectural

Considerations

Determining what modules to use, and how to

connect them is part of the architectural

design

⬣ Guided by the type of data used and its

characteristics

⬣ Understanding your data is always the

first step!

⬣ Lots of data types (modalities) already

have good architectures

⬣ Start with what others have

discovered!

⬣ The flow of gradients is one of the key

principles to use when analyzing layers

Designing the Architecture

?

⬣ Combination of linear and

non-linear layers

⬣ Combination of only linear

layers has same

representational power as one

linear layer

⬣ Non-linear layers are crucial

⬣ Composition of non-linear

layers enables complex

transformations of the

data

Linear and Non-Linear Modules

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

𝒘𝟏
𝑻(𝒘𝟐

𝑻(𝒘𝟑
𝑻𝒙)) = 𝒘𝟒

𝑻x

Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input &

output statistics

⬣ Gradients

⬣ At initialization (e.g. small

values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function

⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential

term

Sigmoid Function

Sigmoid

Derivative

𝒉ℓ = 𝝈 (𝒉ℓ−𝟏)

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙
𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ
𝝏𝒉ℓ

𝝏𝑾

⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat

computationally heavy

Tanh Function

tanh
Derivative

𝒉ℓ = 𝒕𝒂𝒏𝒉(𝒉ℓ−𝟏)

⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ 𝟎 if 𝐱 ≤ 𝟎 (dead ReLU)

⬣ Constant otherwise (does

not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

𝒉ℓ = 𝒎𝒂𝒙(𝟎, 𝒉ℓ−𝟏)

⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

𝒉ℓ = 𝒎𝒂𝒙(𝜶𝒉ℓ−𝟏, 𝒉ℓ−𝟏)

⬣ Activation functions is

still area of research!

⬣ Though many don’t

catch on

⬣ In Transformer

architectures, other

activations such as

GeLU is common

Variations: ELU, GeLU, etc.

θ

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel

Selecting a Non-Linearity

Which non-linearity should you

select?

⬣ Unfortunately, no one activation

function is best for all applications

⬣ ReLU is most common starting

point

⬣ Sometimes leaky ReLU can

make a big difference

⬣ Sigmoid is typically avoided

unless clamping to values from

[0,1] is needed

Demo
• http://playground.tensorflow.org

http://playground.tensorflow.org/

Initialization

Initializing the Parameters

The parameters of our model must be

initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs

(given inputs) behave

⬣ Determines how well gradients flow in

the beginning of training (important)

⬣ Could limit use of full capacity of the

model if done improperly

⬣ Initialization that is close to a good (local)

minima will converge faster and to a better

solution

⬣ What happens to the

weight updates?

⬣ Each node has the same

input from previous layers

so gradients will be the

same

⬣ As a results, all weights

will be updated to the

same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input
layer

hidden
layer 1

hidden
layer 2

output
layer

𝒘𝒊 = 𝒄 ∀𝒊

⬣ E.g. 𝑵 𝝁, 𝝈 𝒘𝒉𝒆𝒓𝒆 𝝁 = 𝟎, 𝝈 = 𝟎. 𝟎𝟏

⬣ Small weights are preferred since

no feature/input has prior

importance

⬣ Keeps the model within the linear

region of most activation

functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers

⬣ With a deep network,

activations (outputs of

nodes) get smaller

⬣ Standard deviation reduces

significantly

⬣ Leads to small updates –

smaller values multiplied by

upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to

initialization

Distribution of activation values

of a network with tanh non-

linearities, for increasingly deep

layers

From "Understanding the difficulty of training deep

feedforward neural networks." AISTATS, 2010.

⬣ This condition leads to a

simple initialization rule,

sampling from uniform

distribution:

 Uniform −
𝟔

𝒏𝒋+𝒏𝒋+𝟏
, +

𝟔

𝒏𝒋+𝒏𝒋+𝟏

⬣ Where 𝒏𝒋 is fan-in

(number of input nodes)

and 𝒏𝒋+𝟏 is fan-out

(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar

to that of input!

Distribution of activation values

of a network with tanh non-

linearities, for increasingly deep

layers

From "Understanding the difficulty of training deep

feedforward neural networks." AISTATS, 2010.

(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

N 𝟎, 𝟏 ∗
𝟏

𝒏𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

𝑵 𝟎, 𝟏 ∗
𝟏

𝒏𝒋/𝟐

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.

Key takeaway: Initialization matters!

⬣ Determines the activation (output)

statistics, and therefore gradient

statistics

⬣ If gradients are small, no learning

will occur and no improvement is

possible!

⬣ Important to reason about

output/gradient statistics and

analyze them for new layers and

architectures

Summary

Regularization

Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2: 𝑳 = 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀 𝑾|𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝜶 𝑾|𝟐 + 𝜷|𝑾|

Regularization

Many standard regularization methods still apply!

L1 Regularization

𝑳 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀|𝑾|

where |𝑾| is element-wise

Problem: Network can learn to rely strong on a few features that work

really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input
layer hidden

layer 1
hidden
layer 2

output
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

An idea: For each node, keep its output with probability p

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

𝒑 = 𝟎. 𝟓

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

⬣ In practice, implement

with a mask calculated

each iteration

⬣ During testing, no

nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

⋅

input
layer hidden

layer 1
hidden
layer 2

output
layer

⬣ During training, each node has an

expected 𝒑 ∗ 𝒇𝒂𝒏_𝒊𝒏 nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have

similar train and test-time

input/output distributions!

Solution: During test time, scale

outputs (or equivalently weights) by 𝒑

⬣ i.e. 𝑾𝒕𝒆𝒔𝒕 = 𝒑𝑾

⬣ Alternative: Scale by
𝟏

𝒑
 at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

𝟎
𝟏
𝟎
𝟏

⋅

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should

not rely too heavily on particular

features

⬣ If it does, it has probability 𝟏 − 𝒑

of losing that feature in an

iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Interpretation 1: The model should

not rely too heavily on particular

features

⬣ If it does, it has probability 𝟏 − 𝒑

of losing that feature in an

iteration

Interpretation 2: Training 𝟐𝒏

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-

batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input
layer hidden

layer 1
hidden
layer 2

output
layer

Optimizers

Loss Landscape

Deep learning involves complex,

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result

There is little direct theory and a lot of

intuition/rules of thumbs instead

⬣ Some insight can be gained via

theory for simpler cases (e.g.

convex settings)

Loss Landscape

It used to be thought that

existence of local minima is

the main issue in optimization

There are other more

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point

Noisy Gradients

⬣ We use a subset of the

data at each iteration to

calculate the loss (&

gradients)

⬣ This is an unbiased

estimator but can have

high variance

⬣ This results in noisy steps

in gradient descent

𝑳 =
𝟏

𝑴
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)

Loss Surface Geometry

Several loss surface geometries

are difficult for optimization

Several types of minima: Local

minima, plateaus, saddle points

Saddle points are those where the

gradient of orthogonal directions

are zero

⬣ But they disagree (it’s min for

one, max for another)

Plateau

Saddle Point

Adding Momentum

⬣ Gradient descent takes a step in the

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling

down loss surface, and use

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights

Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

= 𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏

Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights

Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 + 𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity

with current gradient, go along velocity

first and then calculate gradient at new

point

⬣ We know velocity is probably a

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Note there are several equivalent

formulations across deep learning

frameworks!

Resource:

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Summary

• Activation Functions: Use ReLU, GeLU, etc.

• Initialization: Important for initial activation and gradient statistics

• Normalization: Use dynamic normalization with learnable parts

• Optimization: Use momentum (helps w/ local minima, etc.)

• Next: More sophisticated gradient history/statistics in update rule

Hessian and Loss Curvature

⬣ Various mathematical ways to

characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the

curvature of the loss surface

First

order

Second

order

Condition Number

Condition number is the ratio of

the largest and smallest eigenvalue

⬣ Tells us how different the

curvature is along different

dimensions

If this is high, SGD will make big

steps in some dimensions and

small steps in other dimension

Second-order optimization methods

divide steps by curvature, but

expensive to compute

Idea: Have a dynamic learning rate

for each weight

Several flavors of optimization

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in

many cases but with much more

tuning

Per-Parameter Learning Rate

Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics

to reduce learning rate across

iterations

Denominator: Sum up

gradients over iterations

Directions with high

curvature will have higher

gradients, and learning rate

will reduce
Duchi, et al., “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”

As gradients are

accumulated learning

rate will go to zero

RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving

average of squared

gradients!

Does not saturate the

learning rate

Adam

Combines ideas from

above algorithms

Maintains both first

and second moment

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning

(one or both of moments will be

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015

Adam

Solution: Time-varying bias

correction

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number

divided by (1-0.9=0.1) resulting

in more reasonable values (and
෡𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒕 ෢𝑮𝒊 =

𝑮𝒊

𝟏 − 𝜷𝟐
𝒕

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

෢𝑮𝒊 + 𝝐

Behavior of Optimizers

Optimizers behave differently

depending on landscape

Different behaviors such as

overshooting, stagnating, etc.

Plain SGD+Momentum can

generalize better than adaptive

methods, but requires more tuning

⬣ See: Luo et al., Adaptive

Gradient Methods with

Dynamic Bound of Learning

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/images/pdf_icon_blue.svg

https://openreview.net/pdf?id=Bkg3g2R9FX

Learning Rate Schedules

First order optimization methods have

learning rates

Theoretical results rely on annealed

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Deep Learning = Differentiable Programming
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Convolutional network (AlexNet)
	Slide 32: Neural Turing Machine
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Demo
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

