Topics:
e Autodiff
* Optimization

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 1 out! P —— .

CIOS OO InfoReady +* GradeChange Workday IC Docs Deliverables *¥ Kira FY2024xisx < . MediaSpace Slate Reader ‘ B vimzs s

C54644: https:/iwww.gradescope.com/courses/1037086

[] D u e J u n e 5th (Wit h gra ce pe riod J u ne 7th) CS7643: https:/iwww gradescope.com/courses/1037087

e Start now, start now, start now! (o) < > Moyz0zs - 5o o o
* Start now, start now, start now! AR N
e Start now, start now, start now! ‘ ; ‘ 7 : : o

Resources: \ . . \ ., . ;

* 11:30am Kausar © 12:30pm Instruc ® 1:30am Kausar

* These lectures

25 2% 7] 28 29 30 3
o 2:30pm Mil's O 11:30am Kausar e 3:30pm Mil's O 12:30pm Instruc e 1:30am Kausar
. . * 3:30pm Yipu's € * 3:30pm Mil's O 3:30pm Yipu's €
e Matrix calculus for deep learning
CS7643/4644 Sum25
/ents shown in time zone: (GMT-04:00) Eastern Time - New York Google Calendar

 Gradients notes and MLP/RelLU Jacobian notes.

* Topic OH: Assignment 1 and matrix calculus (linked today)

Piazza: Project teaming thread
* Project Proposal: June 15, Project Check-in: July 1st.
e Project proposal reviewed last time

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf

Example with an image with 4 pixels, and 3 classes (cat/dog/)

Stretch pixels into column

v

56
02 |-05] 01] 20 1.1 -96.8 | Cat score
231
15| 13| 21 1] 0.0 +| 32 | = | 437.9 | Dog score
24
Input image 0 025 0.2 | -0.3 -1.2 61.95 | Ship score
2
|14 b

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n

) Example Georgia @1

We can find the steepest descent direction by
computing the derivative (gradient):

fla+h)—f(a)
h

Steepest descent direction is the negative
gradient

f'(a) = lim

Intuitively: Measures how the function
changes as the argument a changes by a small
step size

As step size goes to zero

Ax

In Machine Learning: Want to know how the

loss function changes as weights are varied

Can consider each parameter separatel Image and equation from:
P Sep y https://en.wikipedia.org/wiki/Derivative#/media/

by taking partial derivative of loss File:Tangent_animation.gif
function with respect to that parameter ¢

) Derivatives Gegrgia |

=

Large (deep) networks can be built by
adding more and more layers

Three-layered neural networks can
represent any function

The number of nodes could grow

\

. N7 XSZE
unreasonably (exponential or worse) h‘eﬂ N &7
with respect to the complexity of the ;"“ﬁ ?,1“1‘%
function ‘\‘ M

We will show them without edges:

input :
layer hidden hidden
layer 1 layer 2
output
input —— = layer f(x, er Wz, Wg) = O'(WZ O'(Wlx))
layer layer 1 layer 2

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

) Adding More Layers!

We are learning complex models with significant amount of
parameters (millions or billions)

How do we compute the gradients of the loss (at the end) with
respect to internal parameters?

Intuitively, want to understand how small changes in weight deep
Inside are propagated to affect the loss function at the end

Loss
Function

Computing Gradients in Complex Function

JdL JoL

We want to compute:
Pute: {551)
Layer ¢
aL oL [dL aL
? 7—11 ah! ont ? 7—1
dh dh iL {_ah{’—l'a_w Ji ('L- Loss
: Lo :
i 1 0]
JdL L Oh'
We will use the chain rule to do this: Oht-1~ 9n’ 9n‘-1
0z dz 0y
Chain Rule: — = : oL _ oL dh?
dx 0y O0x ow — ont aw

)‘ Computing the Gradients of Loss

Step 1: Compute Loss on Mini-Batch: Forward Pass
Step 2: Compute Gradients wrt parameters: Backward Pass
Step 3: Use gradient to update all parameters at the end

alL Backpropagation is the application of
gradient descent to a computation
graph via the chain rule!

W; =W; —Q
l l awl

‘\'

Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Georgia A

Tech

h* = Wh*1

ah?

ahf—l — W

oL L oht

Define: She-1 3nf JRi-1

hi = wik™ [JC]

1x |ht~1| 1 x|h?| |h?| xR

) Fully Connected (FC) Layer

Note doing this on full W
matrix would result in
Jacobian tensor!

But it is sparse — each

h* = Wh1
an? : AW output only_affecte_d by
- W corresponding weight row
-1
oh l)
Define: aLT L oL ahT aL
h{ _ Wz‘h{)_l ow: oh’ ?Wi)] ow i
L I R
? oh! R
Ohi _ iy -2 ,
ow; o lterate and populate
/-1 ’ P ¢—1, |lterate and populate
1 XA 1 |h7| |R7| X |h"~7 Note can simplify/vectorjze!

) Fully Connected (FC) Layer

We can employ any differentiable 2

function i

A common choice is the Rectified o |

Linear Unit o]
Provides non-linearity but better A | —
gradient flow than sigmoid EEEE O.. o o 1 1 e
Performed element-wise Rt — maX(O R 1)

. 0,
How many parameters for this layer? E — a

) Rectified Linear Unit (ReLU)

Full Jacobian of ReLU layer is large
(output dim x input dim)

But again it is sparse

Only diagonal values non-zero
because it is element-wise

An output value affected only by
corresponding input value

Max function funnels gradients
through selected max

Gradient will be zero if input
<=0

Backward:

AN

|h¢ x h?~1|

Input Function Output

w

|14
Parameters

Forward: h* = max(0, h‘™1)

aL dhn?

For diagonal

dht
ahf—l =

|

ont-1 ~— 9nt o9nt-1

1 ifh""1>0
0 otherwise

) Jacobian of ReLU

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

4D input x: 4D output z:
1] — — 1
2 1 f(x) =max(0,x) | L V|
; 31: | (elementwise) Tl 8 :
4D dL/dx: [dz/dx] [dL/dZ] 4D dL/dz:
4] [4] ~—[4]—
[0] (00][-1] <+ [-1]*+—— Upstream
(5] < 10][5] < (5]+ gradient
0] < [0000][9] <+~ [9]-

For element-wise ops, jacobian is sparse: off-diagonal entries always zero!
Never explicitly form Jacobian -- instead use elementwise multiplication

Georgia ﬂ
Tech ||

Neural networks involves composing simple functions into a
computation graph

Optimization (updating weights) of this graph is through backpropagation
Recursive algorithm: Gradient descent (partial derivatives) plus chain
rule

Remaining questions:
How does this work with vectors, matrices, tensors?
Across a composed function? Next!

How can we implement this algorithmically to make these
calculations automatic? Automatic Differentiation

) Summ ary Gegr;gciﬁ&

The chain rule can be u X p L
computed as a series of wix [=—> T | —log(p) —
scalar, vector, and matrix
linear algebra operations [] | L] L]
1x1 1x1
1xd
“dx1
Extremely efficient in B ’ . . .
graphics processing units W=— a(wix)(1—a (w'x))x
(GPUS) (1 [(] []
1x1 1x1 1x1 1xd

) Vectorized Computations

1 1
Ty = — }—]-1 L wlx o : » —lo —
whx og() — £®)
CII § 3

L=1

_ a1 1xd 1x1 1x1
P*a— _1_7

“dx1

where p = o(w'x) and o(x) = Hl?

_ L _aL ap

u=g= a—pa(l) w=— a(wa) o(wl x)(l a(w x))a”
oo oy (3 c1 01 C 3
B 1x1 1x1 1x1 1xd
We can do this in a combined way to see all terms :
together:
Wt o(wx)(1 - a (W) Computational / Tensor View Graph View
=- (1 —o(w' x))
This effectively shows gradient flow along path from aL aL
Ltow We want to to compute: { aht-1’ OW}

Computation Graph /

oL oL oL oL
Global View of Chain Rule i IO ‘—»3"" ah—-— Loss

: | o :
1 | OW 1

Backpropagation View
(Recursive Algorithm)

Different Views of Equivalent Ideas

Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

When we move to vectors and matrices:
Composition of functions (scalar)
Composition of functions (vectors/matrices)
Jacobian view of chain rule

Can view entire set of calculations as linear algebra operations (matrix-vector or
matrix-matrix multiplication)

Automatic differentiation:
Reduction of modules to simple operations we know (simple multiplication, etc.)
Automatically build computation graph in background as write code
Automatically compute gradients via backward pass

) Summary Gegrgia |

=

Automatic

Differentiation

4
Georgi <
oroiad| &

Deep Learning = Differentiable Programming

 Computation = Graph
— Input = Data + Parameters
— QOutput = Loss
— Scheduling = Topological ordering

e What do we need to do?

— Generic code for representing the graph of modules
— Specify modules (both forward and backward function)

)

Modularized implementation: forward / backward API

class MultiplyGate(object):

X def forward(x,y):
z = xX*y
return z
def backward(dz):
#AR = e #toz\
y #dy = ... #todo g—L
return [dx, dy] 4
(x,y,z are scalars) \
OL
Ox

)

Backpropagation does not really spell out how to efficiently
carry out the necessary computations

But the idea can be applied to any directed acyclic graph
(DAG)

Graph represents an ordering constraining which paths
must be calculated first

Given an ordering, we can then iterate from the last module
backwards, applying the chain rule

We will store, for each node, its local gradient
function/computation for efficiency

We will do this automatically by computing backwards
function for primitives and as you write code, express the
function with them

This is called reverse-mode automatic differentiation

) A General Framework

Computation = Graph
Input = Data + Parameters
Output = Loss
Scheduling = Topological ordering

Auto-Diff

A family of algorithms for
Implementing chain-rule on computation graphs

) Deep Learning = Differentiable Programming Ge‘%&%ﬂ?

L=1

u p L oL 1

1 p = — =
1+e™ 1

where p = g(w'x) and o(x) = —

o W= 5= m=Po-0)

Automatic differentiation:
. . _ 6L aL 6u _
Carries out this procedure for us W= = aw = WX

on arbitrary graphs We can do this in a combined way to see all terms

Knows derivatives of primitive together:
functions u
w=2®n___1_G(wx)(1-0 (w'x))aT

. . dp ou ow a(w x)
As a result, we just define these (1 ())

. = - — 0 W X
(forward) functions and don’t
even need to specify the This effectively shows gradient flow along path from
gradient (backward) functions! Lto w

) Example Gradient Computations

. . - . —_— af 6a1 =
Key idea is to explicitly store 2 = 307 ax, — 31 C€OS(x2)

computation graph in
memory and corresponding
gradient functions

Nodes broken down to basic
primitive computations
(addition, multiplication, log,
etc.) for which
corresponding derivative is
known

) Computational Implementation

A graph is created on the fly

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

(Note above)

) Computation Graphs in PyTorch

Back-propagation uses the
dynamically built graph

torch.autograd Variable

X = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())

h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20))

From pytorch.org

) Computation Graphs in PyTorch

f(x1,%2) = x1%2 + sin(xz) We want to find the partial

derivative of output f (output)
with respect to all intermediate

o variables

a, a, Assign intermediate variables

Simplify notation:
Gn(D O PITy y

Denote bar as: a; = F
3

Start at end and move

C x,) C x, D backward

2
Georgi S
Teclﬂg \y

f(xq,x2) = x1x, + sin(x,)

aGi=—=1
3 6a3
g O _Of a3 _ Of daray) _ f 4 _ -
1 6a1 6a3 6a1 6a3 aal aag 3
__ 9 Of daz __
2 = = = a3
aaz aag aaz
—p1 _ Of day _ __
Xo" =— —=4aq Cos\x
2 6a1 axz 1 (2)
Gradients
£P2 =9 9a; _ 9f d(x1x2) -, from multiple
2 da,; 0dx; da, 0xy 2 1pathS
summed
. of day
X1 =7 7—— =4aXx
1 aaz 6x1 272

2
Georgi S
Teclﬂ S

f(xq,x2) = x1x, + sin(x,)

____df _ Oof daz _ Of d(aytay) _ Of L
a; = = = =21 1=a3
6a1 6a3 aal 6a3 6a1 6a3
G = _9f day_
2 aaz 6a3 6a2 3

Addition operation distributes gradients
along all paths!

Patterns of Gradient Flow: Addition

Several other patterns as well, e.g.: 5 gradient

Max operation selects which path to
push the gradients through

Gradient flows along the path (Max 3 (Max)

that was “selected” to be max

This information must be

recorded in the forward pass 5 gradient

The flow of gradients is one of the most important aspects in deep
neural networks

If gradients do not flow backwards properly, learning slows or stops!

) Patterns of Gradient Flow: Other

Convolutional network (AlexNet)

Neural Turing Machine

iInput image/

loss \

https://twitter.com/karpathy/status/597631909930242048?lang=en

Computation graphs are not
limited to mathematical
functions!

Software 1.0 \e,,;\\‘!
Can have control flows (if \

statements, loops) and
backpropagate through
algorithms! Software 20~

Program Space

Can be done dynamically so
that gradients are computed,
then nodes are added, repeat

Differentiable programming

Adapted from figure by Andrej Karpathy

) Power of Automatic Differentiation

Backpropagation, and automatic differentiation, allows us to optimize any
function composed of differentiable blocks

No need to modify the learning algorithm!

The complexity of the function is only limited by computation and memory

‘ X l g = '| —log(p) lL*
Model
Input ﬂ Loss Function

» The Power of Deep Learning

A network with two or more hidden
layers is often considered a deep
model

Depth is important:

Structure the model to represent

an inherently compositional world output

layer

Theoretical evidence that it leads

. . input
to parameter eff|C|ency layer hidden hidden

layer 1 layer 2

Gentle dimensionality reduction
(if done right)

) Importance of Depth

There are still many design
decisions that must be made:

Architecture

Data Considerations

Training and
Optimization

_ _ Local
Machine Learning

Considerations

) Designing Deep Neural Networks

Architectural

Considerations

4 'o
o

Geol &?

Tech|)

Determining what modules to use, and how to
connect them is part of the architectural

design
Guided by the type of data used and its
characteristics
Understanding your data is always the
first step!

Lots of data types (modalities) already
have good architectures

Start with what others have
discovered!

The flow of gradients is one of the key
principles to use when analyzing layers

) Designing the Architecture

Combination of linear and o7 .
non-linear layers wi(Wz(W3x)) = wyx

Combination of only linear N
layers has same wTx —s)
representational power as one 1+e ¥

linear layer

Non-linear layers are crucial 12 T— s

10
]

Composition of non-linear »
layers enables complex 02
transformations of the “'

data

v v = = =
-4 =2 0 2 4

) Linear and Non-Linear Modules

Several aspects that we can analyze:
Min/Max

12
10
08
06
04
02 4
0.0 4

Correspondence between input &
output statistics

-1 T T T T T -0.2

Gradients 10— om . E—

At initialization (e.g. small 0o ;
values) :

At extremes

Computational complexity

) Analysis of Non-Linear Function

Min: 0, Max: 1

Output always positive

Derivative

Saturates at both ends

Gradients
Vanishes at both end h! = ¢ (' 1)
Always positive
5P o(x) = ! 67[T]E
i : 1+e™ 1 9L 9’
Computation: Exponential oh P
term oL dL on’

ow 9ht ow

) Sigmoid Function

Min: -1, Max: 1

Centered

Derivative

Saturates at both ends
Gradients
Vanishes at both end

Always positive

Still somewhat
computationally heavy

) Tanh Function

Min: 0, Max: Infinity
Output always positive
No saturation on positive end!
Gradients
0 ifx < 0 (dead ReLU)

Constant otherwise (does
not vanish)

Cheap to compute (max)

) Rectified Linear Unit

h! = max(0, h*™1)

Min: -Infinity, Max: Infinity
Learnable parameter!
No saturation
Gradients

No dead neuron

Still cheap to compute

) Leaky RelLU

h! = max(ah?’~1, h*~1)

31 — GEWU
RelLU
— FELU

Activation functions is
still area of research!

Though many don't
catch on

In Transformer
architectures, other
activations such as
GeLU is common

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel

) Variations: ELU, GelL U, etc.

Selecting a Non-Linearity

Which non-linearity should you
select?

Unfortunately, no one activation
function is best for all applications

ReLU is most common starting
point

Sometimes leaky RelLU can
make a big difference

Sigmoid is typically avoided
unless clamping to values from
[0,1] is needed

Demo
* http://playground.tensorflow.org

DATA FEATURES + — 2 HIDDEN LAYERS QUTPUT
Which dataset do Which properties do Test loss 0.511
you want to use? you want to feed in? + - + - Training loss 0.517

E 7 neurons 2 neurons
X1

[0 3 il
Ratio of training to
test data: 50% - o
— Lt
’l
Noise: 0
o 3
Batch size: 10
— o
REGENERATE Tl D
Colors shows
— data, neuron and | |
sin(Xz 3 Bl 0 1
D weight values
4

[Show test data [] Discretize output

http://playground.tensorflow.org/

Initialization

4 'o
o

Geol &?

Tech|)

Initializing the Parameters

The parameters of our model must be
Initialized to something

Initialization is extremely important!

Determines how statistics of outputs
(given inputs) behave

Determines how well gradients flow in
the beginning of training (important)

Could limit use of full capacity of the
model if done improperly

Initialization that is close to a good (local)
minima will converge faster and to a better
solution

Initializing values to a constant value leads to a degenerate solution!

What happens to the
weight updates? w;, =c Vi

Each node has the same
input from previous layers
so gradients will be the
same

output
layer

input
As a results, all weights layer layer 1 layer 2

hidden hidden

will be updated to the
same exact values

) A Poor Initialization

Common approach is small normally distributed random numbers

75}

E.g. N(u,0) whereu = 0,0 = 0.01 3

Small weights are preferred since
no feature/input has prior
Importance

Keeps the model within the linear
region of most activation
functions

) Gaussian/Normal Initialization

Deeper networks (with many layers) are more sensitive to

initialization
With a deep network,

activations (outputs of
nodes) get smaller

Standard deviation reduces
significantly

Leads to small updates —
smaller values multiplied by
upstream gradients

15

¢ |—Layer1
. |7 Layer2

101 il—Layer 3| |

oseur g
I - i
3 -0.6 -0.4 0.2 0

—Layer 4

G

0

Layer 5|

0.2 0.4 0.6 0.8
Activation value

-1 -0

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

) Limitation of Small Weights

Ideally, we’d like to maintain the variance at the output to be similar

to that of input!

This condition leads to a
simple initialization rule,
sampling from uniform
distribution:

Uniform(— Ve -+ ve)

nj+njy’ nj+njgq
Where n; is fan-in
(number of input nodes)
and n;, 4 Is fan-out
(number of output nodes)

Xavier Initialization

i i i i i i
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Activation value

Distribution of activation values
of a network with tanh non-
linearities, for increasingly deep
layers

From "Understanding the difficulty of training deep
feedforward neural networks." AISTATS, 2010.

In practice, simpler versions perform empirically well:

M0, 1) \/nZ]

This analysis holds for tanh or similar activations.

Similar analysis for ReLU activations leads to:

N(,1) * |—
\]

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification®, ICCV, 2015.

) (Simpler) Xavier and Xavier2 Initialization

Summary

Key takeaway: Initialization matters!

Determines the activation (output)
statistics, and therefore gradient
statistics

If gradients are small, no learning
will occur and no improvement is
possible!

Important to reason about
output/gradient statistics and
analyze them for new layers and
architectures

Regularization

Many standard regularization methods still apply!

L1 Regularization

L=|y—Wx;|*>+ W]

where |W| is element-wise

Example regularizations:
L1/L2 on weights (encourage small values)
L2: L =|y—Wx;|? + 2|W|? (weight decay)
Elastic L1/L2: |y — Wx;|? + a|W|? + B|W|

) Regularization

)
Q
D

\

<
\

O N,
<A\

input _
layer hidden hidden
layer 1 layer 2

Problem: Network can learn to rely strong on a few features that work
really well

May cause overfitting if not representative of test data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Preventing Co-Adapted Features

\

J
y
)
%
X

.0 ¥
XX IREEIXRK
SR

)

input _
layer hidden hidden
layer 1 layer 2

An idea: For each node, keep its output with probability p
Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Dropout Regularization

\

5

)
)
/
e
)

: : K XS
In practice, implement 20 9, e

N
(

)

W

with a mask calculated
each iteration

layer hidden hidden
layer 1 layer 2

During testing, no @

nodes are dropped ai 0
e |1
1

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Dropout Implementation Geo S

=

During training, each node has an
expected p * fan_in nodes

During test all nodes are activated

Principle: Always try to have
similar train and test-time
input/output distributions!

Solution: During test time, scale
outputs (or equivalently weights) by p

|e Wtest == pW

Alternative: Scale by % at train time

v
o N7
N X
A/ >\’«’»‘/<
el 9 A
ZSRTASK

)
)

|ayer h|dden

hidden
layer 1 layer 2

s

aiq 0
azi| . 1
aszy 0
agq 1

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Inference with Dropout

Interpretation 1: The model should
not rely too heavily on particular
features

)
e
N

A

d
)

EXXIIRRK
: : - N> XX
If it does, it has probability 1 — p ARSI

)

of losing that feature in an

iteration input _
layer hidden hidden
layer 1 layer 2

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Why Dropout Works

Interpretation 1: The model should
not rely too heavily on particular

)
e
N

A

features Yo >4
co) XK RABRK
If it does, it has probability 1 — p P8 LS

)

of losing that feature in an

iteration input _
] o layer hidden hidden
Interpretation 2: Training 2™ layer 1 layer 2
networks:

Each configuration is a network

Most are trained with 1 or 2 mini-
batches of data

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

) Why Dropout Works

Georgia
graia |

0

Deep learning involves complex,
compositional, non-linear functions

The loss landscape is extremely non-
convex as a result

o
MCL loss

There is little direct theory and a lot of
intuition/rules of thumbs instead

Some insight can be gained via
theory for simpler cases (e.g.
convex settings)

) Loss Landscape Gegraia |

It used to be thought that
existence of local minima is
the main issue in optimization

There are other more
Impactful issues:

Noisy gradient estimates

Saddle points

lll-conditioned loss surface

) Loss Landscape

Saddle Point

From: Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization, Dauphi et al., 2014.

Georgia

Tec

Al

=

We use a subset of the
data at each iteration to
calculate the loss (&
gradients)

1
L=223 L(f(xiW),3)

This iIs an unbiased
estimator but can have
high variance

This results in noisy steps
In gradient descent

) Noisy Gradients Geo;%.ﬁ@

Several loss surface geometries
are difficult for optimization

Several types of minima: Local
minima, plateaus, saddle points

Saddle points are those where the
gradient of orthogonal directions
are zero

But they disagree (it's min for
one, max for another)

) Loss Surface Geometry

Saddle Point

Georgia

Tec

Al

=

Gradient descent takes a step in the
steepest direction (negative gradient) oL

Intuitive idea: Imagine a ball rolling
down loss surface, and use
momentum to pass flat surfaces

aL Update Velocity
ow;_, (startsasO, g =0.99)

v, = pv_q+

W; = W;_1 — Qav; Update Weights

Generalizes SGD (B = 0)

) Adding Momentum Gegrata |

=

Velocity term is an exponential moving average of the gradient

oL
v =Pri4+ oW,
i
dL oL
Vi = BB V2 + 5~ 2) t 3)
i— i—
. aL oL
= v+ P +

ow;_, 0w; 4

There is a general class of accelerated gradient methods, with
some theoretical analysis (under assumptions)

Georgia @

) Accelerated Descent Methods graia

Equivalent formulation:

oL Update Velocity

v, =BV 4 — a—o
i = Bria ow;_, (starts as 0)

Wi =W;_1+7; Update Weights

ecC

=

Equivalent Momentum Update Gegrgia |

Key idea: Rather than combining velocity
with current gradient, go along velocity
first and then calculate gradient at new

point

We know velocity is probably a
reasonable direction

Wi_1=Wi_1+ Bv;_4
Momentum update: Nesterov Momentum

Gradient

dL
Velocity Velocity

a A\
wi_ 1 actual step

v, = pv_q+

actual step

Wi — Wi—l —_ a vi Gradient
Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Georgia Jh

) Nesterov Momentum qoa

Momentum

Note there are several equivalent
formulations across deep learning
frameworks!

Resource:
https://medium.com/the-artificial-
Impostor/sgd-implementation-in-
pytorch-4115bch9f02c

Tech

Georgia I&

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c

Activation Functions: Use RelLU, GelLU, etc.
Initialization: Important for initial activation and gradient statistics
Normalization: Use dynamic normalization with learnable parts

Optimization: Use momentum (helps w/ local minima, etc.)

Next: More sophisticated gradient history/statistics in update rule

) Summary Gegroia |

=

Various mathematical ways to
characterize the loss landscape

If you liked Jacobians... meet: Second

_) order
0’ f o f 0 f
Ox? Oz Oz Oz, Oxy,
o f & f o f
= Oxa 04 33:3 Ozq Oz,
o2 f o f o2 f
| Oz, 0z; Oz, Ox» Ox2

Gives us information about the
curvature of the loss surface

Tech

=

) Hessian and Loss Curvature Georgia@

Condition number is the ratio of
the largest and smallest eigenvalue

Tells us how different the
curvature is along different
dimensions

If this is high, SGD will make big
steps in some dimensions and
small steps in other dimension

Second-order optimization methods
divide steps by curvature, but
expensive to compute

D Condition Number Georg-aﬁ

Per-Parameter Learning Rate

ldea: Have a dynamic learning rate
for each weight

Several flavors of optimization
algorithms:

RMSProp

Adagrad ¢
Adam ‘

SGD can achieve similar results in
many cases but with much more

tunin g Georgia I&

Tech

Idea: Use gradient statistics
to reduce learning rate across
iterations

Denominator: Sum up
gradients over iterations

As gradients are
accumulated learning
rate will go to zero

Directions with high
curvature will have higher
gradients, and learning rate
will reduce

Duchi, et al., “Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization”

) Adagrad Gegrgia |

=

Solution: Keep a moving
average of squared
gradients!

Does not saturate the
learning rate

) RMSProp

L \°
GiZﬁGi—1+(1—ﬁ)()

ow;_1

Georgia
Tech

J&

=

d
Vi=ﬂ1vi—1+(1—31)< =)

ow;_q

Combines ideas from
above algorithms

IL \2
Gi:ﬁzGi—1+(1—ﬁ2)< = >

ow;_4
. . . avi
Maintains both first W;=w;_q — ———
and second moment VGit+e€

statistics for gradients But unstable in the beginning

(one or both of moments will be
tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,
ICLR 2015

) Adam Qoo

JdL
Vi=ﬂ1vi—1+(1—ﬁ1)()

Solution: Time-varying bias ow;_,
i

correction

L \
G; = B> Gi—1+(1—ﬁz)()

Typ|Ca”y Bl = 0. 9, ﬁz = 0.999 aWi_l

So v; will be small number

% _ G
divided by (1-0.9=0.1) resulting U; = l G; = l 7
In more reasonable values (and
G; larger av.
¢ larger) Wi =Wi 1~ = l
Gi + €

) Adam Gegrgla|

Optimizers behave differently
depending on landscape

Different behaviors such as
overshooting, stagnating, etc.

Plain SGD+Momentum can
generalize better than adaptive
methods, but requires more tuning

See: Luo et al., Adaptive
Gradient Methods with
Dynamic Bound of Learning

I.l;‘[""': = Gradient Descent
’7’””” i — Momentum
”’ZI oy l'll

f"ll,, ’ e NeEStErOV

/ll ”I
7 4
II / ’I’l ll

0500 00 ',l,' NN

9,) (NN

oo "/e"o 'v:'/::'
; 0%

Rate, ICLR 2019

).

Behavior of Optimizers

From: https://mlfromscratch.com/optimizers-explained/#/

Tech

Georgia @

https://openreview.net/pdf?id=Bkg3g2R9FX

First order optimization methods have
learning rates

i) Trainin
Theoretical results rely on annealed | loks i

learning rate :

0 200 400 &00 300 1k

Several schedules that are typical:

Maximum bound

Graduate student! (max_ir)

Step scheduler

Exponential scheduler Minimum bound

(base_lIr)

stepsize

Cosine scheduler

From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

) Learning Rate Schedules Gegroia |

=

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Deep Learning = Differentiable Programming
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Convolutional network (AlexNet)
	Slide 32: Neural Turing Machine
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Demo
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83

