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Administrivia

• Assignment 1 out!
• Due June 5th (with grace period June 7th)

• Start now, start now, start now!

• Start now, start now, start now!

• Start now, start now, start now!

• Resources: 

• These lectures

• Matrix calculus for deep learning

• Gradients notes and MLP/ReLU Jacobian notes.

• Topic OH: Assignment 1 and matrix calculus (linked today)

• Piazza: Project teaming thread

• Project Proposal: June 15th, Project Check-in: July 1st . 

• Project proposal reviewed last time

https://explained.ai/matrix-calculus/index.html
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L5_gradients_notes.pdf
https://www.cc.gatech.edu/classes/AY2022/cs7643_spring/assets/L6_jacobian_notes.pdf
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Example

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, from CS 231n
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Derivatives

⬣ We can find the steepest descent direction by 

computing the derivative (gradient):

⬣ Steepest descent direction is the negative 

gradient

⬣ Intuitively: Measures how the function 

changes as the argument a changes by a small 

step size

⬣ As step size goes to zero

⬣ In Machine Learning: Want to know how the 

loss function changes as weights are varied

⬣ Can consider each parameter separately 

by taking partial derivative of loss 

function with respect to that parameter

𝒇′ 𝒂 = lim
𝒉→𝟎

𝒇 𝒂 + 𝒉 − 𝒇(𝒂)

𝒉

Image and equation from: 

https://en.wikipedia.org/wiki/Derivative#/media/

File:Tangent_animation.gif

∆𝒙



Large (deep) networks can be built by 

adding more and more layers

Three-layered neural networks can 

represent any function

⬣ The number of nodes could grow 

unreasonably (exponential or worse) 

with respect to the complexity of the 

function

We will show them without edges:

Adding More Layers!

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n
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layer 𝒇 𝒙, 𝑾𝟏, 𝑾𝟐, 𝑾𝟑 = 𝝈(𝑾𝟐𝝈 𝑾𝟏𝒙 )



⬣ We are learning complex models with significant amount of 

parameters (millions or billions)

⬣ How do we compute the gradients of the loss (at the end) with 

respect to internal parameters?

⬣ Intuitively, want to understand how small changes in weight deep 

inside are propagated to affect the loss function at the end

Computing Gradients in Complex Function

Loss 

Function

𝝏𝑳

𝝏𝒘𝒊
?



⬣ We want to compute: {
𝝏𝑳

𝝏𝒉ℓ−𝟏 ,
𝝏𝑳

𝝏𝑾
}

⬣ We will use the chain rule to do this:

      Chain Rule: 
𝝏𝒛

𝝏𝒙
=

𝝏𝒛

𝝏𝒚
∙

𝝏𝒚

𝝏𝒙

Computing the Gradients of Loss

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ
Loss⬣ {

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 ,
𝝏𝒉ℓ

𝝏𝑾
}

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝑾

Layer ℓ



Neural Network Training
Adapted from figure by Marc'Aurelio Ranzato, Yann LeCun

Step 1: Compute Loss on Mini-Batch: Forward Pass

Step 2: Compute Gradients wrt parameters: Backward Pass

Step 3: Use gradient to update all parameters at the end

Layer 1 Layer 2 Layer 3

𝒘𝒊 = 𝒘𝒊 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

Backpropagation is the application of 

gradient descent to a computation 

graph via the chain rule!



Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾    

𝝏𝑳

𝝏𝒉ℓ−𝟏
=

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏



Fully Connected (FC) Layer

𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ

𝝏𝑳

𝝏𝑾

Note doing this on full W 
matrix would result in 

Jacobian tensor!

But it is sparse – each 

output only affected by 

corresponding weight row𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏 = 𝑾    

𝝏𝑳

𝝏𝒘𝒊
𝑻 =

𝝏𝑳

𝝏𝒉ℓ
 

𝝏𝒉ℓ

𝝏𝒘𝒊
𝑻

𝝏𝒉𝒊
ℓ

𝝏𝒘𝒊
𝑻

𝟎

𝟎

𝟏 × |𝒉ℓ−𝟏| |𝒉ℓ| × |𝒉ℓ−𝟏|𝟏 × |𝒉ℓ|

𝒉ℓ = 𝑾𝒉ℓ−𝟏

𝝏𝒉𝒊
ℓ 

𝝏𝒘𝒊
𝑻 = 𝒉 ℓ−𝟏 ,𝑻

Define: 

𝒉𝒊
ℓ = 𝒘𝒊

𝑻𝒉ℓ−𝟏

𝝏𝑳

𝝏𝑾

Iterate and populate

Note can simplify/vectorize!



We can employ any differentiable 

(or piecewise differentiable) 

function

A common choice is the Rectified 

Linear Unit 

⬣ Provides non-linearity but better 

gradient flow than sigmoid

⬣ Performed element-wise

How many parameters for this layer?

Rectified Linear Unit (ReLU)

ReLU

Logisti
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max(0,_)



Full Jacobian of ReLU layer is large 

(output dim x input dim)

⬣ But again it is sparse

⬣ Only diagonal values non-zero 

because it is element-wise

⬣ An output value affected only by 

corresponding input value

Max function funnels gradients 

through selected max

⬣ Gradient will be zero if input 

<= 0

Jacobian of ReLU

𝒉ℓ−𝟏 𝒉ℓ

𝑾

FunctionInput Output

Parameters

Forward: 𝒉ℓ = 𝐦𝐚𝐱(𝟎, 𝒉ℓ−𝟏) 

Backward: 
𝝏𝑳

𝝏𝒉ℓ−𝟏 =
𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏

|𝒉ℓ × 𝒉ℓ−𝟏|

𝝏𝒉ℓ

𝝏𝒉ℓ−𝟏
= ቊ

𝟏
𝟎

𝒊𝒇 𝒉ℓ−𝟏 > 𝟎
𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

For diagonal



For element-wise ops, jacobian is sparse: off-diagonal entries always zero!

Never explicitly form Jacobian -- instead use elementwise multiplication

Figure adapted from slides by Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Summary

• Neural networks involves composing simple functions into a 

computation graph

• Optimization (updating weights) of this graph is through backpropagation

• Recursive algorithm: Gradient descent (partial derivatives) plus chain 

rule

• Remaining questions: 

• How does this work with vectors, matrices, tensors? 

• Across a composed function? Next!

• How can we implement this algorithmically to make these 

calculations automatic? Automatic Differentiation



The chain rule can be 

computed as a series of 

scalar, vector, and matrix 

linear algebra operations

Extremely efficient in 

graphics processing units 

(GPUs)

Vectorized Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

1xd

dx1

1x1 1x1

ഥ𝒘 = −
𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

1xd1x11x11x1



Computation Graph / 
Global View of Chain Rule

Computational / Tensor View

Backpropagation View 
(Recursive Algorithm)

Graph View

Different Views of Equivalent Ideas



Summary

• Backpropagation: Recursive, modular algorithm for chain rule + gradient descent

• When we move to vectors and matrices:

• Composition of functions (scalar)

• Composition of functions (vectors/matrices)

• Jacobian view of chain rule

• Can view entire set of calculations as linear algebra operations (matrix-vector or 

matrix-matrix multiplication)

• Automatic differentiation: 

• Reduction of modules to simple operations we know (simple multiplication, etc.)

• Automatically build computation graph in background as write code

• Automatically compute gradients via backward pass



Automatic 

Differentiation



Deep Learning = Differentiable Programming

• Computation = Graph

– Input = Data + Parameters

– Output = Loss

– Scheduling = Topological ordering

• What do we need to do?

– Generic code for representing the graph of modules

– Specify modules (both forward and backward function)

(C) Dhruv Batra 19



20

(x,y,z are scalars)

x

y

z
*

Modularized implementation: forward / backward API

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Backpropagation does not really spell out how to efficiently 

carry out the necessary computations

But the idea can be applied to any directed acyclic graph 

(DAG)

⬣ Graph represents an ordering constraining which paths 

must be calculated first

Given an ordering, we can then iterate from the last module 

backwards, applying the chain rule

⬣ We will store, for each node, its local gradient 

function/computation for efficiency

⬣ We will do this automatically by computing backwards 

function for primitives and as you write code, express the 

function with them

This is called reverse-mode automatic differentiation

A General Framework



Computation = Graph

⬣ Input = Data + Parameters

⬣ Output = Loss

⬣ Scheduling = Topological ordering

Auto-Diff

⬣ A family of algorithms for

implementing chain-rule on computation graphs

Deep Learning = Differentiable Programming



Automatic differentiation:

⬣ Carries out this procedure for us 

on arbitrary graphs

⬣ Knows derivatives of primitive 

functions

⬣ As a result, we just define these 

(forward) functions and don’t 

even need to specify the 

gradient (backward) functions!

Example Gradient Computations

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳
ത𝑳 = 𝟏

ഥ𝒑 =
𝝏𝑳

𝝏𝒑
= −

𝟏

𝒑

where 𝒑 = 𝝈 𝒘𝑻𝒙  and 𝝈 𝒙 =
𝟏

𝟏+𝒆−𝒙

ഥ𝒖 =
𝝏𝑳

𝝏𝒖
=

𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
= ഥ𝒑 𝝈 𝟏 − 𝝈

ഥ𝒘 =
𝝏𝑳

𝝏𝒘
=

𝝏𝑳

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= ഥ𝒖𝒙𝑻

We can do this in a combined way to see all terms 

together:

ഥ𝒘 =
𝝏𝑳

𝝏𝒑
 

𝝏𝒑

𝝏𝒖
 

𝝏𝒖

𝝏𝒘
= −

𝟏

𝝈 𝒘𝑻𝒙
𝝈 𝒘𝑻𝒙 (𝟏 − 𝝈 𝒘𝑻𝒙 )𝒙𝑻

 = − 𝟏 − 𝝈 𝒘𝑻𝒙 𝒙𝑻

This effectively shows gradient flow along path from 

L to w



⬣ Key idea is to explicitly store 

computation graph in 

memory and corresponding 

gradient functions

⬣ Nodes broken down to basic  

primitive computations 

(addition, multiplication, log, 

etc.) for which 

corresponding derivative is 

known

Computational Implementation

𝒙𝟐 =
𝝏𝒇

𝝏𝒂𝟏
 

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬(𝒙𝟐)

+

sin( )

x1

*

𝒂𝟑

𝒂𝟐𝒂𝟏

cos( )

x2



Computation Graphs in PyTorch

A graph is created on the fly

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

next_h

Add

(Note above)



Computation Graphs in PyTorch

from torch.autograd import Variable

x = Variable(torch.randn(1, 20))
prev_h = Variable(torch.randn(1, 20))
W_h = Variable(torch.randn(20, 20))
W_x = Variable(torch.randn(20, 20))

i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()

next_h.backward(torch.ones(1, 20)) 

𝑾𝒉 h 𝑾𝒙 x

h2h i2h

MM MM

Add

next_h

Tanh

A graph is created on the fly
Back-propagation uses the 

dynamically built graph

From pytorch.org



+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐 We want to find the partial 

derivative of output f (output) 

with respect to all intermediate 

variables

⬣ Assign intermediate variables

  Simplify notation: 

  Denote bar as: 𝑎3 =
𝜕𝑓

𝜕𝑎3

⬣ Start at end and move 

backward

Example

𝒂𝟑

𝒂𝟐𝒂𝟏



Example

+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟑 =
𝝏𝒇

𝝏𝒂𝟑
= 𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

𝒙𝟐
𝑷𝟏 =

𝝏𝒇

𝝏𝒂𝟏
 

𝝏𝒂𝟏

𝝏𝒙𝟐
= 𝒂𝟏 𝐜𝐨𝐬 𝒙𝟐

𝒙𝟐
𝑷𝟐 =

𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟐
=

𝝏𝒇

𝝏𝒂𝟐
 

𝝏(𝒙𝟏𝒙𝟐)

𝝏𝒙𝟐
= 𝒂𝟐𝒙𝟏

𝒙𝟏 =
𝝏𝒇

𝝏𝒂𝟐
 

𝝏𝒂𝟐

𝝏𝒙𝟏
= 𝒂𝟐𝒙𝟐

Gradients 

from multiple 

paths 

summed

Path 1
(P1)

Path 2
(P2)



Patterns of Gradient Flow: Addition

+

sin( )

x2 x1

*

𝒇 𝒙𝟏, 𝒙𝟐 = 𝒙𝟏𝒙𝟐 + 𝐬𝐢𝐧 𝒙𝟐

𝒂𝟑

𝒂𝟐𝒂𝟏

𝒂𝟏 =
𝝏𝒇

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏(𝒂𝟏+𝒂𝟐)

𝝏𝒂𝟏
=

𝝏𝒇

𝝏𝒂𝟑
 𝟏 = 𝒂𝟑

𝒂𝟐 =
𝝏𝒇

𝝏𝒂𝟐
=

𝝏𝒇

𝝏𝒂𝟑
 

𝝏𝒂𝟑

𝝏𝒂𝟐
= 𝒂𝟑

Addition operation distributes gradients 

along all paths!



Several other patterns as well, e.g.:

Max operation selects which path to 

push the gradients through

⬣ Gradient flows along the path 

that was “selected” to be max 

⬣ This information must be 

recorded in the forward pass

Patterns of Gradient Flow: Other

The flow of gradients is one of the most important aspects in deep 

neural networks

⬣ If gradients do not flow backwards properly, learning slows or stops!

Max

5 1

5

Max

gradient

gradient



input image

loss

weights

Figure copyright Alex Krizhevsky, Ilya Sutskever, and 

Geoffrey Hinton, 2012. Reproduced with permission. 

Convolutional network (AlexNet)

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Figure reproduced with permission from a Twitter post by Andrej Karpathy.

input image

loss

Neural Turing Machine

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

https://twitter.com/karpathy/status/597631909930242048?lang=en


⬣ Computation graphs are not 

limited to mathematical 

functions!

⬣ Can have control flows (if 

statements, loops) and 

backpropagate through 

algorithms!

⬣ Can be done dynamically so 

that gradients are computed, 

then nodes are added, repeat

⬣ Differentiable programming

Power of Automatic Differentiation

Adapted from figure by Andrej Karpathy

Program Space

Software 1.0

Software 2.0



Backpropagation, and automatic differentiation, allows us to optimize any 

function composed of differentiable blocks

⬣ No need to modify the learning algorithm!

⬣ The complexity of the function is only limited by computation and memory

The Power of Deep Learning

−𝐥𝐨𝐠 𝒑
𝒑 𝑳

𝑿

Input

Model

Loss Function



A network with two or more hidden 

layers is often considered a deep 

model

Depth is important:

⬣ Structure the model to represent 

an inherently compositional world 

⬣ Theoretical evidence that it leads 

to parameter efficiency

⬣ Gentle dimensionality reduction 

(if done right)

Importance of Depth

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Designing Deep Neural Networks

There are still many design 

decisions that must be made:

⬣ Architecture

⬣ Data Considerations

⬣ Training and 

Optimization

⬣ Machine Learning 

Considerations

?

Local

Minima



Architectural 

Considerations



Determining what modules to use, and how to 

connect them is part of the architectural 

design

⬣ Guided by the type of data used and its 

characteristics

⬣ Understanding your data is always the 

first step!

⬣ Lots of data types (modalities) already 

have good architectures

⬣ Start with what others have 

discovered!

⬣ The flow of gradients is one of the key 

principles to use when analyzing layers

Designing the Architecture

?



⬣ Combination of linear and 

non-linear layers

⬣ Combination of only linear 

layers has same 

representational power as one 

linear layer

⬣ Non-linear layers are crucial 

⬣ Composition of non-linear 

layers enables complex 

transformations of the 

data

Linear and Non-Linear Modules

𝒘𝑻𝒙
𝟏

𝟏 + 𝒆−𝒖
−𝐥𝐨𝐠 𝒑

𝒖 𝒑 𝑳

𝒘𝟏
𝑻(𝒘𝟐

𝑻(𝒘𝟑
𝑻𝒙)) = 𝒘𝟒

𝑻x



Several aspects that we can analyze:

⬣ Min/Max

⬣ Correspondence between input & 

output statistics

⬣ Gradients

⬣ At initialization (e.g. small 

values)

⬣ At extremes

⬣ Computational complexity

Analysis of Non-Linear Function



⬣ Min: 0, Max: 1

⬣ Output always positive

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Computation: Exponential 

term

Sigmoid Function

Sigmoid

Derivative

𝒉ℓ = 𝝈 (𝒉ℓ−𝟏) 

𝝈 𝒙 =
𝟏

𝟏 + 𝒆−𝒙
𝝏𝑳

𝝏𝒉ℓ−𝟏

𝝏𝑳

𝝏𝒉ℓ𝝏𝑳

𝝏𝑾

𝝏𝑳

𝝏𝑾
=

𝝏𝑳

𝝏𝒉ℓ  
𝝏𝒉ℓ

𝝏𝑾



⬣ Min: -1, Max: 1

⬣ Centered

⬣ Saturates at both ends

⬣ Gradients

⬣ Vanishes at both end

⬣ Always positive

⬣ Still somewhat 

computationally heavy

Tanh Function

tanh
Derivative

𝒉ℓ = 𝒕𝒂𝒏𝒉(𝒉ℓ−𝟏) 



⬣ Min: 0, Max: Infinity

⬣ Output always positive

⬣ No saturation on positive end!

⬣ Gradients

⬣ 𝟎 if 𝐱 ≤ 𝟎 (dead ReLU)

⬣ Constant otherwise (does 

not vanish)

⬣ Cheap to compute (max)

Rectified Linear Unit

𝒉ℓ = 𝒎𝒂𝒙(𝟎, 𝒉ℓ−𝟏) 



⬣ Min: -Infinity, Max: Infinity

⬣ Learnable parameter!

⬣ No saturation 

⬣ Gradients

⬣ No dead neuron

⬣ Still cheap to compute

Leaky ReLU

θ

𝒉ℓ = 𝒎𝒂𝒙(𝜶𝒉ℓ−𝟏, 𝒉ℓ−𝟏) 



⬣ Activation functions is 

still area of research!

⬣ Though many don’t 

catch on

⬣ In Transformer 

architectures, other 

activations such as 

GeLU is common 

Variations: ELU, GeLU, etc.

θ

From "Gaussian Error Linear Units (GELUs)”, Hendrycks & Gimpel



Selecting a Non-Linearity

Which non-linearity should you 

select?

⬣ Unfortunately, no one activation 

function is best for all applications

⬣ ReLU is most common starting 

point

⬣ Sometimes leaky ReLU can 

make a big difference 

⬣ Sigmoid is typically avoided 

unless clamping to values from 

[0,1] is needed



Demo
• http://playground.tensorflow.org 

http://playground.tensorflow.org/


Initialization



Initializing the Parameters

The parameters of our model must be 

initialized to something

⬣ Initialization is extremely important!

⬣ Determines how statistics of outputs 

(given inputs) behave

⬣ Determines how well gradients flow in 

the beginning of training (important)

⬣ Could limit use of full capacity of the 

model if done improperly

⬣ Initialization that is close to a good (local) 

minima will converge faster and to a better 

solution



⬣ What happens to the 

weight updates?

⬣ Each node has the same 

input from previous layers 

so gradients will be the 

same

⬣ As a results, all weights 

will be updated to the 

same exact values

A Poor Initialization

Initializing values to a constant value leads to a degenerate solution!

input 
layer

hidden 
layer 1

hidden 
layer 2

output 
layer

𝒘𝒊 = 𝒄 ∀𝒊



⬣ E.g. 𝑵 𝝁, 𝝈  𝒘𝒉𝒆𝒓𝒆 𝝁 = 𝟎, 𝝈 = 𝟎. 𝟎𝟏

⬣ Small weights are preferred since 

no feature/input has prior 

importance

⬣ Keeps the model within the linear 

region of most activation 

functions

Gaussian/Normal Initialization

Common approach is small normally distributed random numbers



⬣ With a deep network, 

activations (outputs of 

nodes) get smaller 

⬣ Standard deviation reduces 

significantly 

⬣ Leads to small updates – 

smaller values multiplied by 

upstream gradients

Limitation of Small Weights

Deeper networks (with many layers) are more sensitive to 

initialization

Distribution of activation values 

of a network with tanh non-

linearities, for increasingly deep 

layers

From "Understanding the difficulty of training deep 

feedforward neural networks." AISTATS, 2010.



⬣ This condition leads to a 

simple initialization rule, 

sampling from uniform 

distribution:

  Uniform −
𝟔

𝒏𝒋+𝒏𝒋+𝟏
, +

𝟔

𝒏𝒋+𝒏𝒋+𝟏

⬣ Where 𝒏𝒋 is fan-in 

(number of input nodes) 

and 𝒏𝒋+𝟏 is fan-out 

(number of output nodes)

Xavier Initialization

Ideally, we’d like to maintain the variance at the output to be similar 

to that of input!

Distribution of activation values 

of a network with tanh non-

linearities, for increasingly deep 

layers

From "Understanding the difficulty of training deep 

feedforward neural networks." AISTATS, 2010.



(Simpler) Xavier and Xavier2 Initialization

In practice, simpler versions perform empirically well:

N 𝟎, 𝟏  ∗
𝟏

𝒏𝒋

⬣ This analysis holds for tanh or similar activations.

⬣ Similar analysis for ReLU activations leads to:

𝑵 𝟎, 𝟏  ∗
𝟏

𝒏𝒋/𝟐

"Delving Deep into Rectifiers:Surpassing Human-Level Performance on ImageNet Classification“, ICCV, 2015.



Key takeaway: Initialization matters!

⬣ Determines the activation (output) 

statistics, and therefore gradient 

statistics 

⬣ If gradients are small, no learning 

will occur and no improvement is 

possible!

⬣ Important to reason about 

output/gradient statistics and 

analyze them for new layers and 

architectures

Summary



Regularization



Example regularizations:

⬣ L1/L2 on weights (encourage small values)

⬣ L2:  𝑳 = 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀 𝑾|𝟐 (weight decay)

⬣ Elastic L1/L2: 𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝜶 𝑾|𝟐 + 𝜷|𝑾|

Regularization

Many standard regularization methods still apply!

L1 Regularization

𝑳 = |𝒚 − 𝑾𝒙𝒊|
𝟐 + 𝝀|𝑾|

where |𝑾| is element-wise 



Problem: Network can learn to rely strong on a few features that work 

really well

⬣ May cause overfitting if not representative of test data

Preventing Co-Adapted Features

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer

An idea: For each node, keep its output with probability p

⬣ Activations of deactivated nodes are essentially zero

Choose whether to mask out a particular node each iteration

Dropout Regularization

𝒑 = 𝟎. 𝟓

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.



⬣ In practice, implement 

with a mask calculated 

each iteration

⬣ During testing, no 

nodes are dropped

Dropout Implementation

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

     

𝟎
𝟏
𝟎
𝟏

⋅

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



⬣ During training, each node has an 

expected 𝒑 ∗ 𝒇𝒂𝒏_𝒊𝒏 nodes

⬣ During test all nodes are activated

⬣ Principle: Always try to have 

similar train and test-time 

input/output distributions! 

Solution: During test time, scale 

outputs (or equivalently weights) by 𝒑 

⬣ i.e. 𝑾𝒕𝒆𝒔𝒕 = 𝒑𝑾

⬣ Alternative: Scale by 
𝟏 

𝒑
 at train time

Inference with Dropout

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

𝒂𝟏𝟏

𝒂𝟐𝟏

𝒂𝟑𝟏

𝒂𝟒𝟏

     

𝟎
𝟏
𝟎
𝟏

⋅

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Interpretation 1: The model should 

not rely too heavily on particular 

features

⬣ If it does, it has probability 𝟏 − 𝒑 

of losing that feature in an 

iteration

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Interpretation 1: The model should 

not rely too heavily on particular 

features

⬣ If it does, it has probability 𝟏 − 𝒑 

of losing that feature in an 

iteration

Interpretation 2: Training 𝟐𝒏 

networks:

⬣ Each configuration is a network

⬣ Most are trained with 1 or 2 mini-

batches of data

Why Dropout Works

From: Dropout: A Simple Way to Prevent Neural Networks from Overfitting, Srivastava et al.

input 
layer hidden 

layer 1
hidden 
layer 2

output 
layer



Optimizers



Loss Landscape

Deep learning involves complex, 

compositional, non-linear functions

The loss landscape is extremely non-

convex as a result 

There is little direct theory and a lot of 

intuition/rules of thumbs instead

⬣ Some insight can be gained via 

theory for simpler cases (e.g. 

convex settings)



Loss Landscape

It used to be thought that 

existence of local minima is 

the main issue in optimization

There are other more 

impactful issues:

⬣ Noisy gradient estimates

⬣ Saddle points

⬣ Ill-conditioned loss surface From: Identifying and attacking the saddle point problem in high-

dimensional non-convex optimization, Dauphi et al., 2014.

Saddle Point



Noisy Gradients

⬣ We use a subset of the 

data at each iteration to 

calculate the loss (& 

gradients)

⬣ This is an unbiased 

estimator but can have 

high variance

⬣ This results in noisy steps 

in gradient descent

𝑳 =
𝟏

𝑴
෍ 𝑳 (𝒇 𝒙𝒊, 𝑾 , 𝒚𝒊)



Loss Surface Geometry

Several loss surface geometries 

are difficult for optimization

Several types of minima: Local 

minima, plateaus, saddle points

Saddle points are those where the 

gradient of orthogonal directions 

are zero

⬣ But they disagree (it’s min for 

one, max for another)

Plateau

Saddle Point



Adding Momentum

⬣ Gradient descent takes a step in the 

steepest direction (negative gradient)

⬣ Intuitive idea: Imagine a ball rolling 

down loss surface, and use 

momentum to pass flat surfaces

⬣ Generalizes SGD (𝜷 = 𝟎)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0, 𝜷 = 𝟎. 𝟗𝟗)

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶𝒗𝒊 Update Weights



Accelerated Descent Methods

⬣ Velocity term is an exponential moving average of the gradient

⬣ There is a general class of accelerated gradient methods, with 

some theoretical analysis (under assumptions)

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝒗𝒊 = 𝜷(𝜷 𝒗𝒊−𝟐 +
𝝏𝑳

𝝏𝒘𝒊−𝟐
) +

𝝏𝑳

𝝏𝒘𝒊−𝟏

=  𝜷𝟐𝒗𝒊−𝟐 + 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟐
+

𝝏𝑳

𝝏𝒘𝒊−𝟏



Equivalent Momentum Update

Equivalent formulation:

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 − 𝜶
𝝏𝑳

𝝏𝒘𝒊−𝟏

Update Velocity

(starts as 0)

𝒘𝒊 = 𝒘𝒊−𝟏 + 𝒗𝒊 Update Weights



Nesterov Momentum

ෝ𝒘𝒊−𝟏 = 𝒘𝒊−𝟏 +  𝜷𝒗𝒊−𝟏

𝒗𝒊 = 𝜷𝒗𝒊−𝟏 +
𝝏𝑳

𝝏 ෝ𝒘𝒊−𝟏

Key idea: Rather than combining velocity 

with current gradient, go along velocity 

first and then calculate gradient at new 

point

⬣ We know velocity is probably a 

reasonable direction

𝒘𝒊 = 𝒘𝒊−𝟏 − 𝜶 𝒗𝒊

Velocity

New Gradient

Figure Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Note there are several equivalent 

formulations across deep learning 

frameworks!

Resource: 

https://medium.com/the-artificial-

impostor/sgd-implementation-in-

pytorch-4115bcb9f02c 

Momentum

https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c
https://medium.com/the-artificial-impostor/sgd-implementation-in-pytorch-4115bcb9f02c


Summary

• Activation Functions: Use ReLU, GeLU, etc.

• Initialization: Important for initial activation and gradient statistics

• Normalization: Use dynamic normalization with learnable parts

• Optimization: Use momentum (helps w/ local minima, etc.)

• Next: More sophisticated gradient history/statistics in update rule



Hessian and Loss Curvature

⬣ Various mathematical ways to 

characterize the loss landscape

⬣ If you liked Jacobians… meet:

⬣ Gives us information about the 

curvature of the loss surface

First 

order

Second 

order



Condition Number

Condition number is the ratio of 

the largest and smallest eigenvalue 

⬣ Tells us how different the 

curvature is along different 

dimensions

If this is high, SGD will make big 

steps in some dimensions and 

small steps in other dimension

Second-order optimization methods 

divide steps by curvature, but 

expensive to compute



Idea: Have a dynamic learning rate 

for each weight

Several flavors of optimization 

algorithms:

⬣ RMSProp

⬣ Adagrad

⬣ Adam

⬣ …

SGD can achieve similar results in 

many cases but with much more 

tuning

Per-Parameter Learning Rate



Adagrad

𝑮𝒊 = 𝑮𝒊−𝟏 +
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Idea: Use gradient statistics 

to reduce learning rate across 

iterations

Denominator: Sum up 

gradients over iterations

Directions with high 

curvature will have higher 

gradients, and learning rate 

will reduce 
Duchi, et al., “Adaptive Subgradient Methods for Online 

Learning and Stochastic Optimization”

As gradients are 

accumulated learning 

rate will go to zero



RMSProp

𝑮𝒊 = 𝜷𝑮𝒊−𝟏 + 𝟏 − 𝜷
𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶

𝑮𝒊 + 𝝐
 

𝝏𝑳

𝝏𝒘𝒊−𝟏

Solution: Keep a moving 

average of squared 

gradients!

Does not saturate the 

learning rate



Adam

Combines ideas from 

above algorithms

Maintains both first 

and second moment 

statistics for gradients

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 𝒗𝒊

𝑮𝒊 + 𝝐

But unstable in the beginning 

(one or both of moments will be 

tiny values)

Kingma and Ba, “Adam: A method for stochastic optimization”,

ICLR 2015



Adam

Solution: Time-varying bias 

correction 

Typically 𝜷𝟏 = 𝟎. 𝟗, 𝜷𝟐 = 𝟎. 𝟗𝟗𝟗

So ෝ𝒗𝒊 will be small number 

divided by (1-0.9=0.1) resulting 

in more reasonable values (and 
෡𝑮𝒊 larger)

𝒗𝒊 = 𝜷𝟏 𝒗𝒊−𝟏 + 𝟏 − 𝜷𝟏

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝑮𝒊 = 𝜷𝟐 𝑮𝒊−𝟏 + 𝟏 − 𝜷𝟐

𝝏𝑳

𝝏𝒘𝒊−𝟏

𝟐

ෝ𝒗𝒊 =
𝒗𝒊

𝟏 − 𝜷𝟏
𝒕  ෢𝑮𝒊 =

𝑮𝒊

𝟏 − 𝜷𝟐
𝒕

𝒘𝒊 = 𝒘𝒊−𝟏 −
𝜶 ෝ𝒗𝒊

෢𝑮𝒊 + 𝝐



Behavior of Optimizers

Optimizers behave differently 

depending on landscape

Different behaviors such as 

overshooting, stagnating, etc. 

Plain SGD+Momentum can 

generalize better than adaptive 

methods, but requires more tuning 

⬣ See: Luo et al., Adaptive 

Gradient Methods with 

Dynamic Bound of Learning 

Rate, ICLR 2019
From: https://mlfromscratch.com/optimizers-explained/#/

https://openreview.net/images/pdf_icon_blue.svg

https://openreview.net/pdf?id=Bkg3g2R9FX


Learning Rate Schedules

First order optimization methods have 

learning rates

Theoretical results rely on annealed 

learning rate

Several schedules that are typical:

⬣ Graduate student!

⬣ Step scheduler

⬣ Exponential scheduler

⬣ Cosine scheduler 
From: Leslie Smith, “Cyclical Learning Rates for Training Neural Networks”

Training

Loss
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